

Report No. : EED32I00208205 Page 1 of 71

TEST REPORT

Product : WisePad 2
Trade mark : BBPOS

Model/Type reference: WisePad 2

Serial Number : N/A

Report Number : EED32I00208203 FCC ID : 2AB7X-WISEPAD2

Date of Issue : Aug. 25, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

BBPOS International Limited
Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,
Tsuen Wan, N.T. HK, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Compiled by:

Kevin yang (Project Engineer)

Tom chen (Test Project)

Approved by:

Sheek Luo (Lab supervisor)

Sheek Luo (Reviewer)
Aug. 25, 2016

Check No.: 2384397829

Date: Report Seal

Report No. : EED32I00208205 **2 Version**

Version No.	Date	Description
00	Aug. 25, 2016	Original
/		

Page 3 of 71

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

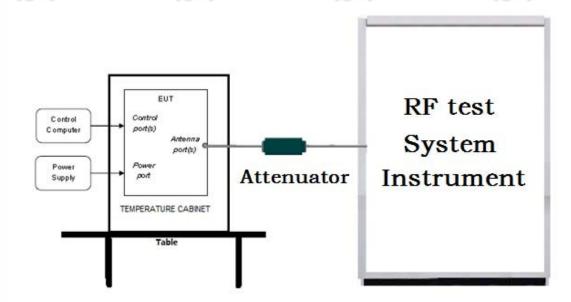
Remark

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

4 Content

Page 4 of 71


2 VERSION				2
3 TEST SUMMAR	Υ			3
5 TEST REQUIRE	MENT		•••••	5
5.1 TEST SETUP.			(67)	5
		Jp		
		etup		
6 GENERAL INFO	RMATION			7
		O THIS STANDARD		
		DITIONS HE CUSTOMER		
		ONFIDENCE LEVELS, K=2)		
	(%) /			
7 EQUIPMENT LIS	ST		•••••	10
8 RADIO TECHNIC	CAL REQUIREMENTS S	PECIFICATION	•••••	12
Appendix A)	20dB Occupied Bandwid	th	-0-	13
		ation		
Appendix C):	Dwell Time			21
		er		
		Power		
Appendix F):	Band-edge for RF Condu	ucted Emissions		31
		Emissions		
		cy Hopping Sequence		
		ed Emission		
		fundamental frequency (Rasions		
Appendix L).	rtadiated Opunous Emiss			
PHOTOGRAPHS (OF EUT CONSTRUCTIO	NAL DETAILS	•••••	66

5 Test Requirement

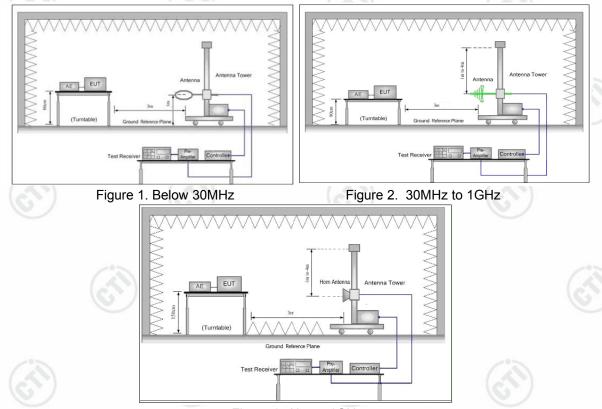
5.1 Test setup

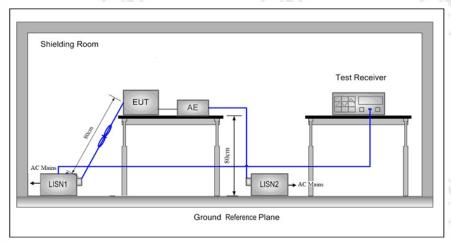
5.1.1 For Conducted test setup

Page 5 of 71

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:




Figure 3. Above 1GHz

Report No. : EED32I00208205 Page 6 of 71

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(5/2)	(,	(17)	(6.7)
Temperature:	21 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar		-07	-05	

5.3 Test Condition

Test Mode	Tv	RF Channel			
rest Mode	Тх	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	2402WITZ ~2400 WITZ	2402MHz	2441MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Test mode:

Pre-scan under all rate at lowest channel 1

Mode	GFSK		
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	7.388	7.550	7.552

Mode		π/4DQPSK	
packets	2-DH1	2-DH3	2-DH5
Power(dBm)	8.349	8.351	8.352
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
Power(dBm)	7.899	7.907	7.909

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of RDPSK, 3-DH5 packet the power is the worst case of 8DPSK,

Report No. : EED32I00208205 Page 7 of 71

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong

6.2 General Description of EUT

Product Name:	WisePad 2
Mode No.(EUT):	WisePad 2
Trade Mark:	BBPOS
EUT Supports Radios application:	BT 2.1(2402MHz-2480MHz), BT 4.0(2402MHz-2480MHz), NFC(13.56MHz), WIFIb/g/n(HT20)(2412MHz-2462MHz), 2G(850MHz/1900MHz)
Power Supply:	DC 3.7V by Battery DC 5V by USB port
Battery:	Li-polymer 3.7V, 750mAh
Sample Received Date:	Jul. 26. 2016
Sample tested Date:	Jul. 26. 2016 to Aug. 25, 2016

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MI	2402MHz~2480MHz				
Bluetooth	Version:	2.1+ED	2.1+EDR				
Modulatio	n Technique:	Freque	ncy Hopping S	pread Spectr	rum(FHSS)		
Modulatio	n Type:	GFSK,	π/4DQPSK, 8E	PSK			
Number o	f Channel:	79	(0)		(6)		(0)
Hopping C	Channel Type:	Adaptiv	e Frequency H	lopping syste	ems		
Sample T	уре:	Portable	e production				
Antenna T	уре:	Integral			.)		\
Test Powe	er Grade:	N/A		(0,		(0,))
Test Softv	vare of EUT:	BBPOS	BBPOS_Transaction				
Antenna C	Gain:	1dBi					
Test Volta	ige:	AC 120	V/50Hz	\			(3)
Operation	Frequency ea	ch of channe	el C)	(0))	(0)
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz

17

18

19

20

Report No.: EED32I00208205 Page 8 of 71 2429MHz 2449MHz 2469MHz 2409MHz 28 48 68 9 2410MHz 29 2430MHz 2470MHz 49 2450MHz 69 2411MHz 2431MHz 2451MHz 2471MHz 10 30 50 70 2412MHz 31 2432MHz 2452MHz 71 2472MHz 11 51 2413MHz 2433MHz 2473MHz 12 32 52 2453MHz 72 13 2414MHz 33 2434MHz 53 2454MHz 73 2474MHz 14 2415MHz 34 2435MHz 2455MHz 74 2475MHz 54 15 2416MHz 35 2436MHz 2456MHz 75 2476MHz 55 2417MHz 2437MHz 2457MHz 2477MHz 16 36 56 76

2438MHz

2439MHz

2440MHz

2441MHz

6.4 Description of Support Units

2418MHz

2419MHz

2420MHz

2421MHz

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
laptop	LENOVO	E46L	FCC DOC	СТІ
Mouse	LENOVO	LXH-EMS-10ZA	FCC DOC	CTI

57

58

59

60

77

78

79

2458MHz

2459MHz

2460MHz

2461MHz

2478MHz

2479MHz

2480MHz

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

37

38

39

40

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

Report No. : EED32I00208205 Page 9 of 71

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
_1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadiated Churious amission test	4.5dB (30MHz-1GHz)
3 Radiated Spurious emission test		4.8dB (1GHz-12.75GHz)

Report No. : EED32I00208205 Page 10 of 71

1	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d	(-41)	04-01-2016	03-31-2017
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017			
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

Report No. : EED32I00208205 Page 11 of 71

	3M S	emi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4	(2)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	(C)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

Report No.: EED32I00208205 Page 12 of 71

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

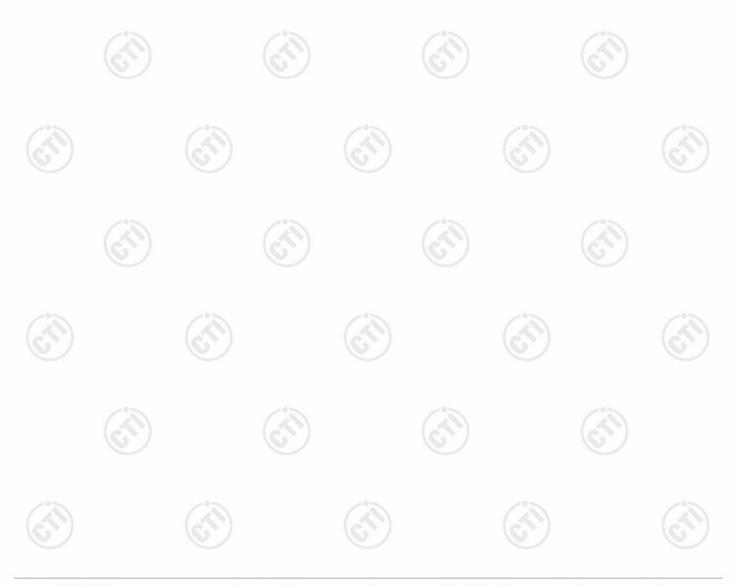
est Results List:		(21)		/ 2
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No. : EED32I00208205 Page 13 of 71

