

Report No.: EED32I00208206 Page 1 of 67

TEST REPORT

Product : WisePad 2

Trade mark : BBPOS

Model/Type reference: WisePad 2

Serial Number : N/A

Report Number : EED32I00208206 FCC ID : 2AB7X-WISEPAD2

Date of Issue : Aug. 25, 2016

Test Standards : 47 CFR Part 2(2015)

47 CFR Part 22 subpart H(2015) 47 CFR Part 24 subpart E(2015)

Test result : PASS

Prepared for:

BBPOS International Limited
Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,
Tsuen Wan, N.T. HK, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Reviewed by:

Reviewed by:

Report Seal

Tom - Chen
Tom chen (Test Project)

Sheek Luo

Compiled by:

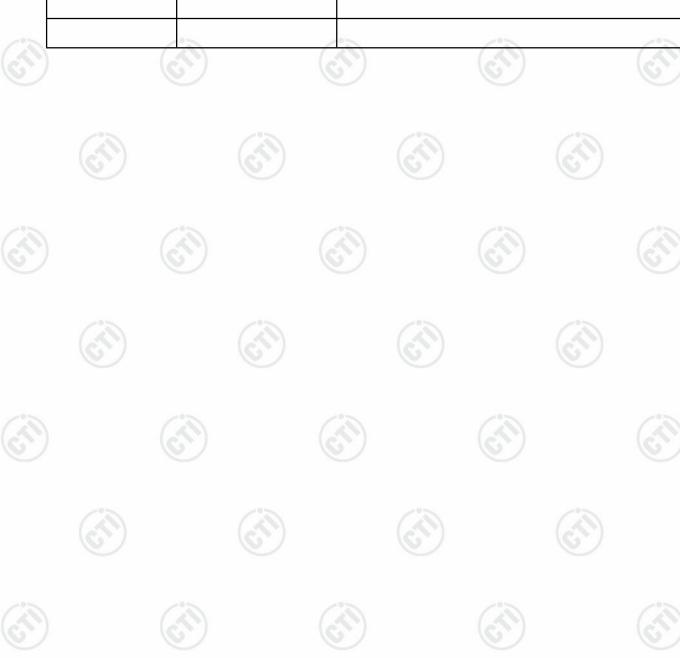
Approved by:

Kevin yang (Project Engineer)

Sheek Luo (Reviewer)

Aug. 25, 2016

Sheek Luo (Lab supervisor)


Check No.: 2384397829

Report No. : EED32I00208206 **2 Version**

Version No.	Date	Description		
00	Aug. 25, 2016	Original		
	0			

Report No.: EED32I00208206

Page 3 of 67

3 Test Summary

	GPRS 850		
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 22.917(b) &KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) &KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/ Part 22.355	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
	GPRS 1900		
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a) /Part 24.232(c)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/Part 24.235	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS

Remark:

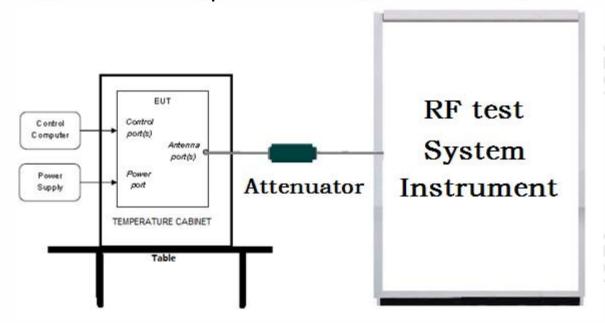
The tested sample and the sample information are provided by the client.

Report No.: EED32I00208206

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 Test setup	5
5.1.1 For Conducted test setup	
5.1.2 For Radiated Emissions test setup	
5.2 Test Environment	
5.3 TEST CONDITION	6
6 GENERAL INFORMATION	7
6.1 CLIENT INFORMATION	7
6.2 GENERAL DESCRIPTION OF EUT	7
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.5 TEST LOCATION	
6.6 TEST FACILITY	
6.7 DEVIATION FROM STANDARDS	
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A) RF Power Output	13
Appendix B) Peak-to-Average Ratio	
Appendix C) BandWidth	18
Appendix D) Band Edges Compliance	22
Appendix E) Spurious Emission at Antenna Terminal	25
Appendix F) Frequency Stability	
Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	51

Page 4 of 67



Report No.: EED32l00208206

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

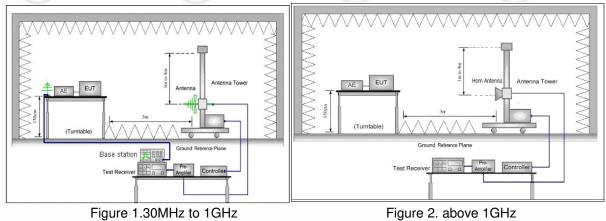


Figure 1.30MHz to 1GHz

Page 5 of 67

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

Report No. : EED32I00208206

Page 6 of 67

5.2 Test Environment

Operating Environment:				
Temperature:	21 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			

5.3 Test Condition

Test channel:

ot Charmer.	7 .01				
Took Mode		RF Channel			
Test Mode	Tx	Low(L)	Middle(cm)	High(H)	
	Tx	Channel 128	Channel 190	Channel 251	
CDDC050	(824 MHz ~849 MHz)	824.2MHz	836.6 MHz	848.8 MHz	
GPRS850	Rx (869 MHz ~894 MHz)	Channel 128	Channel 190	Channel 251	
		869.2 MHz	881.6 MHz	893.8 MHz	
	Tx (1850 MHz ~1910 MHz) Rx	Channel 512	Channel 661	Channel 810	
CDDC1000		1850.2MHz	1880.0 MHz	1909.8 MHz	
GPR51900		Channel 512	Channel 661	Channel 810	
	(1930 MHz ~1990 MHz)	1930.2 MHz	1960.0 MHz	1989.8 MHz	

Test mode:

Pre-scan under all rate at lowest middle and highest channel ,find the transmitter power as below:

Conducted transmitter power measurement result.

band	(GPRS850		GPRS1		900	
Channel	128	190	251	512	661	810	
Frequency(MHz)	824.2MHz	836.6MHz	848.8MHz	1850.2MHz	1880MHz	1909.8MHz	
GPRS Class 8	33.00dBm	33.06dBm	33.34dBm	29.99dBm	30.15dBm	30.85dBm	

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the worse case mode as below:

band	Radiated	Conducted
GPRS 850	1) GPRS 8 Link	1) GPRS 8 Link
GPRS 1900	1) GPRS 8 Link	1) GPRS 8 Link

Report No.: EED32I00208206 Page 7 of 67

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong

6.2 General Description of EUT

Product Name:	WisePad 2		
Mode No.(EUT):	WisePad 2		
Trade Mark: BBPOS			
EUT Supports Radios application: BT 2.1(2402MHz-2480MHz), BT 4.0(2402MHz-2480MHz), NFC(13.56MHz), WIFIb/g/n(HT20)(2412MHz-2462MHz), 2G(850MHz/1900MHz)			
Power Supply:	DC 3.7V by Battery DC 5V by USB port		
Battery:	Li-polymer 3.7V, 750mAh		
Sample Received Date:	Jul. 26. 2016		
Sample tested Date:	Jul. 26. 2016 to Aug. 25, 2016		

6.3 Product Specification subjective to this standard

Frequency Band:	GPRS 850: Tx:824.20 -848.80MHz; Rx: 869.20 – 893.80MHz GPRS 1900: Tx:1850.20 – 1909.80MHz; Rx:1930.20 – 1989.80MHz	
Modulation Type:	GPRS Mode with GMSK Modulation	
Sample Type:	Portable production	
Antenna gain:	GPRS850: -3dBi; GPRS1900: 0.5dBi	
Antenna Type:	Integral	
Test voltage:	DC 3.7V	

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Report No.: EED32I00208206 Page 8 of 67

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

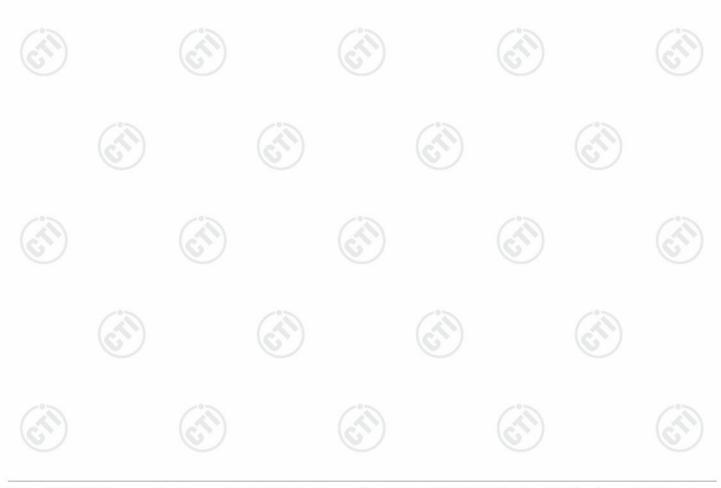
The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

Report No.: EED32I00208206 Page 9 of 67

6.8 Abnormalities from Standard Conditions


None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE newey conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Crawies are recipied test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction aminaian	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00208206

Page 10 of 67

7 Equipment List

		Communication	RF test syster	n	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-31-2015	12-29-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(0)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017
GSM Automatic test software	JS Tonscend	JS1120-3	(C)	04-01-2016	03-31-2017

Report No. : EED32I00208206

Page 11 of 67

	Hadiated Spu	urious Emission	& Radiated E	mission	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	<u> </u>	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO-TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(C1)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

Report No.: EED32l00208206 Page 12 of 67

8 Radio Technical Requirements Specification

Reference documents for testing:

		10. 19.0 19.0
No.	Identity	Document Title
4	PART 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES
'	PART 22 (2015)	Subpart H – Cellular Radiotelephone Service
	DADT 04 (0015)	PART 24 – PERSONAL COMMUNICATIONS SERVICES
2	PART 24 (2015)	Subpart E – Broadband PCS
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA-603-C-2004	Land Mobile FM or PM -Communications Equipment -Measurement and
4	11A-603-C-2004	Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)
Part 2.1049(h)	Part 22.917(b)/ Part 24.238(b) &KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix C)
Part 2.1051/Part 22.917(a)/ Part 24.238(a)	Part 22.917(b)/ Part 24.238(b) &KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)
Part 2.1055/ Part 22.355/ Part 24.235	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c)	TIA-603-D &KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)

Test Mode	Test Modes description
GPRS/TM2	GPRS,GMSK modulation


Report No. : EED32I00208206 Page 13 of 67

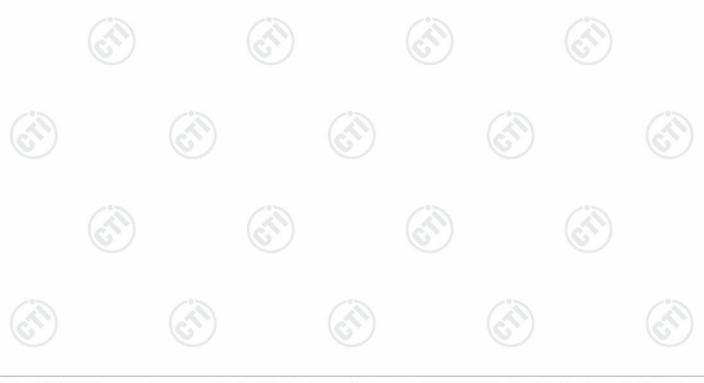
Appendix A) RF Power Output

Test Requirement:	Part 2.1046(a)	Part 2.1046(a)				
Test Method:	TIA-603-D-201	IA-603-D-2010 Clause 2.2.1				
Test Setup:	Refer to section	Refer to section 5 for details				
	Mode	GSM 850/WCDMA/HSDPA /HSUPA 850 Band V	GSM 1900/WCDMA/HSDPA /HSUPA 1900 Band II			
Limit:	Frequency	824 – 849MHz	1850 – 1910MHz			
	Limit	38.45dBm (ERP)	33.01dBm (EIRP)			
Measurement Procedure:	and power met Simulator. The power setting. by adding the v were performed	er, the other end of which was Base Station Simulator was se The power output at the transm	et to force the EUT to its maximum nitter antenna port was determined to the power reading. The tests nnel, middle channel and high			
Instruments Used:	Refer to section 7 for details					
Test Results:	Pass					

Test Data:

Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
		LCH	33.00	38.45	PASS
GPRS850	GPRS/TM2	MCH	33.06	38.45	PASS
es.	-0-	нсн	33.34	38.45	PASS
Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
		LCH	29.99	33.01	PASS
GPRS1900	GPRS/TM2	MCH	30.15	33.01	PASS
		нсн	30.85	33.01	PASS

Report No.: EED32l00208206 Page 14 of 67


Appendix B) Peak-to-Average Ratio

Test Requirement:	Part 24.232(d)
Test Method:	KDB 971168 D01
Test Setup:	Refer to section 5 for details
Limit:	13dBm
Measurement Procedure:	Use one of the procedures to measure the total peak power and record as PPk. Use one of the applicable procedures to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from: PAPR (dB) = PPk (dBm) - PAvg (dBm).
Instruments Used:	Refer to section 7 for details
Test Results:	Pass

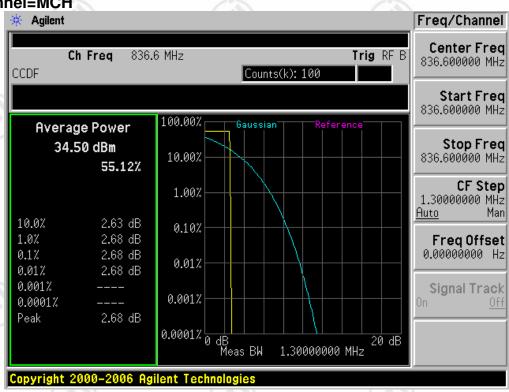
Test Data:

Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
	(61)	LCH	2.68	13	PASS
GPRS850	850 GPRS/TM2	MCH	2.68	13	PASS
		НСН	2.68	13	PASS

Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
		LCH	2.72	13	PASS
GPRS1900	GPRS/TM2	MCH	2.70	13	PASS
		НСН	2.67	13	PASS

Report No.: EED32I00208206

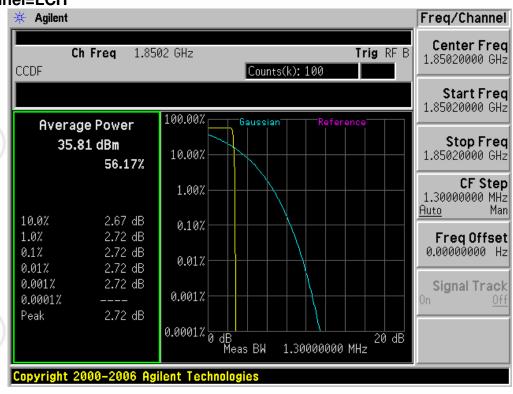
For GPRS


Test Band=GPRS850
Test Mode=GPRS/TM2

Test Channel=LCH

Page 15 of 67

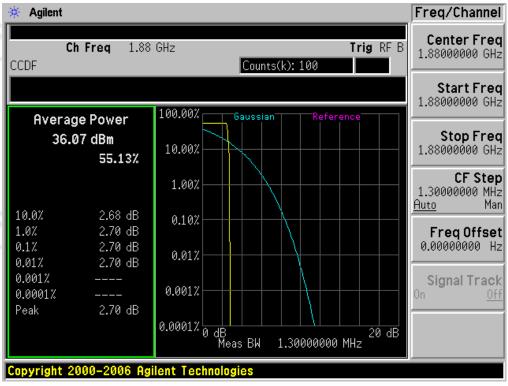
Test Channel=MCH

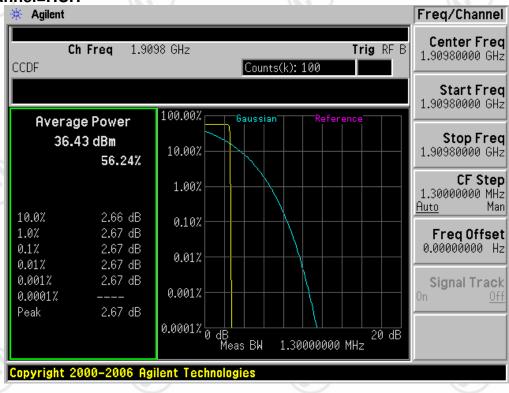


Report No. : EED32I00208206 Page 16 of 67

Test Channel=HCH

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH




Report No.: EED32l00208206

Page 17 of 67

Test Channel=MCH

Test Channel=HCH

Report No. : EED32I00208206 Page 18 of 67

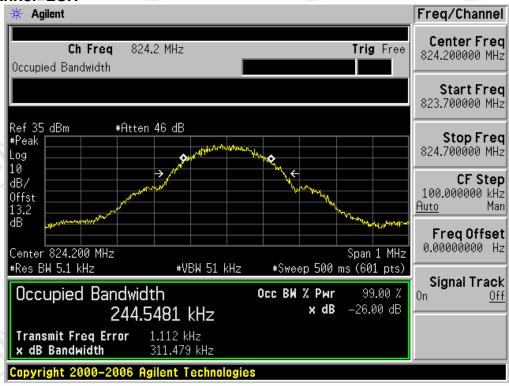
Appendix C) BandWidth

Test Requirement:	Part 2.1049(h)
Test Method:	Part 22.917(b)/Part 24.238(b)
Test Setup:	Refer to section 5 for details
Limit:	N/A
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel, middle channel and high channel).the resolution bandwidth of the analyser is set to 100kHz or 1% of the emission bandwidth, the EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.
Instruments Used:	Refer to section 7 for details
Test Results:	Pass

Test Data:

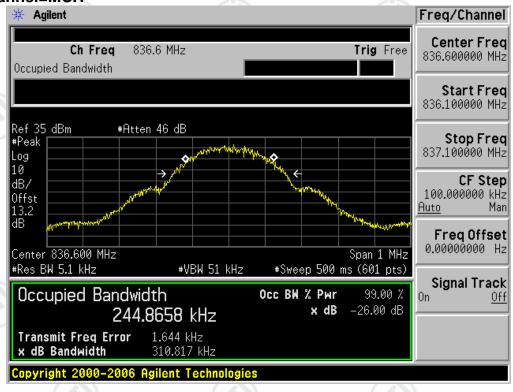
TCSt Data.					
Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
0		LCH	244.55	311.48	PASS
GPRS850	GPRS/TM2	MCH	244.87	310.82	PASS
		НСН	245.98	318.55	PASS

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
Test Dand	Mode	Channel	(KHZ)	(KHZ)	Verdict
	1	LCH	245.51	313.42	PASS
6	1				
GPRS1900	GPRS/TM2	MCH	244.82	312.04	PASS
		HCH	244.94	314.05	PASS