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Mode Channel. 20dB Bandwidth 99% OBW [IMHz]		99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9701	0.87928	PASS	(67)
GFSK	MCH	0.9678	0.89363	PASS	
GFSK	нсн	0.9943	0.89468	PASS	
π/4DQPSK	LCH	1.279	1.1623	PASS	
π/4DQPSK	MCH	1.285	1.1633	PASS	Peak
π/4DQPSK	НСН	1.278	1.1615	PASS	detector
8DPSK	LCH	1.265	1.1584	PASS	
8DPSK	MCH	1.263	1.1606	PASS	
8DPSK	НСН	1.264	1.1605	PASS	

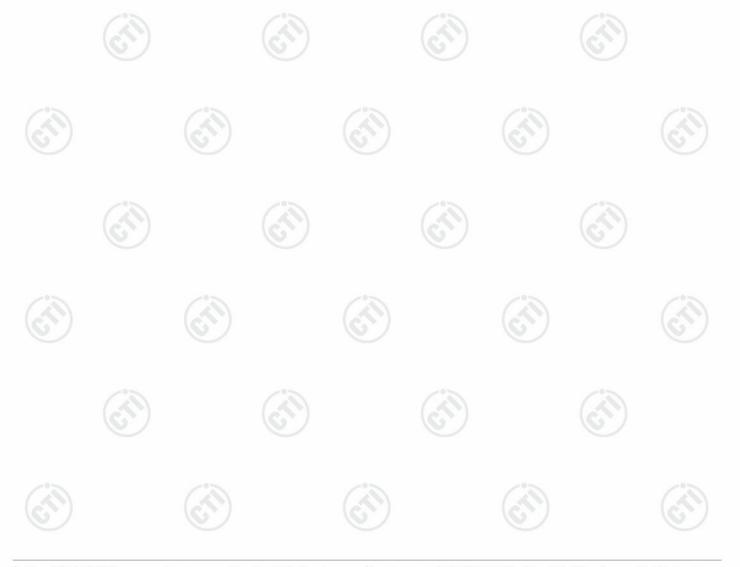


Report No.: EED32I00208205 Page 17 of 71

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.008	PASS
GFSK	MCH	1.002	PASS
GFSK	нсн	1.004	PASS
π/4DQPSK	LCH	1.000	PASS
π/4DQPSK	MCH	1.016	PASS
π/4DQPSK	нсн	0.980	PASS
8DPSK	LCH	0.990	PASS
8DPSK	MCH	0.990	PASS
8DPSK	НСН	0.994	PASS


Report No. : EED32I00208205 **Appendix C): Dwell Time**

Page 21 of 71

Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict	
GFSK	DH1	LCH	0.381267	320	0.122	0.30	PASS	
GFSK	DH1	MCH	0.381266	320	0.122	0.30	PASS	
GFSK	DH1	НСН	0.381266	320	0.122	0.30	PASS	
GFSK	DH3	LCH	1.63653	160	0.262	0.65	PASS	
GFSK	DH3	MCH	1.6378	160	0.262	0.66	PASS	
GFSK	DH3	НСН	1.6378	160	0.262	0.66	PASS	
GFSK	DH5	LCH	2.885467	106.7	0.308	0.77	PASS	
GFSK	DH5	MCH	2.88547	106.7	0.308	0.77	PASS	
GFSK	DH5	нсн	2.88547	106.7	0.308	0.77	PASS	

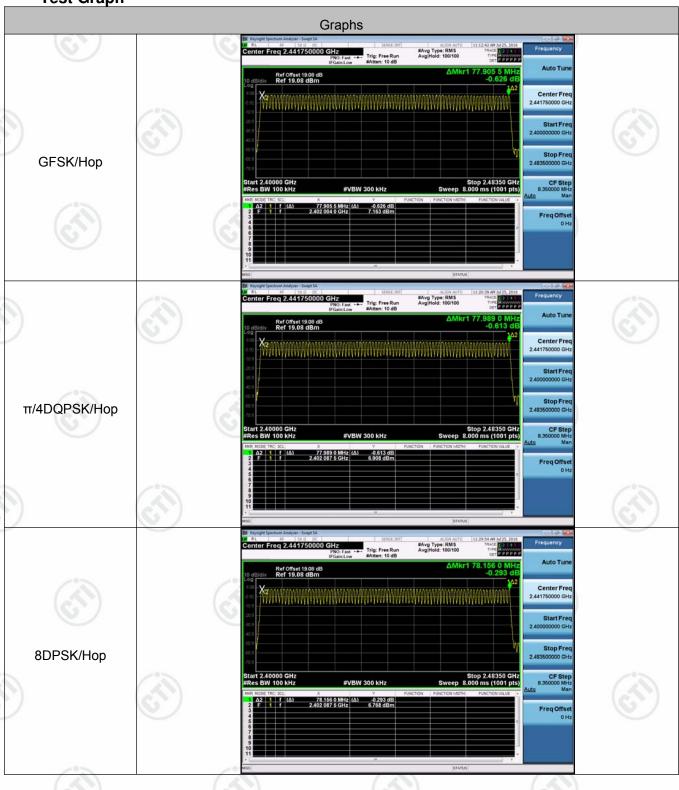
Remark: All modes are tested, only the worst mode GFSK is reported.

Page 23 of 71 Report No.: EED32I00208205 GFSK_DH3/LCH -11.72 dBm -11.71 dBm -11.71 dBm GFSK_DH3/MCH -11.55 dBm -11.53 dBm -11.54 dBm GFSK_DH3/HCH -12.35 dBm -12.37 dBm -12.35 dBm

Page 24 of 71 Report No.: EED32I00208205 GFSK_DH5/LCH GFSK_DH5/MCH -11.54 dBm -11.56 dBm -11.54 dBm GFSK_DH5/HCH -12.40 dBn -12.39 dBn -12.36 dBn

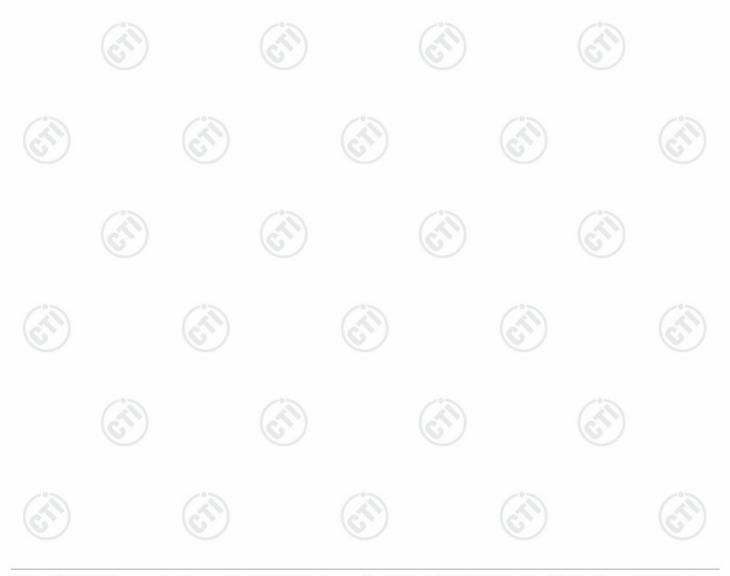
Report No.: EED32I00208205 **Appendix D): Hopping Channel Number**

Page 25 of 71


Result Table

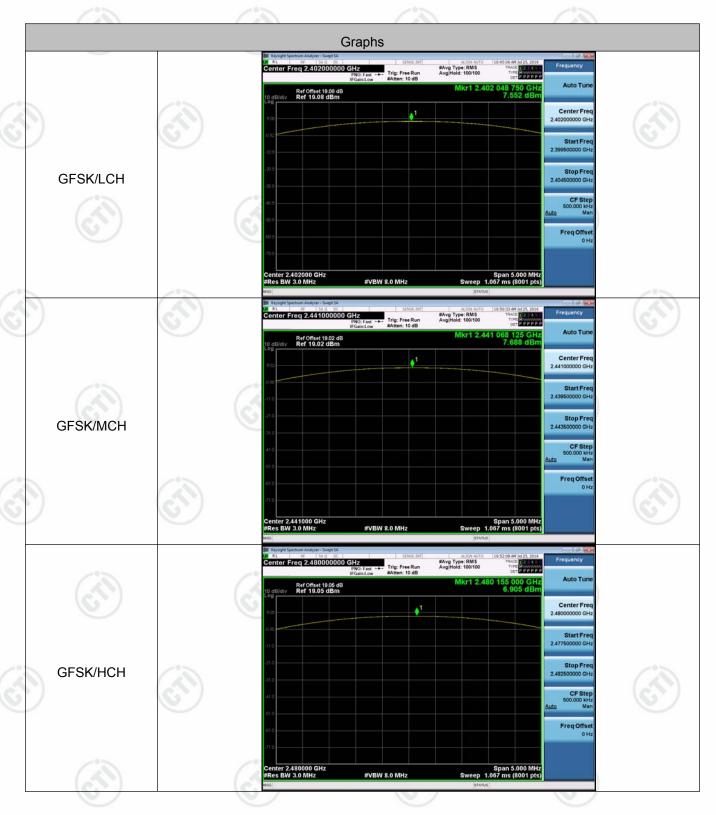
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Page 26 of 71

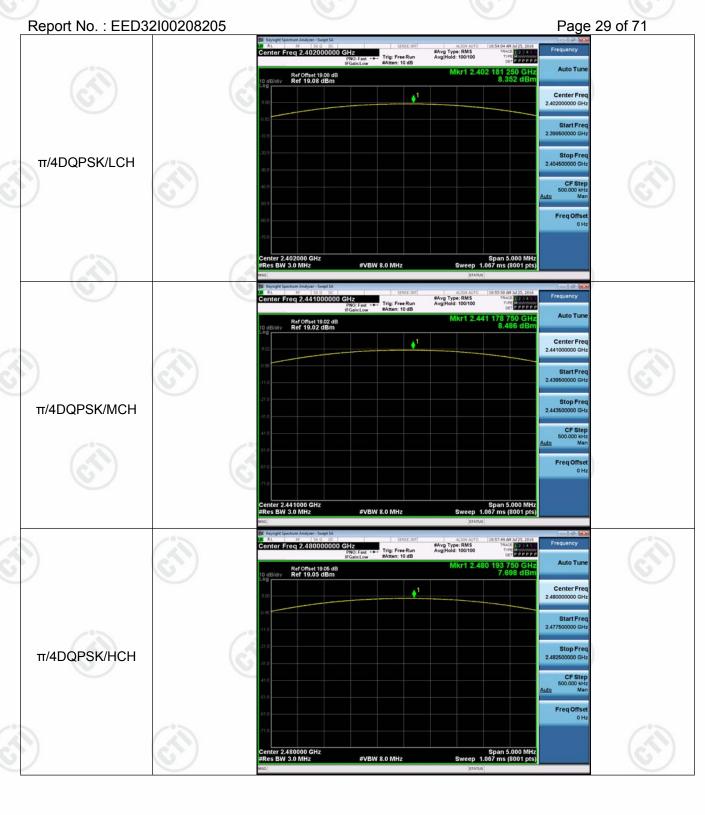


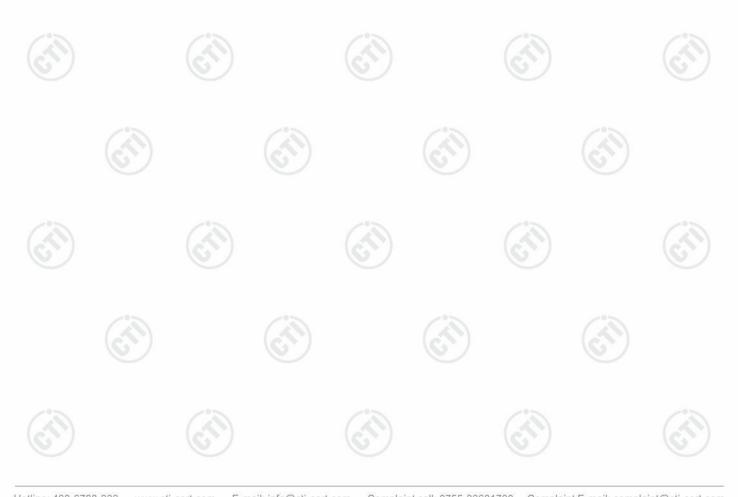
Report No. : EED32I00208205 Page 27 of 71

Appendix E): Conducted Peak Output Power


Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	7.552	PASS
GFSK	МСН	7.688	PASS
GFSK	НСН	6.905	PASS
π/4DQPSK	LCH	8.352	PASS
π/4DQPSK	MCH	8.486	PASS
π/4DQPSK	нсн	7.698	PASS
8DPSK	LCH	7.909	PASS
8DPSK	МСН	8.817	PASS
8DPSK	HCH	8.064	PASS

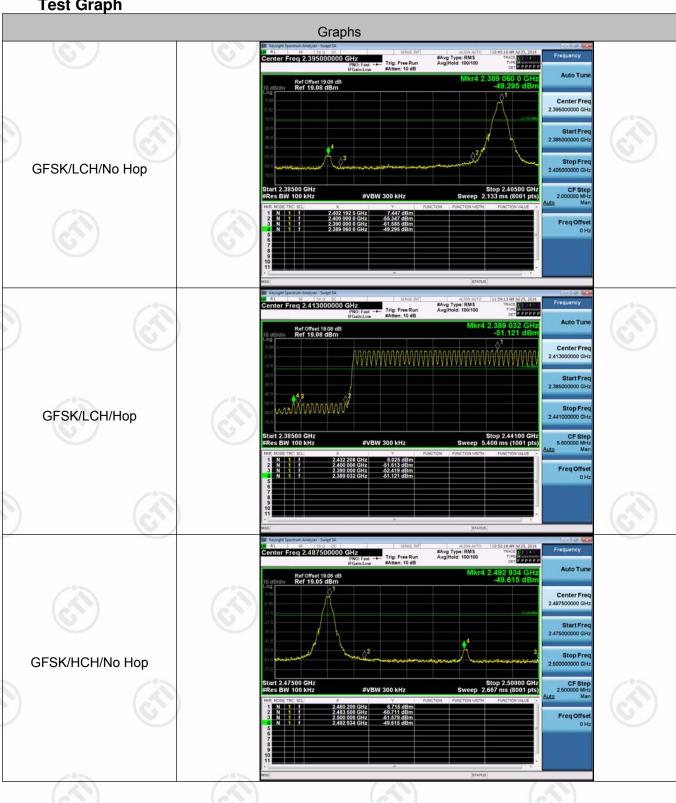




Report No.: EED32I00208205 Page 31 of 71

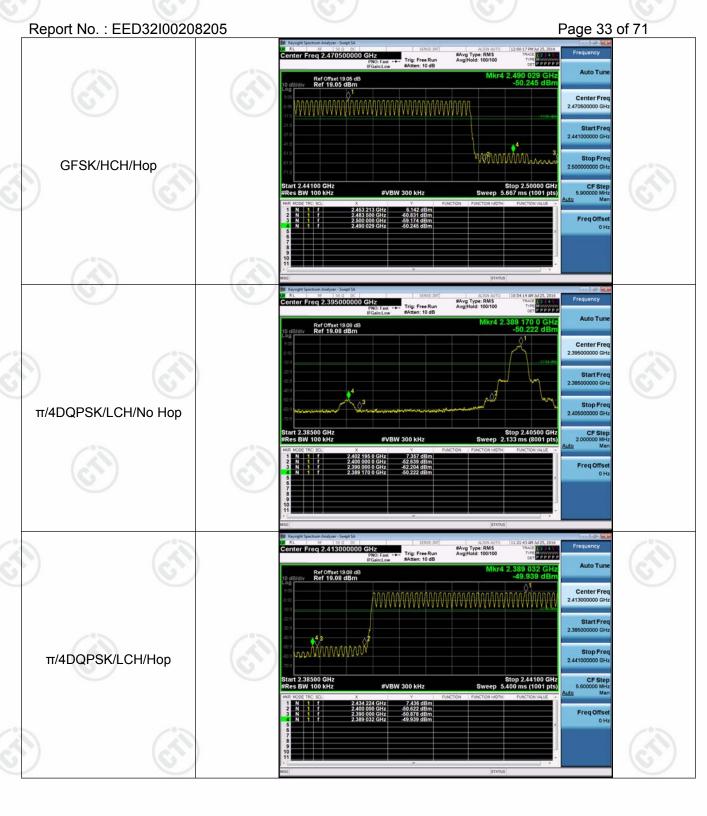
Appendix F): Band-edge for RF Conducted Emissions

Result Table


Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
05014			7.447	Off	-49.295	-12.55	PASS
GFSK	LCH	2402	6.025	On	-51.121	-13.98	PASS
0501		0.400	6.715	Off	-49.615	-13.29	PASS
GFSK	HCH	2480	6.142	On	-50.245	-13.86	PASS
450504			7.357	Off	-50.222	-12.64	PASS
π/4DQPSK	LCH	2402	7.436	On	-49.939	-12.56	PASS
/4B0B0K		0.400	6.727	Off	-49.441	-13.27	PASS
π/4DQPSK	HCH	2480	7.589	On	-49.522	-12.41	PASS
oppou.	1.011	0.400	7.530	Off	-49.979	-12.47	PASS
8DPSK	LCH	2402	7.497	On	-49.903	-12.5	PASS
000014		0.400	6.825	Off	-49.846	-13.18	PASS
8DPSK	HCH	2480	7.620	On	-49.529	-12.38	PASS