Report No.: EED32I00208206

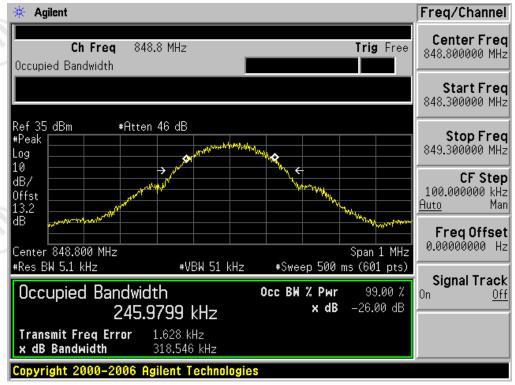
For GPRS

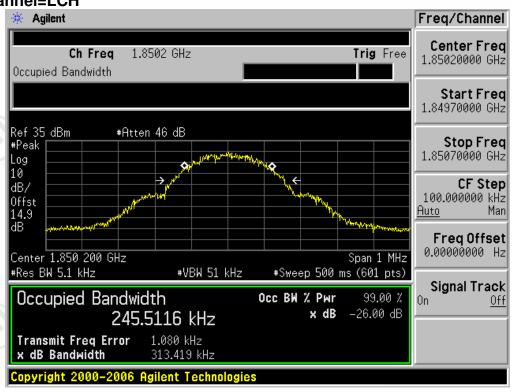
Test Band=GPRS850


Test Mode=GPRS/TM2

Test Channel=LCH

Page 19 of 67

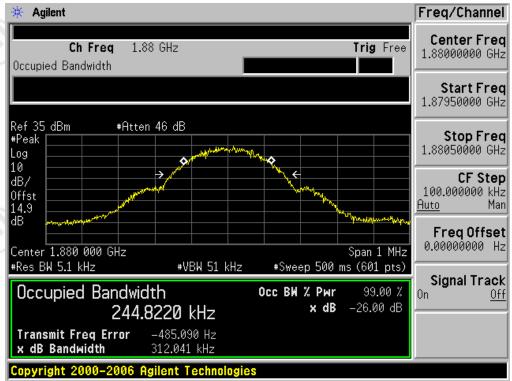

Test Channel=MCH

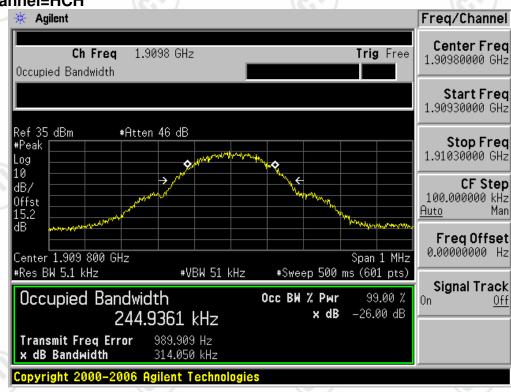


Report No. : EED32I00208206 Page 20 of 67

Test Channel=HCH

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH

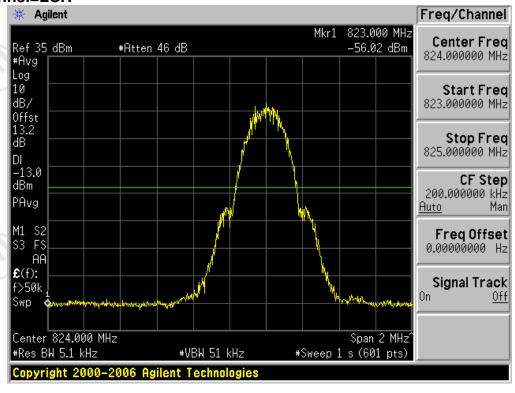



Report No.: EED32l00208206

Page 21 of 67

Test Channel=MCH

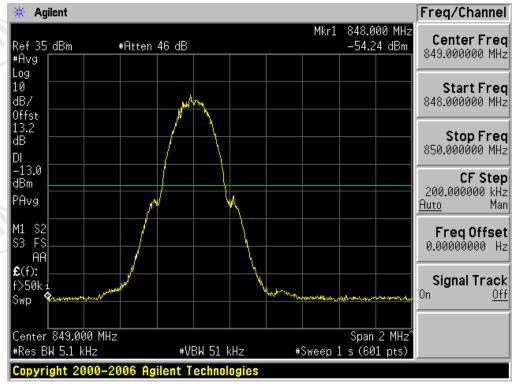
Test Channel=HCH

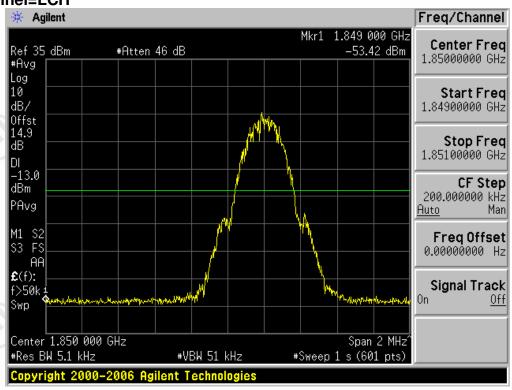


Report No. : EED32I00208206 Page 22 of 67

Appendix D) Band Edges Compliance

Test Requirement:	Part 2.1051		
Test Method:	Part 22.917(b)/Part 24.238(b)		
Test Setup:	Refer to section 5 for details		
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of 100kHz or 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed. The EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.		
Limit:	Operation Band	Frequency Range (MHz)	Limit
	GSM/GPRS/EDGE/ WCDMA 850	Below 824 and above 849	Attenuated at least 43+10log(P)
	GSM/GPRS/EDGE/ WCDMA 1900	Below 1850 and above 1910	Attenuated at least 43+10log(P)
Instruments Used:	Refer to section 7 for details		
Test Results:	Pass	(6.)	(6.)

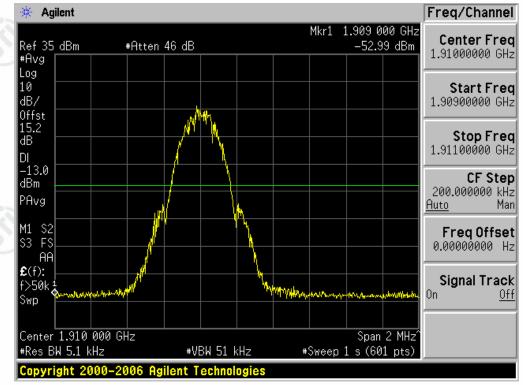

Test Graphs:
For GPRS
Test Band=GPRS850
Test Mode=GPRS/TM2
Test Channel=LCH



Report No.: EED32I00208206 Page 23 of 67

Test Channel=HCH

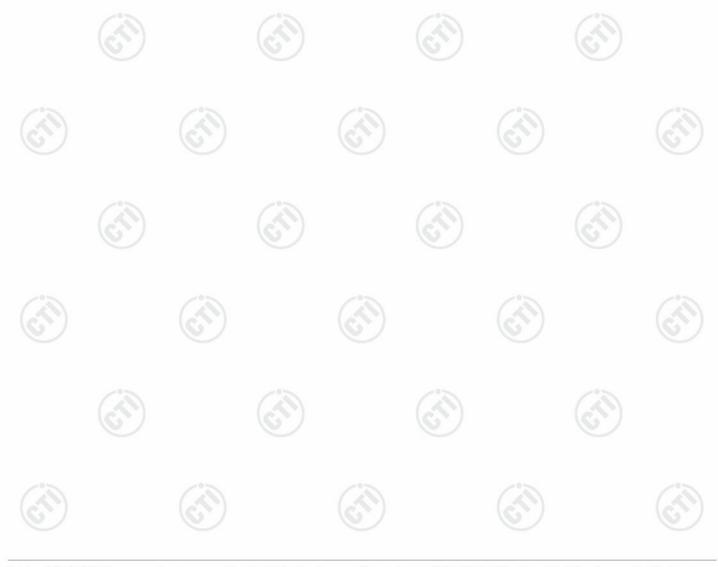
Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH



Report No. : EED32l00208206

Page 24 of 67

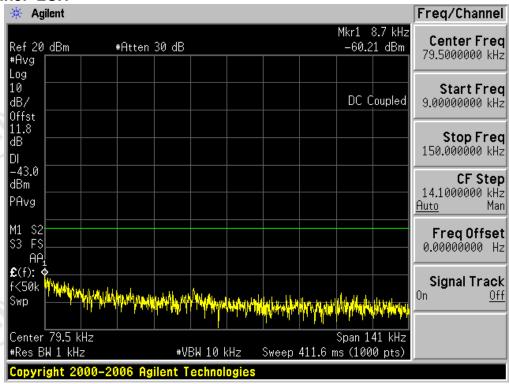
Test Channel=HCH



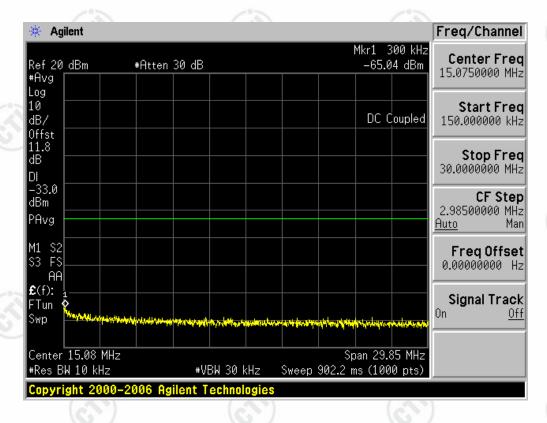
Report No.: EED32l00208206 Page 25 of 67

Appendix E) Spurious Emission at Antenna Terminal

Test Requirement:	Part 2.1051/Part 2.1057		
Test Method:	TIA-603-D-2010 Clause 2.2.13		
Test Setup:	Refer to section 5 for details		
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyzer, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).the equipment operates below 10GHz: to the tenth harmonic of the highest fundamental frequency or to 40GHz.whichever is lower, the resolution bandwidth of the spectrum analyzer was set at 100kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.the video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to mean or average power.		
Instruments Used:	Refer to section 7 for details		
Limit:	Attenuated at least 43+10log(P)		
Test Results:	Pass		

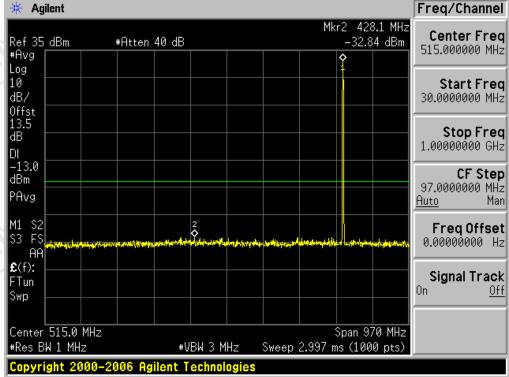

Report No.: EED32I00208206

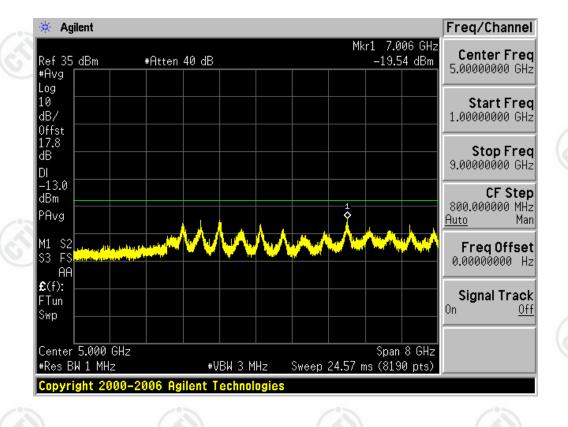
Test Graphs: For GPRS


Test Band=GPRS850

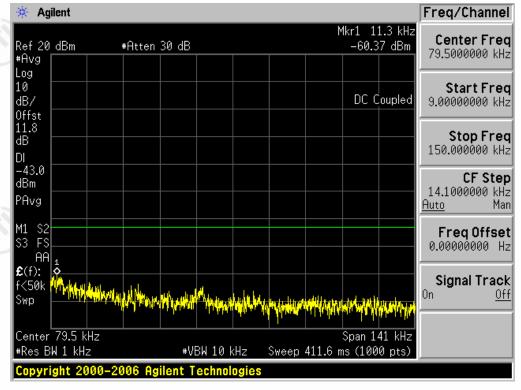
Test Mode=GPRS/TM2

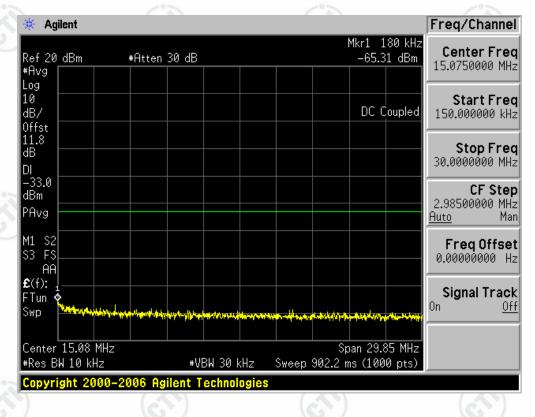
Test Channel=LCH



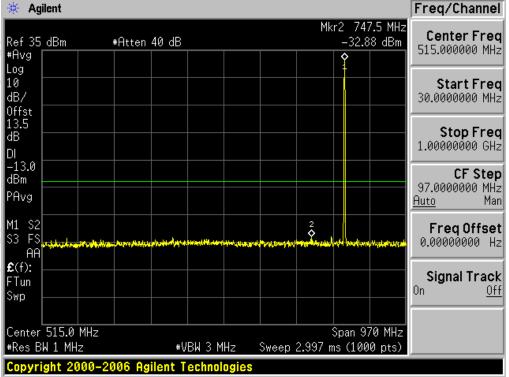

Page 26 of 67

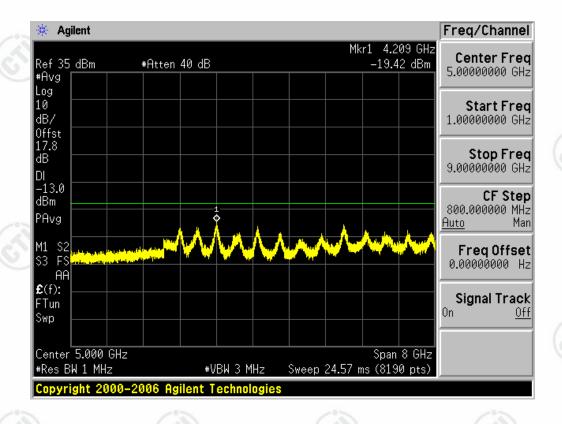
Report No. : EED32I00208206 Page 27 of 67



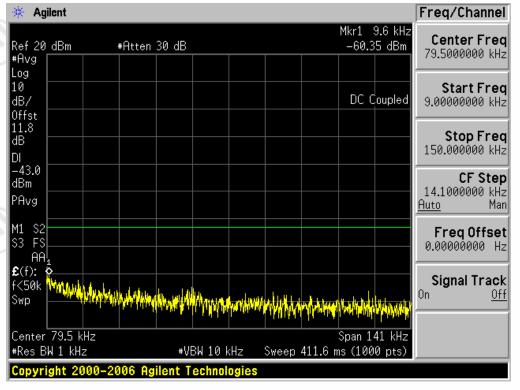


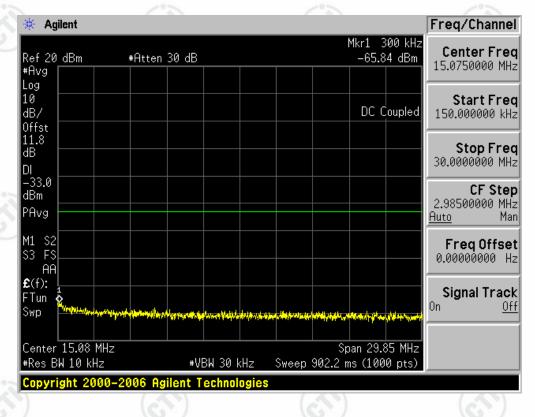
Report No.: EED32I00208206 Page 28 of 67


Test Channel=MCH



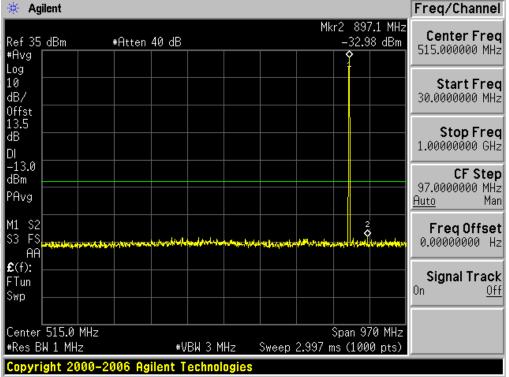
Report No. : EED32I00208206 Page 29 of 67

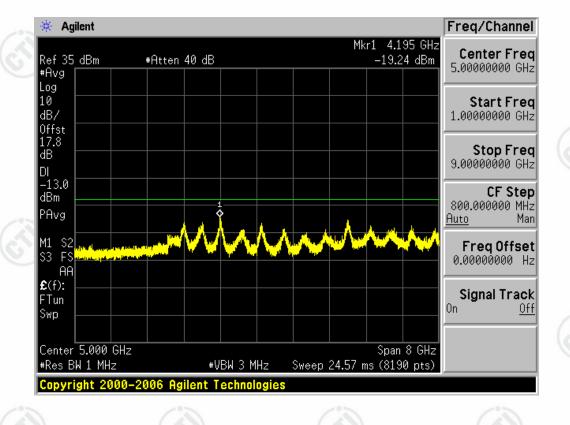




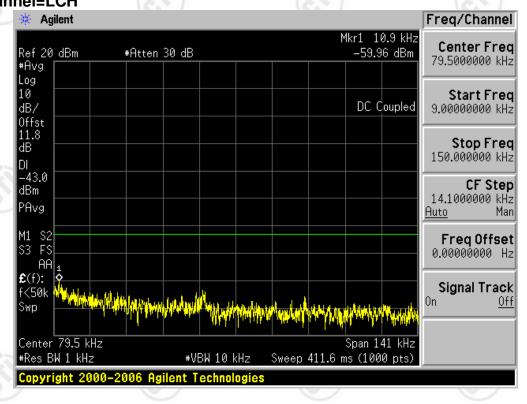
Report No.: EED32I00208206

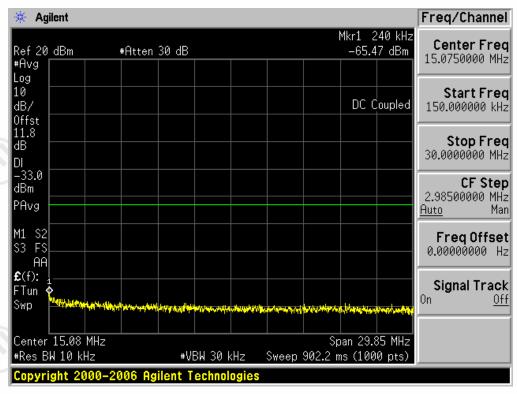
Test Channel=HCH


Page 30 of 67

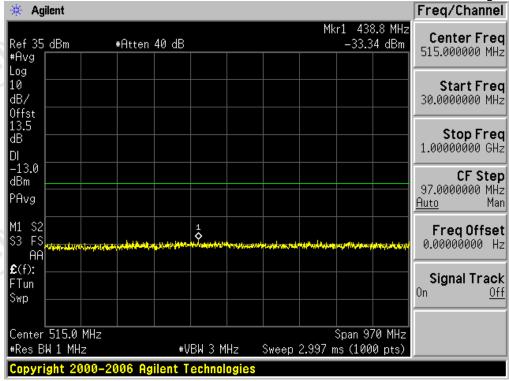


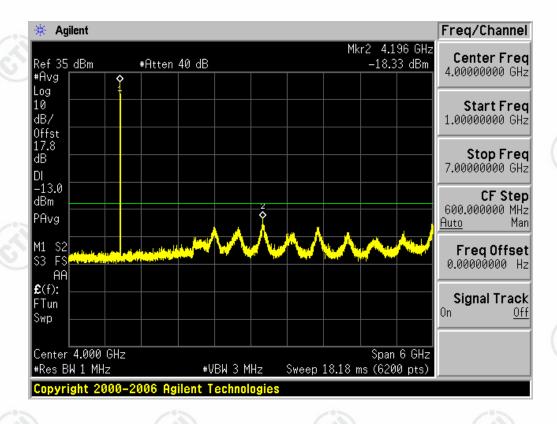
Report No. : EED32I00208206 Page 31 of 67