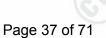
 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

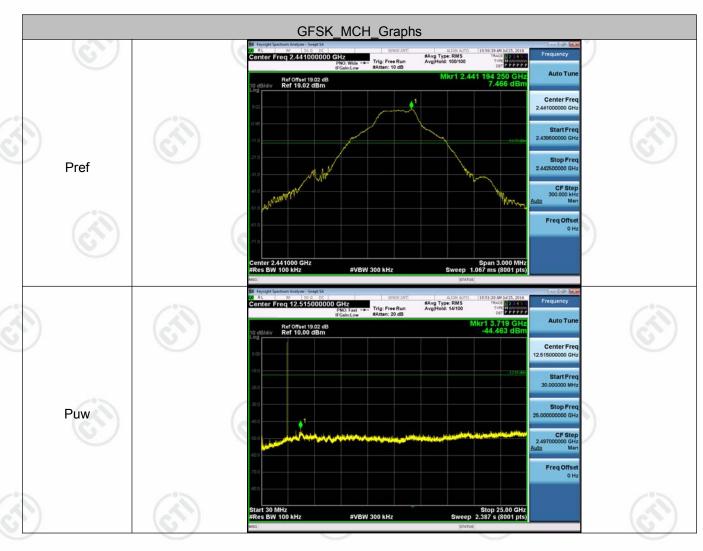


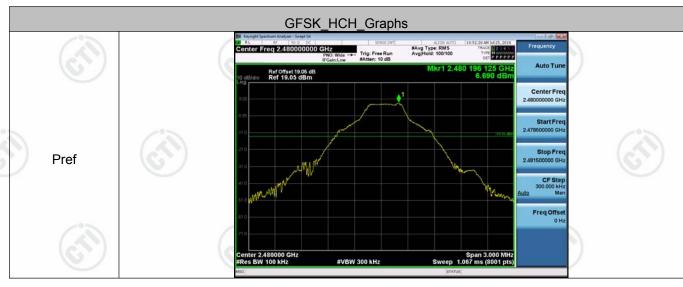
Report No. : EED32I00208205 Page 36 of 71

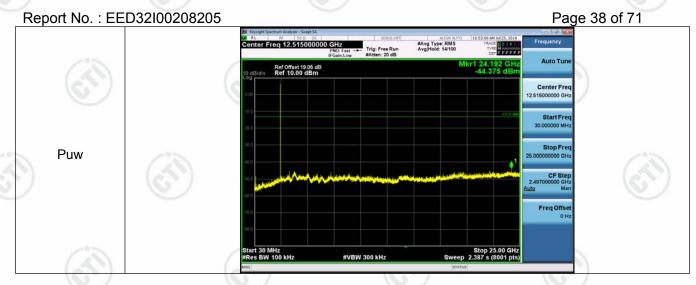
Appendix G): RF Conducted Spurious Emissions

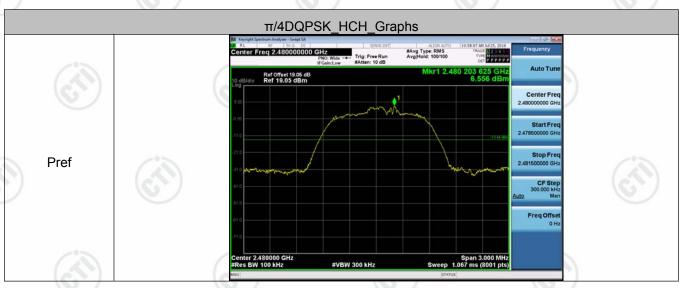
Result Table

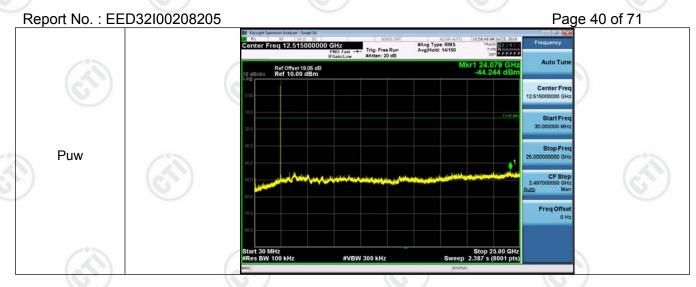

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	7.371	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	7.466	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	6.69	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	6.971	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	7.17	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	6.556	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	7.47	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	7.467	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	6.8	<limit< td=""><td>PASS</td></limit<>	PASS

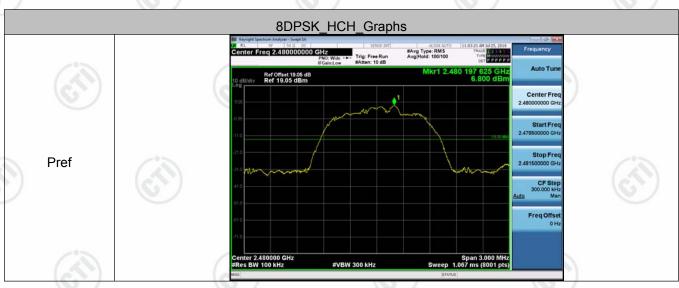


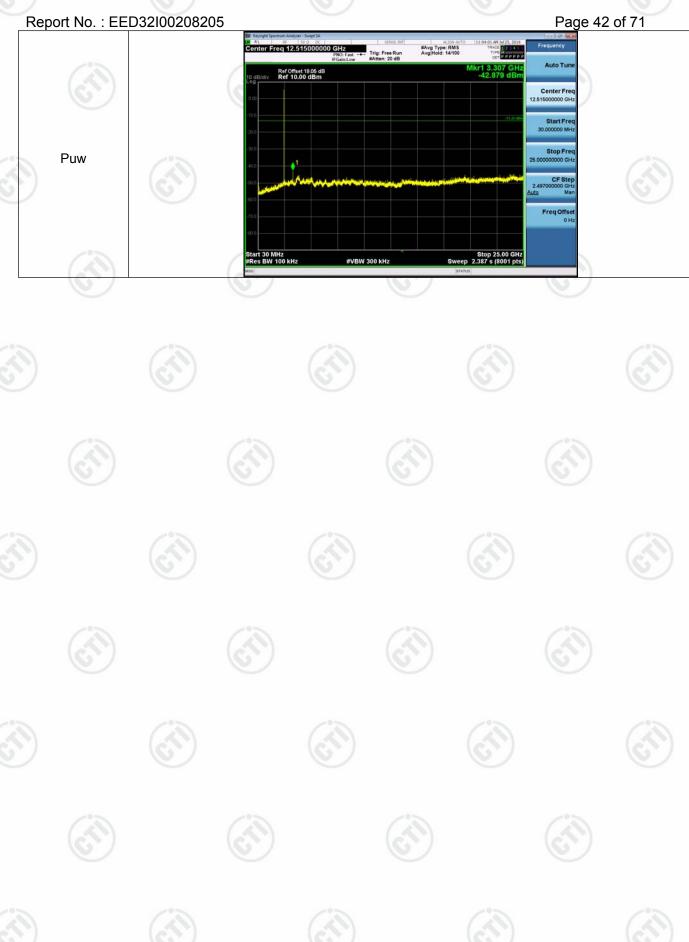






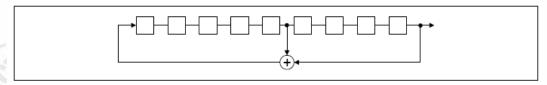






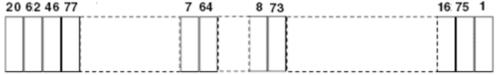
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32I00208205 Page 44 of 71

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No.: EED32I00208205 Page 45 of 71

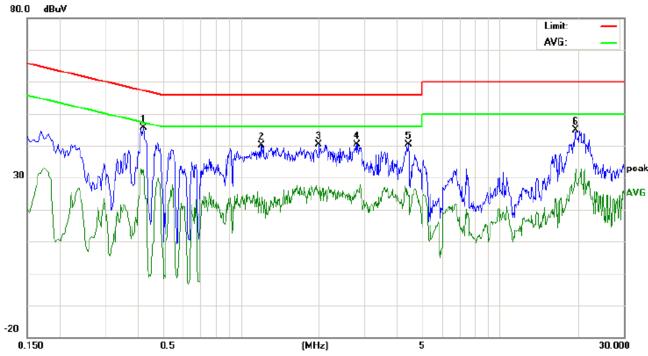
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz	(A)	
	1)The mains terminal disturbar 2) The EUT was connected to Stabilization Network) which power cables of all other u which was bonded to the greater for the unit being measure multiple power cables to a s exceeded.	AC power source thresh provides a 50Ω/50 nits of the EUT were round reference planed. A multiple socket of	ough a LISN 1 (Line μ H + 5Ω linear imp connected to a sece in the same way a putlet strip was use	e Impedance edance. The cond LISN 2, is the LISN 1 d to connect
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		_
	4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	e vertical ground refe of to the horizontal gra the boundary of the u or LISNs mounted o etween the closest po	rence plane. The ve ound reference plar unit under test and n top of the grour pints of the LISN 1 a	ertical ground ne. The LISN bonded to a nd reference and the EUT.
	 In order to find the maximum of the interface cables must conducted measurement. 			
Limit:	(6,12)	(67)	(5,42)	
	Frequency range (MHz)	Limit (d	dΒμV)	
	requeries rainge (im iz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	(*)
b) (0.5-5	56	46	
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz.			e range 0.15
	NOTE : The lower limit is applied	cable at the transition	nequency	