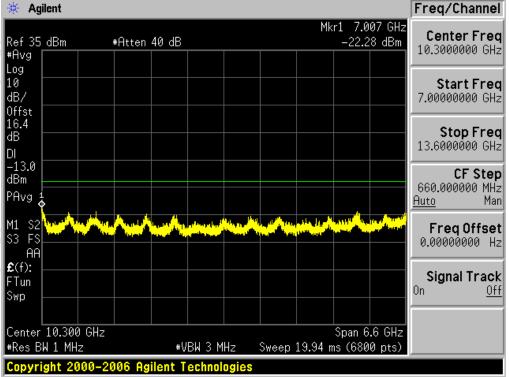


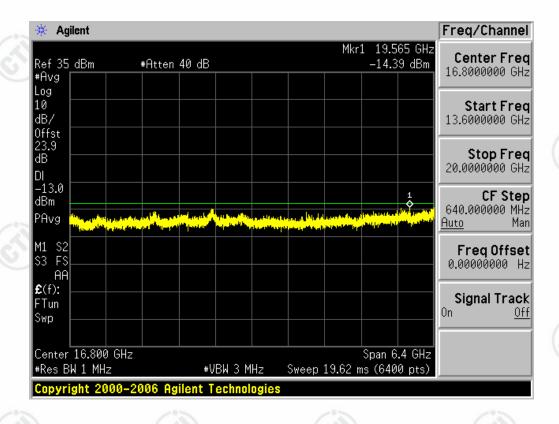


Report No.: EED32l00208206 Page 32 of 67

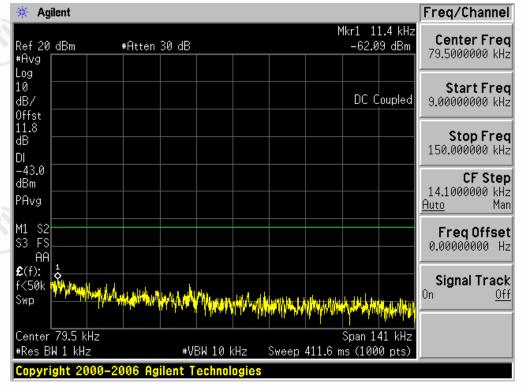

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH




Report No.: EED32I00208206 Page 33 of 67

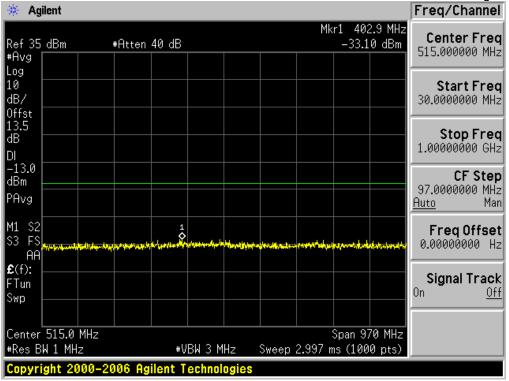


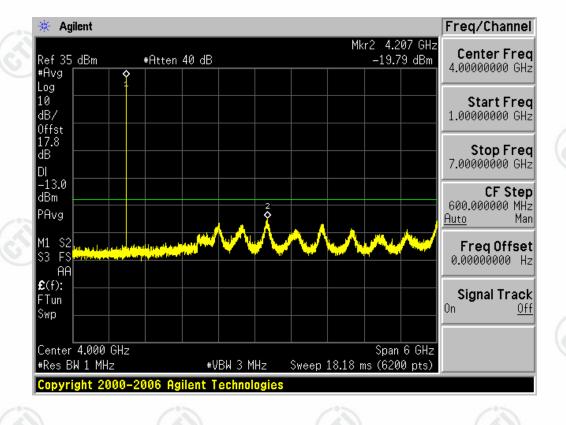
Report No.: EED32I00208206 Page 34 of 67

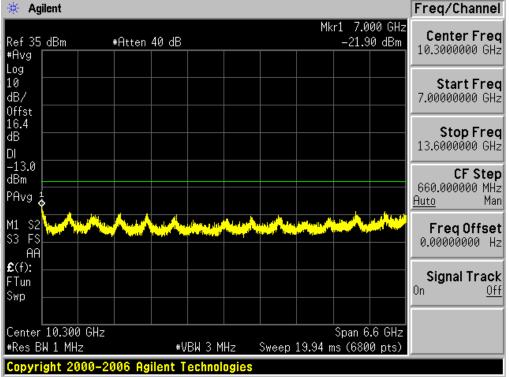


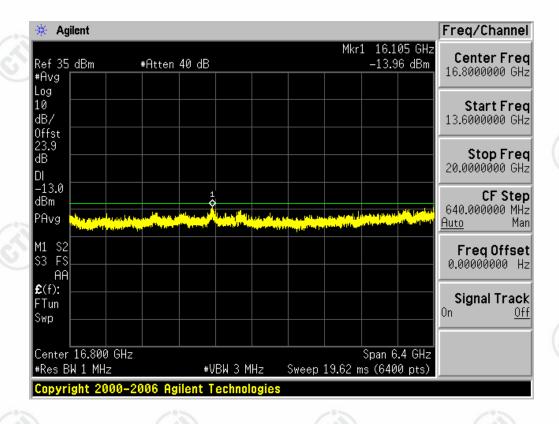


Report No.: EED32I00208206 Page 35 of 67

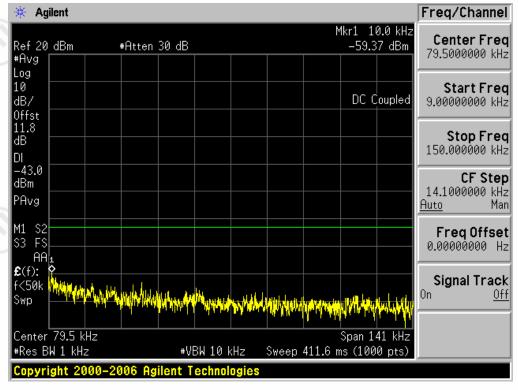

Test Channel=MCH

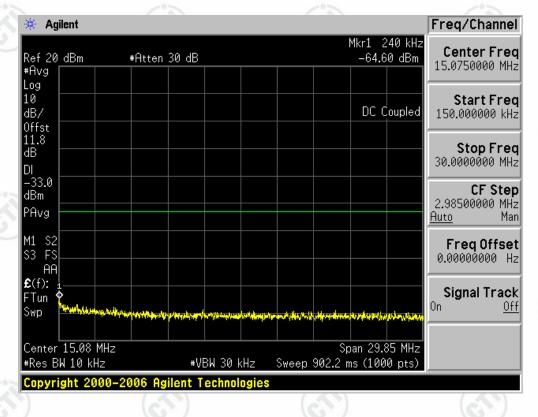



Report No.: EED32I00208206 Page 36 of 67

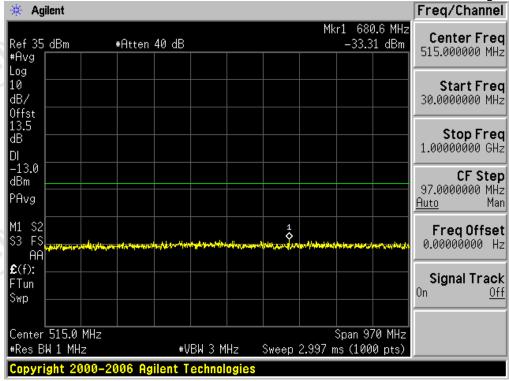


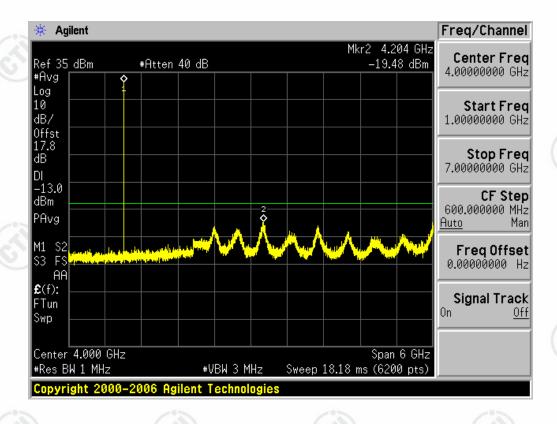
Report No.: EED32I00208206 Page 37 of 67

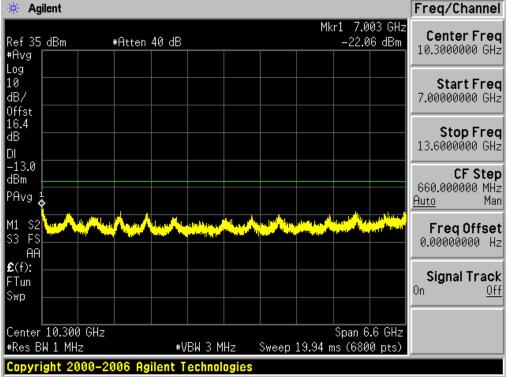


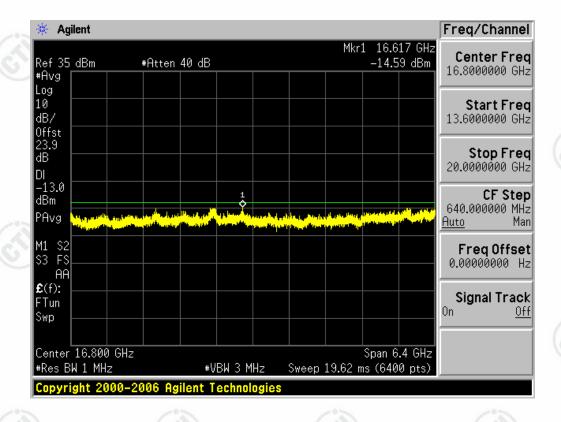


Report No.: EED32I00208206 Page 38 of 67


Test Channel=HCH




Report No.: EED32I00208206 Page 39 of 67



Report No.: EED32I00208206 Page 40 of 67

Report No.: EED32l00208206 Page 41 of 67

Appendix F) Frequency Stability

Test Requirement:	Part 2.1055						
Test Method:	TIA-603-D-2010 Clause 2.2.2						
Test Setup:	Refer to section 5 for details						
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable and a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel). The EUT was place in the temperature chamber, the DC leads and RF output cable exited the chamber though an opening made for that purpose. After Operate the equipment in standby conditions for 15 minutes before proceeding. The temperature was varied from -30°C to +50°C at intervals of not more than 10°C The frequency stability was read from the base station at 25°C the input voltage was varied +/-15%, the frequency stability and input voltage was record.						
Instruments Used:	Refer to section 7 for details						
Limit:	Operation Band	Frequency stability Limit(ppm)					
	GSM/GPRS/EDGE/WCDMA 850	±2.5ppm					
	GSM/GPRS/EDGE/WCDMA 1900	±2.5ppm					
Test Results:	Pass						

Test Data:

Frequency Error vs. Voltage:

Frequency Error vs. voitage.			ige.				(2,1)		
Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict	
			TN	VL	-4.46	-0.01	±2.5	PASS	
		LCH	TN	VN	-6.59	-0.01	±2.5	PASS	
		6,	TN	VH	-6.20	-0.01	±2.5	PASS	
			TN	VL	-11.43	-0.01	±2.5	PASS	
GPRS850	TM2	MCH	TN	VN	-9.75	-0.01	±2.5	PASS	
(6)			TN	VH	-10.07	-0.01	±2.5	PASS	
0			TN	VL	-9.88	-0.01	±2.5	PASS	
		HCH	TN	VN	-11.30	-0.01	±2.5	PASS	
			TN	VH	-13.50	-0.02	±2.5	PASS	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$

Report No. : EED32I00208206 Page 42 of 67

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
(25	(1)		TN	VL	-51.01	-0.03	±2.5	PASS
0		LCH	TN	VN	-49.01	-0.03	±2.5	PASS
			TN	VH	-48.49	-0.03	±2.5	PASS
		-05	TN	VL	-50.37	-0.03	±2.5	PASS
GPRS190 0	TM2	MCH	TN	VN	-48.56	-0.03	±2.5	PASS
		6	TN	VH	-51.92	-0.03	±2.5	PASS
			TN	VL	-49.07	-0.03	±2.5	PASS
		HCH	TN	VN	-50.69	-0.03	±2.5	PASS
Ca			TN	VH	-51.01	-0.03	±2.5	PASS

Frequency Error vs. Temperature:

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			VN	-30	-10.59	-0.01	±2.5	PASS
)			VN	-20	-3.81	0.00	±2.5	PASS
			VN	-10	-3.42	0.00	±2.5	PASS
			VN	0	-4.26	-0.01	±2.5	PASS
GPRS850	TM2	LCH	VN	10	-7.88	-0.01	±2.5	PASS
(C)			VN	20	-7.30	-0.01	±2.5	PASS
			VN	30	-12.66	-0.02	±2.5	PASS
			VN	40	-9.88	-0.01	±2.5	PASS
			VN	50	-13.88	-0.02	±2.5	PASS
*)	1	(3)	VN	-30	-8.14	-0.01	±2.5	PASS
			VN	-20	-10.53	-0.01	±2.5	PASS
			VN	-10	-16.47	-0.02	±2.5	PASS
			VN	0	-11.88	-0.01	±2.5	PASS
GPRS850	TM2	мсн	VN	10	-17.89	-0.02	±2.5	PASS
			VN	20	-13.88	-0.02	±2.5	PASS
			VN	30	-20.47	-0.02	±2.5	PASS
			VN	40	-17.37	-0.02	±2.5	PASS
			VN	50	-13.50	-0.02	±2.5	PASS
			VN	-30	-12.40	-0.01	±2.5	PASS
			VN	-20	-16.72	-0.02	±2.5	PASS
			VN	-10	-18.53	-0.02	±2.5	PASS
			VN	0	-15.24	-0.02	±2.5	PASS
GPRS850	TM2	нсн	VN	10	-17.63	-0.02	±2.5	PASS
			VN	20	-13.69	-0.02	±2.5	PASS
			VN	30	-15.63	-0.02	±2.5	PASS
			VN	40	-18.27	-0.02	±2.5	PASS
		(6)	VN	50	-15.50	-0.02	±2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

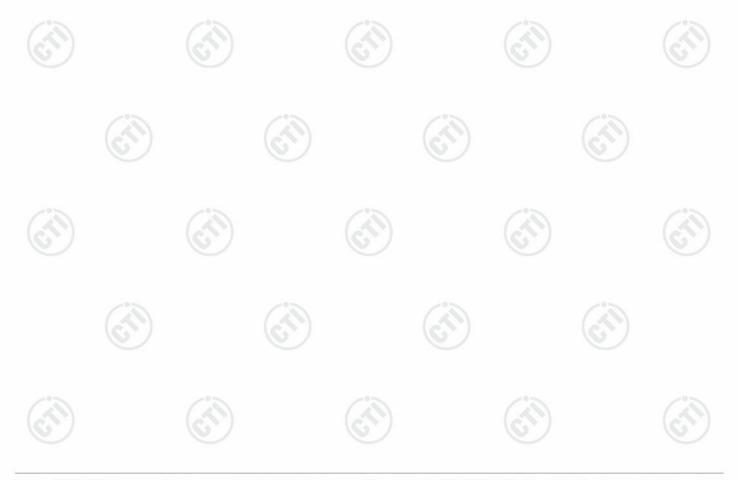
Page	43	of	67
------	----	----	----

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
(6)	(")		VN	-30	-46.49	-0.03	±2.5	PASS
			VN	-20	-71.80	-0.04	±2.5	PASS
			VN	-10	-73.61	-0.04	±2.5	PASS
		· -	VN	0	-66.64	-0.04	±2.5	PASS
GPRS190 0	GPRS190 TM2	LCH	VN	10	-69.22	-0.04	±2.5	PASS
0			VN	20	-68.83	-0.04	±2.5	PASS
		VN	30	-73.61	-0.04	±2.5	PASS	
		VN	40	-65.54	-0.04	±2.5	PASS	
(4	(35)		VN	50	-70.06	-0.04	±2.5	PASS
6	/		VN	-30	-54.50	-0.03	±2.5	PASS
			VN	-20	-75.68	-0.04	±2.5	PASS
			VN	-10	-77.10	-0.04	±2.5	PASS
			VN	0	-75.87	-0.04	±2.5	PASS
GPRS190 0	TM2	2 MCH	VN	10	-71.48	-0.04	±2.5	PASS
0			VN	20	-66.06	-0.04	±2.5	PASS
			VN	30	-71.16	-0.04	±2.5	PASS
(2			VN	40	-69.29	-0.04	±2.5	PASS
(0))		VN	50	-64.64	-0.03	±2.5	PASS
			VN	-30	-49.33	-0.03	±2.5	PASS
			VN	-20	-67.93	-0.04	±2.5	PASS
			VN	-10	-65.99	-0.03	±2.5	PASS
)		(6)	VN	0	-62.31	-0.03	±2.5	PASS
GPRS190	TM2	НСН	VN	10	-70.71	-0.04	±2.5	PASS
0			VN	20	-64.31	-0.03	±2.5	PASS
(2			VN	30	-68.96	-0.04	±2.5	PASS
(6)	(-2)		VN	40	-60.25	-0.03	±2.5	PASS
			VN	50	-63.80	-0.03	±2.5	PASS

Report No. : EED32l00208206 Page 44 of 67

Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:											
	Freque	ency	Detector	RBW	VBW	Remark					
	30MHz-	1GHz	peak	120kHz	300kHz	Peak					
	Above -	1GHz	Peak	1MHz	3MHz	Peak					
Measurement Procedure:	the equipment manufactur 2). The disturbly raising and 360° the to measurem 3). Steps 1) and and horizor 4). The transment the antennation of the transment of the entennation of the	as powered ent with the er. The ante ance of the d lowering frurntable. After the ent was mad 2) were pointal polarizaritter was the awas appropriate was appropriate. With both ereceiver. The theory in dental polarizaritter was the disturbation of the disturbation of the disturbation of the disturbation of the exterior of the disturbation of th	ON and placed manufacturer synna of the trans transmitter was form 1 m to 4 m there the fundament de. Performed with the tion. It is not a transmitter was fed to the the substitution are elevel of the sign ep 2) is obtained the substitution are peated with both by the following by the following of the substitution are peated with both by the following of the substitution are peated with both by the following of the substitution are peated with both by the following of the substitution are peated with both by the following of the substitution are substitution are the sub	pecified antermitter was exmaximized on the receive and the receive and the replaced with same location and the resed and lower and generator of for this set of antenna was the antenna could be antenna was the antenna could be antenna to the substitution of	anna in a vertice tended to its in the test receive and by was maximized as the center of an another anterna by eceive antenna by eceive antenna ar was adjusted of conditions. Then measure to larization. It again (dBd) tion antenna. If om Semi-Ament distance a gain (dBi) It is a gain (dBi) It is a gain (dBi)	rotating through ed, a field strength enna in both vertical enna. The center of r of the transmitter. means of a nonas horizontally a maximum reading duntil the measured ed. Inechoic Chamber to of 3 meters is used est channel ling for EUT case.					
Limit:	Mode	GSM 850		GSI	VI 1900						
	Frequency	824 – 849	MHz	185	0 – 1910MHz	(0,					
	,	38.45dBm)1dBm (2W)						


Report No. : EED32I00208206

Measurement Data

Page 45 of 67

			GI	PRS 850				
Channel/fc (MHz)	Height Azimu (deg		ERP (dBm)	//-		Result	Antenna Polaxis.	
100/004.0	150	35	21.50	38.45	-16.95	Pass	Н	
128/824.2	200	126	23.51	38.45	-14.94	Pass	V	
100/026 6	150	78	20.02	38.45	-18.43	Pass	Н	
190/836.6	150	63	23.73	38.45	-14.72	Pass	V	
051/040.0	150	174	19.67	38.45	-18.78	Pass	Н	
251/848.8	250	132	23.95	38.45	-14.50	Pass	V	