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

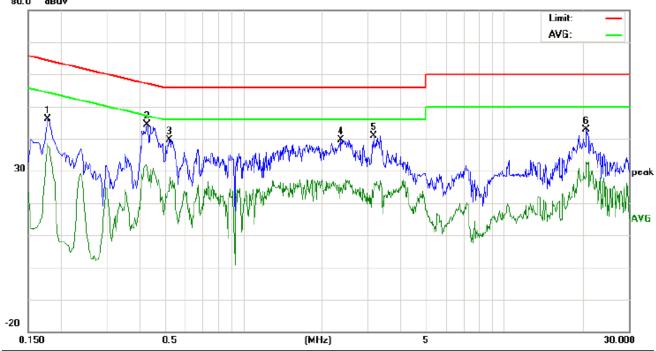
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 46 of 71

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin fB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4218	35.72	31.40	22.57	9.90	45.62	41.30	32.47	57.41	47.41	-16.11	-14.94	Р	
2	1.2016	30.13	27.40	11.42	10.00	40.13	37.40	21.42	56.00	46.00	-18.60	-24.58	Р	
3	2.0059	30.39	26.00	14.73	10.00	40.39	36.00	24.73	56.00	46.00	-20.00	-21.27	Р	
4	2.8220	30.43	26.10	16.09	10.00	40.43	36.10	26.09	56.00	46.00	-19.90	-19.91	Р	
5	4.4378	30.36	25.30	14.04	10.00	40.36	35.30	24.04	56.00	46.00	-20.70	-21.96	Р	
6	19.5536	34.43	30.00	21.84	10.46	44.89	40.46	32.30	60.00	50.00	-19.54	-17.70	Р	



Neutral line: 80.0 dBuV

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1779	36.43	32.40	28.78	9.80	46.23	42.20	38.58	64.58	54.58	-22.38	-16.00	Р	
	2	0.4299	34.55	31.50	21.28	9.90	44.45	41.40	31.18	57.25	47.25	-15.85	-16.07	Р	
	3	0.5220	29.68	24.60	13.73	9.90	39.58	34.50	23.63	56.00	46.00	-21.50	-22.37	Р	
-	4	2.3780	29.67	25.00	14.91	10.00	39.67	35.00	24.91	56.00	46.00	-21.00	-21.09	Р	
-	5	3.1699	30.94	26.30	15.86	10.00	40.94	36.30	25.86	56.00	46.00	-19.70	-20.14	Р	
	6	20.6060	32.30	28.00	22.45	10.49	42.79	38.49	32.94	60.00	50.00	-21.51	-17.06	Р	

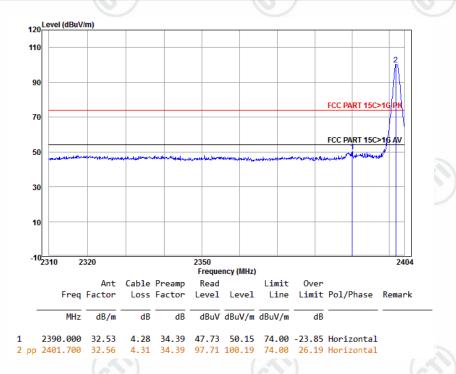
Notes:

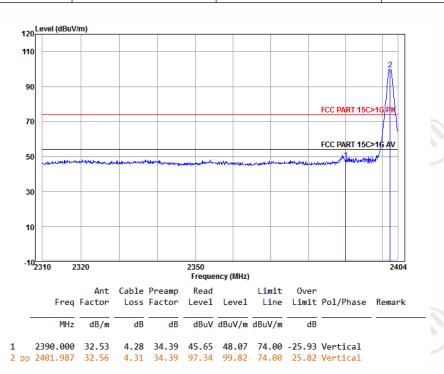
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32I00208205 Page 48 of 71

Appendix K): Restricted bands around fundamental frequency (Radiated)

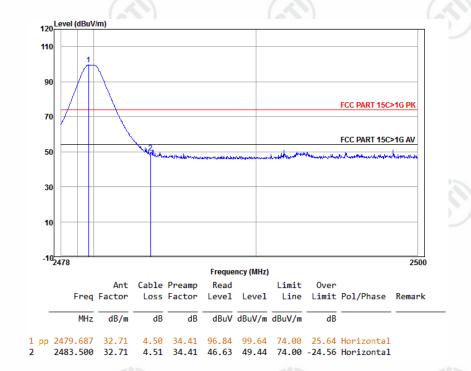
		/ 431		
Receiver Setup:	Frequency	Detector RI	BW VBW	Remark
	30MHz-1GHz	Quasi-peak 120	kHz 300kHz	Quasi-peak
		Peak 1M	1Hz 3MHz	Peak
	Above 1GHz	Peak 1M	1Hz 10Hz	Average
Test Procedure:	Below 1GHz test procedu	vo oo bolowi	(6)	(6)
Limit:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is well determine the maximum polarizations of the ant. d. For each suspected en the antenna was tuned table was turned from (e. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectra for lowest and highest of the second of the following save the spectra for lowest and highest of the following save the second of the following save the EUT in the single save procedured in the save and	n the top of a rotating hoic camber. The tall of the highest radiative ters away from the irp of a variable-height varied from one metern value of the field stenna are set to make hission, the EUT was to heights from 1 med degrees to 360 degrees to 360 degrees to 360 degrees to Peak Dum Hold Mode. End of the restricted by the pliance. Also measure analyzer plot. Rechannel the test site, charber and change form the distance is 1 meterowest channel, the lements are performed to found the X axis pores until all frequencing.	ole was rotated on. Interference-rece that antenna tower or to four meters arength. Both how the measurement of the measurement	iving antenna, who above the ground rizontal and vertice ent. worst case and the and the rotatable maximum reading and Specified the transmit is in the restricted ower and modulate and the rotatable ower and modulate and specified. Anechoic Chamber to 1.5 is meter).
LIIIII.	Frequency	Limit (dBµV/m @	,	mark
	30MHz-88MHz	40.0	Quasi-p	eak Value
	160			V30/2 / .
	88MHz-216MHz	43.5		eak Value
	216MHz-960MHz	46.0	Quasi-p	eak Value
			Quasi-p	
	216MHz-960MHz	46.0	Quasi-p Quasi-p	eak Value

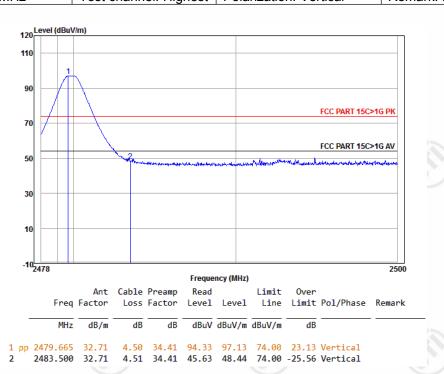



Report No.: EED32I00208205 Page 49 of 71

Test plot as follows:

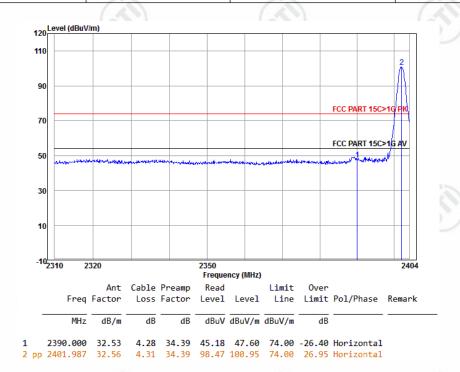
Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

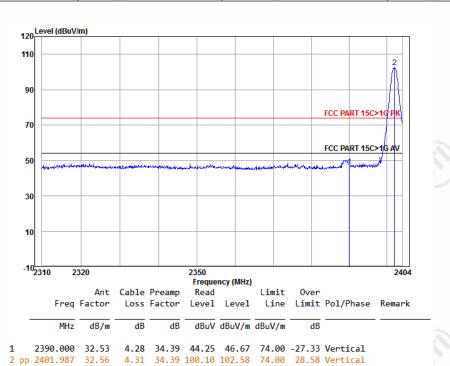

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page 50 of 71

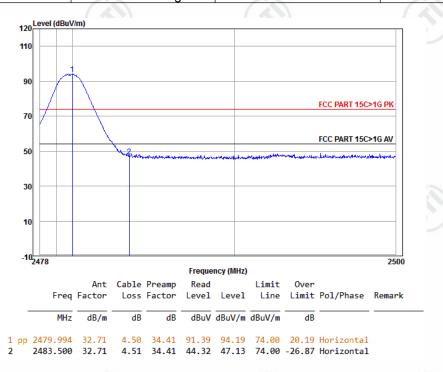
Worse case mode:	GFSK(1-DH5)			
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