(0,))	(0,)	GF	PRS 1900			(6,2)
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
	150	127	18.40	33.01	-14.61	Pass	Н
512/1850.2	150	118	22.47	33.01	-10.54	Pass	V
	200	36	20.50	33.01	-12.51	Pass	Н
661/1880.0	150	82	22.90	33.01	-10.11	Pass	V
	150	129	19.96	33.01	-13.05	Pass	Н
810/1909.8	150	102	22.06	33.01	-10.95	Pass	V

Report No.: EED32l00208206 Page 46 of 67

Appendix H) Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement	Below 1GHz test procedu	re as below:		(°)		/°3
Procedure:	 The EUT was powered the equipment with the manufacturer. The anter The disturbance of the traising and lowering from antenna was tuned to hack to hack the turntable. After measurement was mad positioning be lower 30 	manufacturer sonna of the transformans and the transformation and the transformation and the fundamental of the radiation MHz.)	pecified ant mitter was of maximized or the test from the received tal emission measurement	tenna in a vextended to on the test equency of antenna an was maxirents are per	ertical orientation its maximum la receiver displayed below 30MHz, and by rotating the mized, a field sufformed in X, Y	ion on a length. ay by the through trength , Z axis
	3). Steps 1) and 2) were pervertical and horizontal p		ne EUT and	the receive	antenna in bo	oth
	 4). The transmitter was the the antenna was approx 5). A signal at the disturbar radiating cable. With bo polarized, the receive at at the test receiver. The measured field strength 6). The output power into th 7). Steps 5) and 6) were re 8) Calculate power in dBm ERP(dBm) = Pg(d 	n removed and cimately at the side was fed to the substitution tenna was raiselevel of the sign level in step 2 to e substitution peated with both by the following the substitution by the following the substitution the substitution by the following the substitution that substitution the substitution the substitution that substitution the substitution	same location the substitution and the sed and low gnal generated is obtained antenna wath antennas g formula:	on as the contion antennation antennation receive antered to obtoor was adjusted for this sets then means polarized and antered an	enter of the train a by means of ennas horizont ain a maximum usted until the tof conditions. sured.	nsmitter a non- tally
	where: Pg is the generato Above 1GHz test procedu 1)Different between above Chamber to fully Anechometers is used, Above 1 2) Calculate power in dBm EIRP(dBm) = Pg(dI	or output power Ire as below: is the test site, DIC Chamber; 8GHz the distance By the following Bm) – cable lose	into the sub change from up to 18GH: ance is 1 me g formula:	ostitution ar m Semi- Ar z a measur eter.	ntenna. nechoic ement distance	e of 3
	EIRP=ERP+2.15dE where: Pg is the generator of the radiation measurement operation mode, And four	output power in st channel, the ents are perfor	middle chai med in X, Y	nnel the Hig , Z axis pos hich it is wo	ghest channel sitioning for EU	т
	Repeat above procedures	until all frequen	icies measu	red was co	mplete.	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 47 of 67

Test data: Above 1GHz

		GPRS 85	50 128channel/824.2	2MHz(low	est channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1646.948	150	15	-40.60	-13	-27.60	Pass	H /
2468.631	150	200	-40.65	-13	-27.65	Pass	н
4117.785	200	360	-45.46	-13	-32.46	Pass	Н
6412.427	150	100	-45.49	-13	-32.49	Pass	Н
9465.979	150	214	-44.92	-13	-31.92	Pass	Н
11457.210	250	100	-44.28	-13	-31.28	Pass	Н
1646.948	150	251	-34.20	-13	-21.20	Pass	V
1899.278	150	200	-38.00	-13	-25.00	Pass	V
2474.923	150	316	-44.07	-13	-31.07	Pass	V
3299.775	100	271	-40.41	-13	-27.41	Pass	V
4117.785	150	100	-47.27	-13	-34.27	Pass	V
6363.645	150	210	-45.25	-13	-32.25	Pass	V

		GPRS 85	0 190channel/836.6	6MHz(mido	dle channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1672.296	150	355	-37.95	-13	-24.95	Pass	Н
2506.624	150	21	-42.94	-13	-29.94	Pass	н
3342.042	250	147	-41.38	-13	-28.38	Pass	н
4181.159	150	200	-42.98	-13	-29.98	Pass	Н
6511.117	150	360	-46.05	-13	-33.05	Pass	Н
9538.543	200	157	-45.31	-13	-32.31	Pass	Н
1672.296	150	100	-32.14	-13	-19.14	Pass	V
2506.624	150	214	-43.12	-13	-30.12	Pass	V
3350.560	200	100	-38.50	-13	-25.50	Pass	V
4181.159	150	251	-45.45	-13	-32.45	Pass	V
6445.156	250	100	-45.09	-13	-32.09	Pass	V
9859.472	150	21	-45.51	-13	-32.51	Pass	V

Report No. : EED32I00208206 Page 48 of 67

		GPRS 85	0 251channel/848.8	BMHz(highe	est channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1698.033	150	351	-32.68	-13	-19.68	Pass	Н
2545.202	150	100	-38.32	-13	-25.32	Pass	H
3393.477	150	24	-41.84	-13	-28.84	Pass	н
5352.186	150	100	-48.74	-13	-35.74	Pass	н
6347.466	250	360	-45.99	-13	-32.99	Pass	Н
9298.801	150	78	-45.58	-13	-32.58	Pass	Н
1698.033	150	98	-31.96	-13	-18.96	Pass	V
2545.202	150	88	-39.78	-13	-26.78	Pass	V
3393.477	250	100	-42.76	-13	-29.76	Pass	V
4245.509	150	251	-43.06	-13	-30.06	Pass	V
6494.564	100	100	-46.16	-13	-33.16	Pass	V
10087.960	150	21	-45.09	-13	-32.09	Pass	V

		GPRS 190	00 512channel/1850).2MHz(low	est channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1138.626	150	332	-55.57	-13	-42.57	Pass	Н
2898.032	150	161	-52.47	-13	-39.47	Pass	Н
3700.260	250	241	-29.28	-13	-16.28	Pass	Н
6494.564	150	226	-45.94	-13	-32.94	Pass	Н (
9275.160	150	100	-45.65	-13	-32.65	Pass	н
12461.220	200	360	-44.20	-13	-31.20	Pass	Н
1138.626	150	74	-53.77	-13	-40.77	Pass	V
3700.260	150	89	-30.64	-13	-17.64	Pass	V
5560.500	150	51	-44.41	-13	-31.41	Pass	V
6494.564	200	100	-44.80	-13	-31.80	Pass	V
9538.543	150	245	-45.18	-13	-32.18	Pass	V
11341.140	150	10	-44.77	-13	-31.77	Pass	V

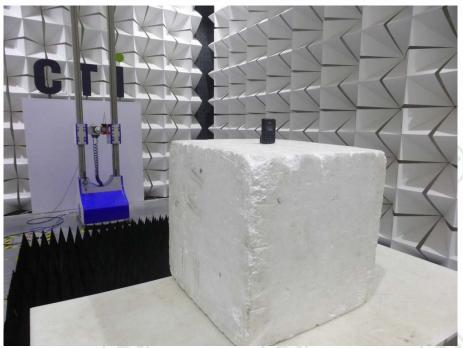
Report No. : EED32I00208206 Page 49 of 67

		GPRS 19	00 661channel/188	0MHz(mido	dle channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1138.626	150	55	-54.78	-13	-41.78	Pass	Н
2768.242	150	100	-52.51	-13	-39.51	Pass	Н
3757.208	250	360	-37.52	-13	-24.52	Pass	Н (г
6299.178	150	100	-45.45	-13	-32.45	Pass	н
9322.501	200	251	-45.23	-13	-32.23	Pass	Н
12272.340	150	100	-43.66	-13	-30.66	Pass	Н
1257.465	150	246	-54.09	-13	-41.09	Pass	V
3757.208	200	100	-30.50	-13	-17.50	Pass	V
5646.079	150	214	-43.82	-13	-30.82	Pass	V
8571.377	150	79	-45.82	-13	-32.82	Pass	V
10400.860	150	360	-45.04	-13	-32.04	Pass	V
12303.620	150	210	-43.92	-13	-30.92	Pass	V (C

		GPRS 190	0 810channel/1909	.8MHz(high	nest channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1138.626	150	100	-53.28	-13	-40.28	Pass	Н
1378.143	150	47	-55.66	-13	-42.66	Pass	Н
3824.757	150	214	-35.81	-13	-22.81	Pass	H / 3
5732.974	150	360	-45.14	-13	-32.14	Pass	н (С
8002.061	200	255	-46.27	-13	-33.27	Pass	Н
11370.050	150	179	-44.41	-13	-31.41	Pass	Н
1257.465	150	98	-54.73	-13	-41.73	Pass	V
2935.153	200	125	-52.43	-13	-39.43	Pass	V
3824.757	150	100	-32.37	-13	-19.37	Pass	V
6047.776	150	254	-46.62	-13	-33.62	Pass	V
9204.600	250	100	-45.31	-13	-32.31	Pass	V
11197.710	150	25	-44.60	-13	-31.60	Pass	V

Note:

¹⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No.: EED32I00208206 Page 50 of 67

PHOTOGRAPHS OF TEST SETUP

Test mode No.: WisePad 2

Radiated spurious emission Test Setup-1(Below 1GHz)

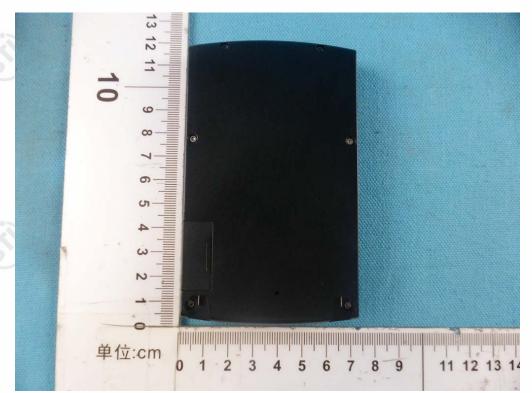
Radiated spurious emission Test Setup-2(Above 1GHz)