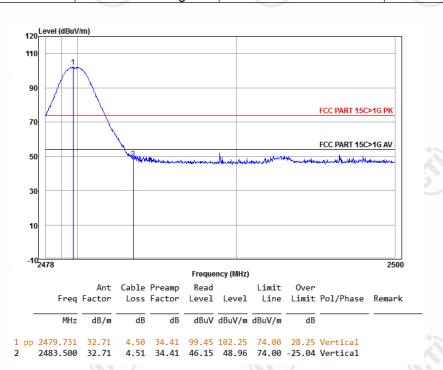

Worse case mode:	GFSK(1-DH5)	(27)	(25)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	



Page 51 of 71

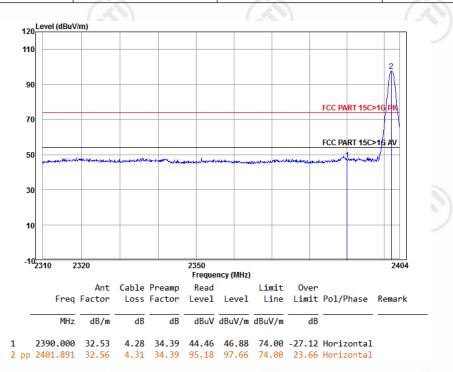
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

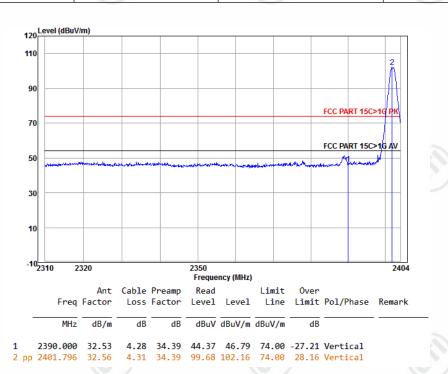

Worse case mode:	π/4DQPSK(2-DH5)	(25)	(25)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page 52 of 71

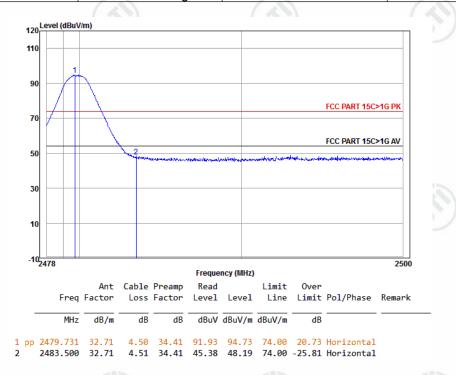
Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

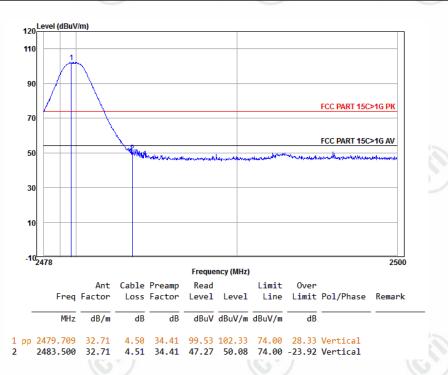

Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	



Page 53 of 71

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Report No.: EED32I00208205 Page 54 of 71

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00208205 Page 56 of 71

Appendix L): Radiated Spurious Emissions

Receiver Setup:

		4 10 10 10 10 10 10 10 10 10 10 10 10 10		
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab av a 401 l-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

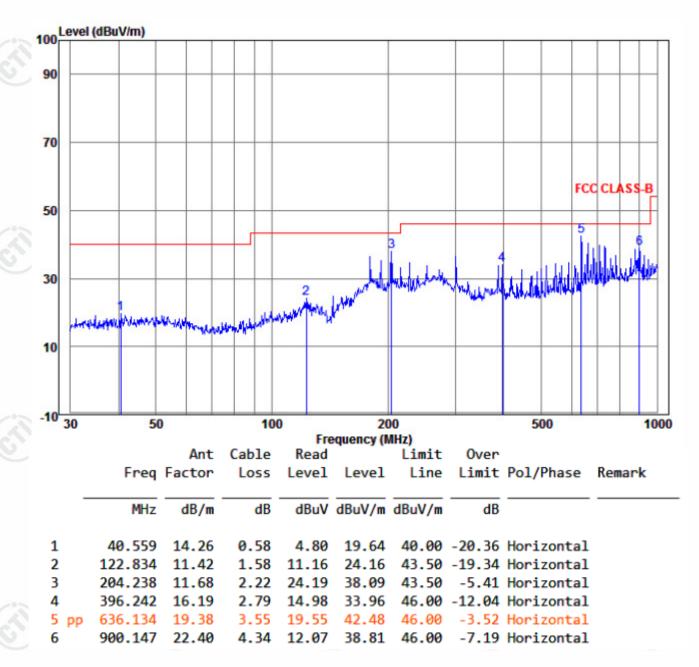
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	- /	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

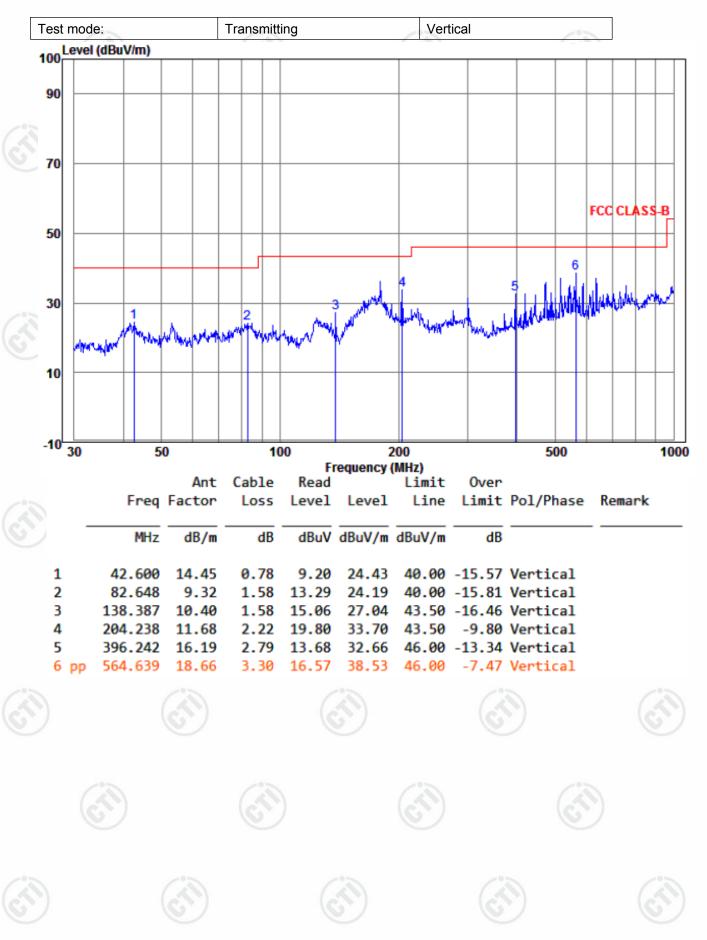


Page 57 of 71

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2.17)	
Test mode:	Transmitting	Horizontal



Page 58 of 71

Report No.: EED32I00208205 Page 59 of 71

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1-DI	H5)	Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1235.257	30.31	2.56	34.93	44.96	42.90	74	-31.10	Pass	H
1800.416	31.40	3.08	34.44	44.18	44.22	74	-29.78	Pass	Н
3445.704	33.21	5.53	34.55	41.97	46.16	74	-27.84	Pass	Н
4804.000	34.69	5.11	34.35	41.42	46.87	74	-27.13	Pass	Н
7206.000	36.42	6.66	34.90	40.70	48.88	74	-25.12	Pass	Н
9608.000	37.88	7.73	35.08	37.35	47.88	74	-26.12	Pass	Н
1156.150	30.12	2.46	35.01	45.03	42.60	74	-31.40	Pass	V
1938.352	31.61	3.19	34.34	44.24	44.70	74	-29.30	Pass	V
2957.654	33.53	5.54	34.49	43.09	47.67	74	-26.33	Pass	V
4804.000	34.69	5.11	34.35	42.21	47.66	74	-26.34	Pass	V
7206.000	36.42	6.66	34.90	40.88	49.06	74	-24.94	Pass	V
9608.000	37.88	7.73	35.08	36.89	47.42	74	-26.58	Pass	V

Worse case mode:		GFSK(1-DI	H5)	Test char	Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1153.210	30.11	2.46	35.01	44.45	42.01	74	-31.99	Pass	→ H
1800.416	31.40	3.08	34.44	45.11	45.15	74	-28.85	Pass	H
2942.635	33.51	5.51	34.49	43.90	48.43	74	-25.57	Pass	~H
4882.000	34.85	5.08	34.33	42.00	47.60	74	-26.40	Pass	Н
7323.000	36.43	6.77	34.90	39.87	48.17	74	-25.83	Pass	Н
9764.000	38.05	7.60	35.05	37.95	48.55	74	-25.45	Pass	Н
1303.086	30.46	2.63	34.86	44.70	42.93	74	-31.07	Pass	V
2092.175	31.91	3.50	34.32	43.30	44.39	74	-29.61	Pass	V
3128.013	33.48	5.59	34.51	44.40	48.96	74	-25.04	Pass	V
4882.000	34.85	5.08	34.33	41.46	47.06	74	-26.94	Pass	V
7323.000	36.43	6.77	34.90	41.15	49.45	74	-24.55	Pass	S V
9764.000	38.05	7.60	35.05	38.55	49.15	74	-24.85	Pass	V

Report No. : EED32I00208205 Page 60 of 71

Worse case mode:		GFSK(1-DI	H5)	Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	2.58	34.90	48.02	46.06	74	-27.94	Pass	Н
1741.812	31.30	3.04	34.48	45.32	45.18	74	-28.82	Pass	Н
3728.625	33.00	5.48	34.58	45.02	48.92	74	-25.08	Pass	C H
4960.000	35.02	5.05	34.31	41.83	47.59	74	-26.41	Pass	H
7440.000	36.45	6.88	34.90	40.34	48.77	74	-25.23	Pass	Н
9920.000	38.22	7.47	35.02	38.26	48.93	74	-25.07	Pass	Н
1232.117	30.30	2.55	34.93	43.80	41.72	74	-32.28	Pass	V
1655.354	31.15	2.97	34.55	44.15	43.72	74	-30.28	Pass	V
3072.770	33.53	5.61	34.51	44.19	48.82	74	-25.18	Pass	V
4960.000	35.02	5.05	34.31	40.98	46.74	74	-27.26	Pass	V
7440.000	36.45	6.88	34.90	39.89	48.32	74	-25.68	Pass	V
9920.000	38.22	7.47	35.02	37.53	48.20	74	-25.80	Pass	V

Worse case mode:		π/4DQPSk	((2-DH5)	Test char	nel:	Lowest	Remark: Po	eak					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis				
1165.013	30.14	2.47	35.00	44.75	42.36	74	-31.64	Pass	Н				
1795.839	31.39	3.08	34.44	43.94	43.97	74	-30.03	Pass	Н				
3160.026	33.46	5.59	34.52	44.02	48.55	74	-25.45	Pass	. Н				
4804.000	34.69	5.11	34.35	42.33	47.78	74	-26.22	Pass	Н				
7206.000	36.42	6.66	34.90	40.87	49.05	74	-24.95	Pass	©н∕				
9608.000	37.88	7.73	35.08	38.01	48.54	74	-25.46	Pass	Н				
1132.844	30.06	2.43	35.04	45.72	43.17	74	-30.83	Pass	V				
1832.785	31.45	3.11	34.41	44.68	44.83	74	-29.17	Pass	V				
3216.838	33.41	5.58	34.52	44.98	49.45	74	-24.55	Pass	V				
4804.000	34.69	5.11	34.35	42.96	48.41	74	-25.59	Pass	V				
7206.000	36.42	6.66	34.90	41.15	49.33	74	-24.67	Pass	V				
9608.000	37.88	7.73	35.08	37.93	48.46	74	-25.54	Pass	V				

Report No. : EED32I00208205 Page 61 of 71

Worse case mode:		π/4DQPSk	((2-DH5)	Test char	Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	45.96	43.76	74	-30.24	Pass	Н
1659.574	31.16	2.97	34.54	43.50	43.09	74	-30.91	Pass	Н
3472.118	33.19	5.53	34.55	43.59	47.76	74	-26.24	Pass	C H
4882.000	34.85	5.08	34.33	42.28	47.88	74	-26.12	Pass	H
7323.000	36.43	6.77	34.90	40.63	48.93	74	-25.07	Pass	Н
9764.000	38.05	7.60	35.05	37.42	48.02	74	-25.98	Pass	Н
1296.469	30.45	2.62	34.86	44.02	42.23	74	-31.77	Pass	V
1923.606	31.59	3.18	34.35	44.04	44.46	74	-29.54	Pass	V
3376.244	33.27	5.55	34.54	43.17	47.45	74	-26.55	Pass	V
4882.000	34.85	5.08	34.33	41.87	47.47	74	-26.53	Pass	V
7323.000	36.43	6.77	34.90	40.90	49.20	74	-24.80	Pass	V
9764.000	38.05	7.60	35.05	37.45	48.05	74	-25.95	Pass	V

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1176.935	30.17	2.49	34.99	44.18	41.85	74	-32.15	Pass	Н
1818.842	31.43	3.10	34.42	44.52	44.63	74	-29.37	Pass	Н
3579.815	33.11	5.51	34.56	43.32	47.38	74	-26.62	Pass	. Н
4960.000	35.02	5.05	34.31	41.29	47.05	74	-26.95	Pass	Н
7440.000	36.45	6.88	34.90	41.17	49.60	74	-24.40	Pass	©н∕
9920.000	38.22	7.47	35.02	38.20	48.87	74	-25.13	Pass	Н
1216.534	30.27	2.53	34.95	44.46	42.31	74	-31.69	Pass	V
1759.638	31.33	3.05	34.47	43.52	43.43	74	-30.57	Pass	V
3428.206	33.23	5.54	34.55	41.99	46.21	74	-27.79	Pass	V
4960.000	35.02	5.05	34.31	42.88	48.64	74	-25.36	Pass	V
7440.000	36.45	6.88	34.90	40.02	48.45	74	-25.55	Pass	V
9920.000	38.22	7.47	35.02	37.98	48.65	74	-25.35	Pass	V

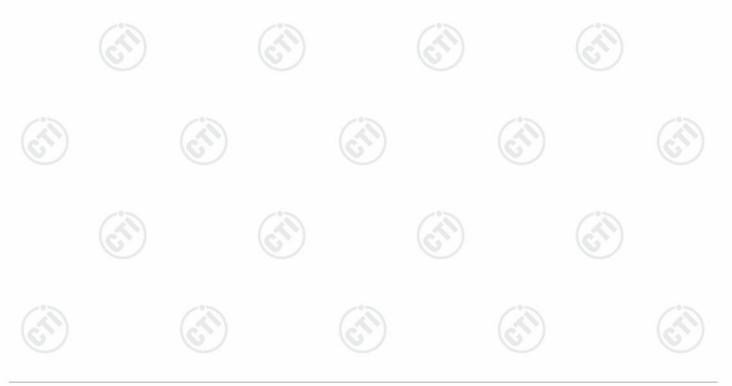
Report No. : EED32I00208205 Page 62 of 71

Worse case	Worse case mode:		8DPSK(3-DH5)		Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1388.708	30.65	2.72	34.77	44.40	43.00	74	-31.00	Pass	Н
1837.456	31.46	3.11	34.41	44.56	44.72	74	-29.28	Pass	Н
3266.346	33.36	5.57	34.53	44.24	48.64	74	-25.36	Pass	H
4804.000	34.69	5.11	34.35	42.31	47.76	74	-26.24	Pass	H
7206.000	36.42	6.66	34.90	39.93	48.11	74	-25.89	Pass	Н
9608.000	37.88	7.73	35.08	37.27	47.80	74	-26.20	Pass	Н
1260.670	30.37	2.58	34.90	48.90	46.95	74	-27.05	Pass	V
1617.862	31.09	2.93	34.58	46.37	45.81	74	-28.19	Pass	V
3283.018	33.35	5.56	34.53	43.85	48.23	74	-25.77	Pass	V
4804.000	34.69	5.11	34.35	42.61	48.06	74	-25.94	Pass	V
7206.000	36.42	6.66	34.90	40.93	49.11	74	-24.89	Pass	V
9608.000	37.88	7.73	35.08	37.74	48.27	74	-25.73	Pass	V

Worse case mode:		8DPSK(3-DH5)		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1207.279	30.24	2.52	34.96	44.90	42.70	74	-31.30	Pass	Н
1768.619	31.35	3.06	34.46	44.64	44.59	74	-29.41	Pass	Н
3160.026	33.46	5.59	34.52	44.20	48.73	74	-25.27	Pass	Н
4882.000	34.85	5.08	34.33	42.52	48.12	74	-25.88	Pass	H
7323.000	36.43	6.77	34.90	39.98	48.28	74	-25.72	Pass	H
9764.000	38.05	7.60	35.05	38.14	48.74	74	-25.26	Pass	Н
1219.635	30.27	2.54	34.94	45.17	43.04	74	-30.96	Pass	V
1933.424	31.60	3.18	34.34	44.55	44.99	74	-29.01	Pass	V
3653.463	33.05	5.50	34.57	43.21	47.19	74	-26.81	Pass	V
4882.000	34.85	5.08	34.33	43.11	48.71	74	-25.29	Pass	V
7323.000	36.43	6.77	34.90	41.30	49.60	74	-24.40	Pass	V
9764.000	38.05	7.60	35.05	37.53	48.13	74	-25.87	Pass	V

Report No.: EED32I00208205 Page 63 of 71

Worse case mode:		8DPSK(3-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1107.186	29.99	2.40	35.07	44.78	42.10	74	-31.90	Pass	Н
1973.201	31.66	3.21	34.32	43.30	43.85	74	-30.15	Pass	Н
3973.622	32.82	5.44	34.60	41.73	45.39	74	-28.61	Pass	H
4960.000	35.02	5.05	34.31	40.03	45.79	74	-28.21	Pass	Н
7440.000	36.45	6.88	34.90	39.10	47.53	74	-26.47	Pass	Н
9920.000	38.22	7.47	35.02	36.65	47.32	74	-26.68	Pass	Н
1198.095	30.22	2.51	34.97	48.42	46.18	74	-27.82	Pass	V
1630.264	31.11	2.94	34.57	43.34	42.82	74	-31.18	Pass	V
3653.463	33.05	5.50	34.57	42.25	46.23	74	-27.77	Pass	V
4960.000	35.02	5.05	34.31	40.64	46.40	74	-27.60	Pass	V
7440.000	36.45	6.88	34.90	39.06	47.49	74	-26.51	Pass	V
9920.000	38.22	7.47	35.02	36.68	47.35	74	-26.65	Pass	V

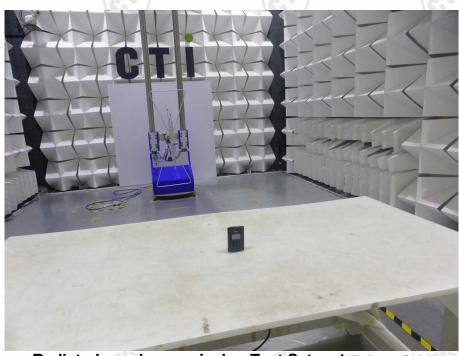

Note:

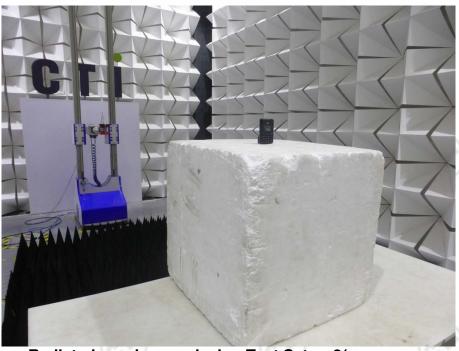
- 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.




Report No.: EED32I00208205 Page 64 of 71

PHOTOGRAPHS OF TEST SETUP

Test mode No.: WisePad 2

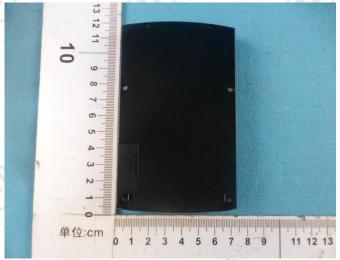
Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32I00208205

Report No.: EED32I00208205 Page 66 of 71

PHOTOGRAPHS OF EUT Constructional Details


Test model No.: WisePad 2

View of Product-1

View of Product-2

View of Product-3

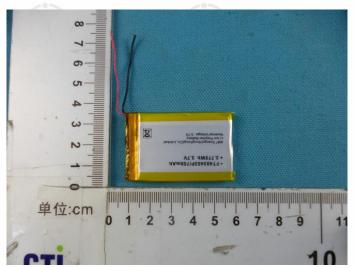
View of Product-4

View of Product-5

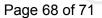
View of Product-6

View of Product-7

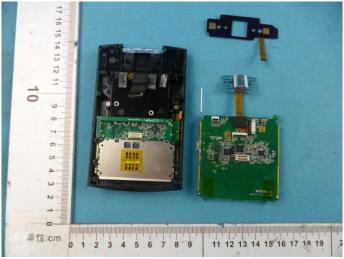

View of Product-8

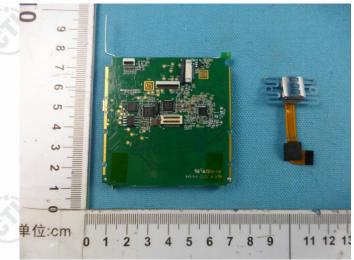

View of Product-9

View of Product-10




View of Product-11


View of Product-12



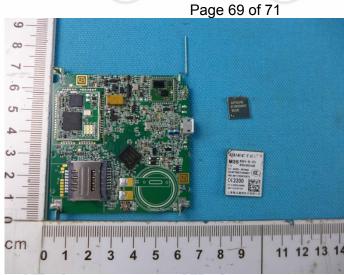
View of Product-13

View of Product-14

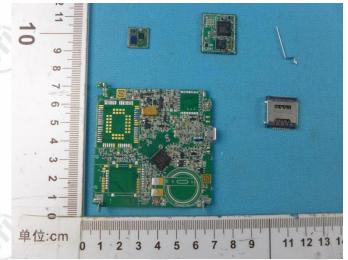
View of Product-15

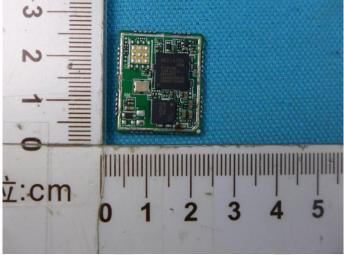
View of Product-16

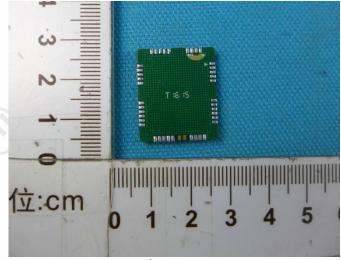
View of Product-17

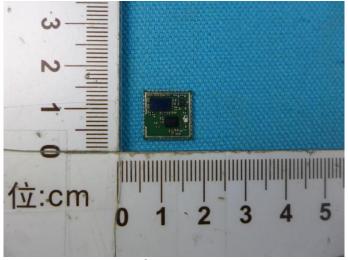


View of Product-18




View of Product-19

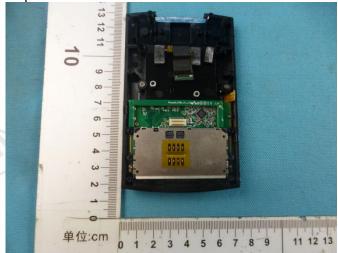

View of Product-20

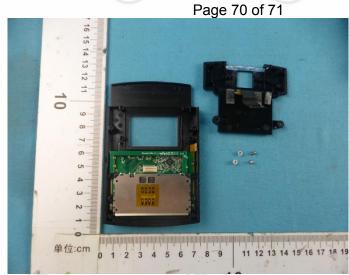

View of Product-21

View of Product-22

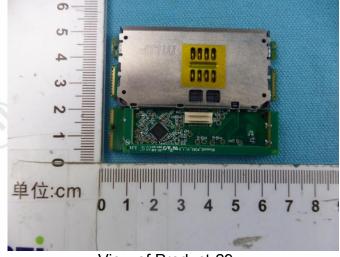
View of Product-23

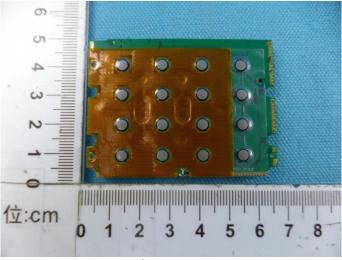
View of Product-24





View of Product-25

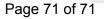

View of Product-26

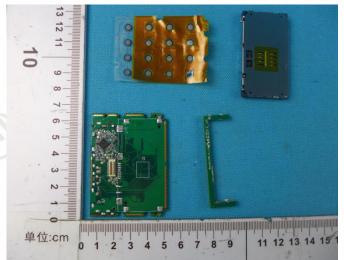

View of Product-27

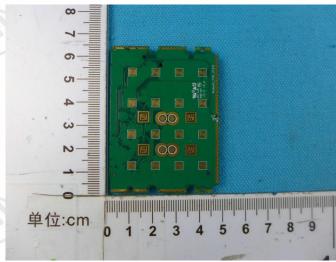
View of Product-28

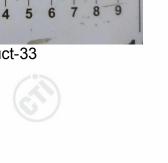
View of Product-29

View of Product-30








单位:cm 0 1 2 3 4 5 6 7 8 9

View of Product-31

View of Product-32

View of Product-33

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