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32l00208206 Page 51 of 67

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: WisePad 2



View of Product-2

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32l00208206 Page 52 of 67

View of Product-3

View of Product-4

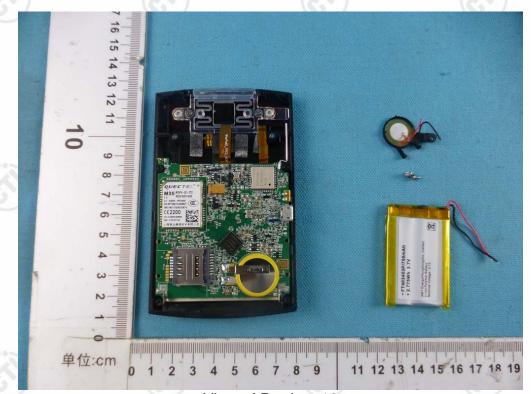
View of Product-5

View of Product-6

Report No.: EED32I00208206 Page 54 of 67

View of Product-7

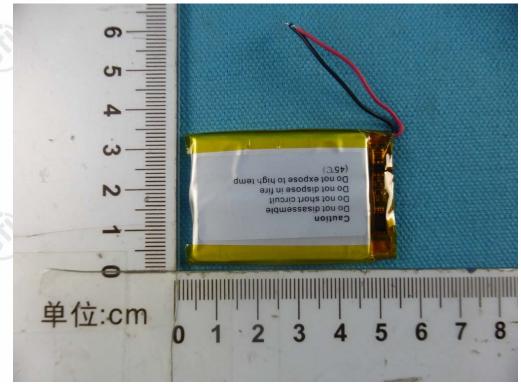
View of Product-8

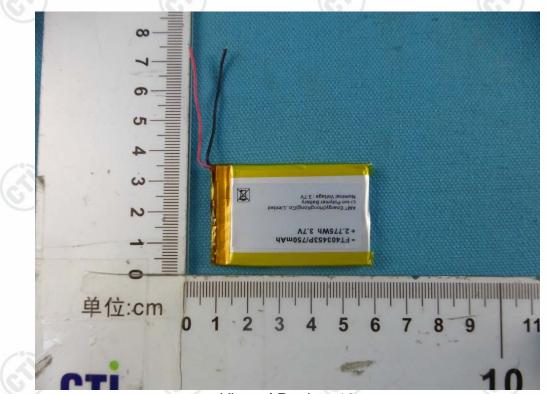


Report No.: EED32I00208206 Page 55 of 67

View of Product-9

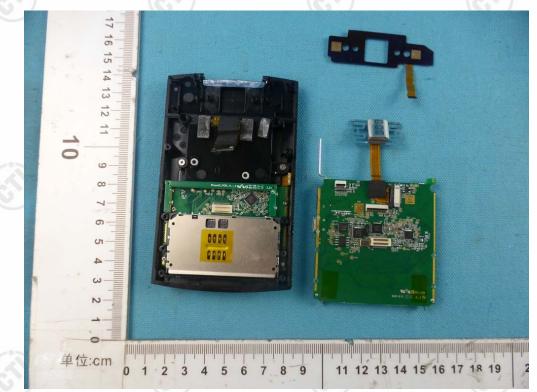
View of Product-10





View of Product-11

View of Product-12

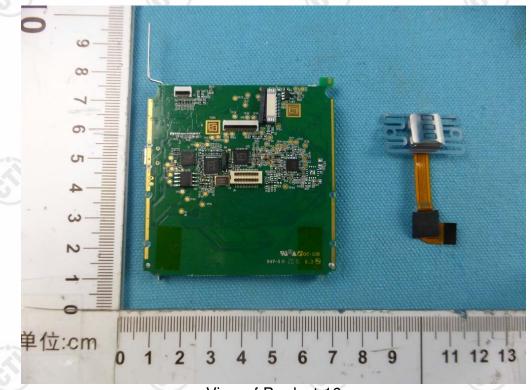


Report No.: EED32I00208206 Page 57 of 67

View of Product-13

View of Product-14

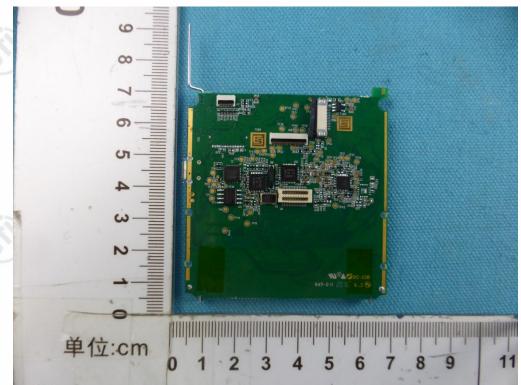




View of Product-15

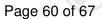
View of Product-16

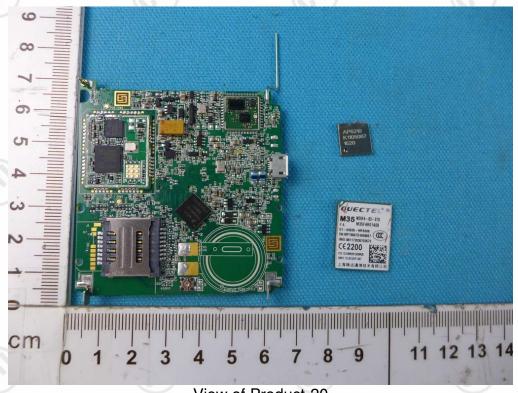




View of Product-17

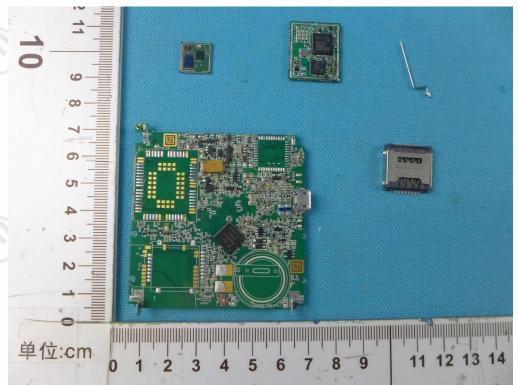
View of Product-18

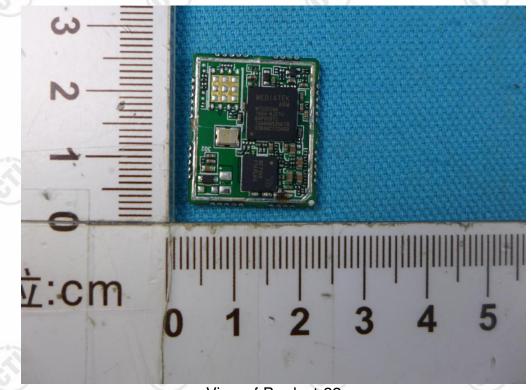




View of Product-19

View of Product-20

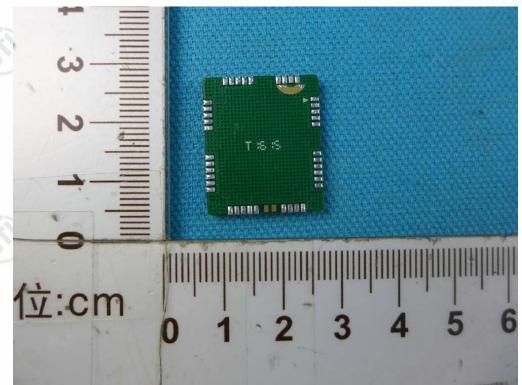


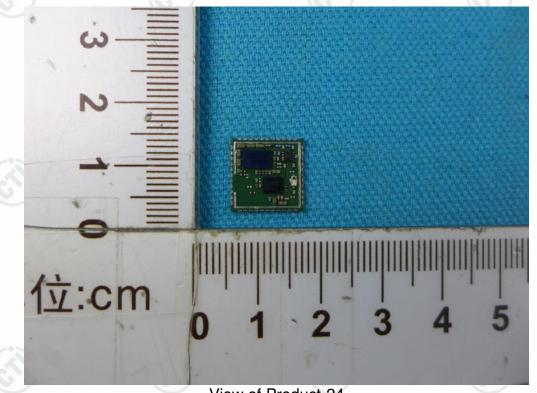


Report No. : EED32I00208206 Page 61 of 67

View of Product-21

View of Product-22



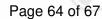


Report No.: EED32l00208206 Page 62 of 67

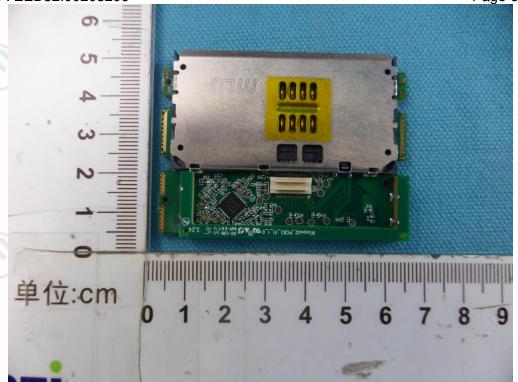
View of Product-23

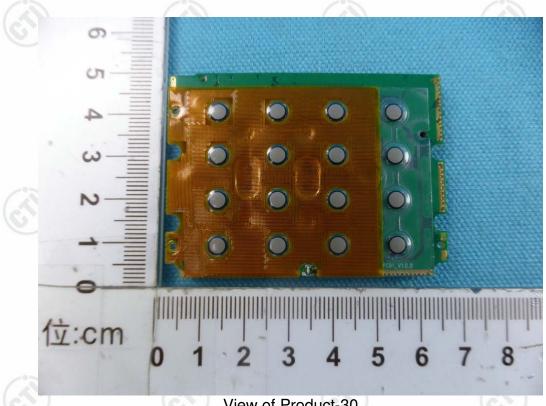
View of Product-24

View of Product-25



View of Product-27

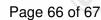


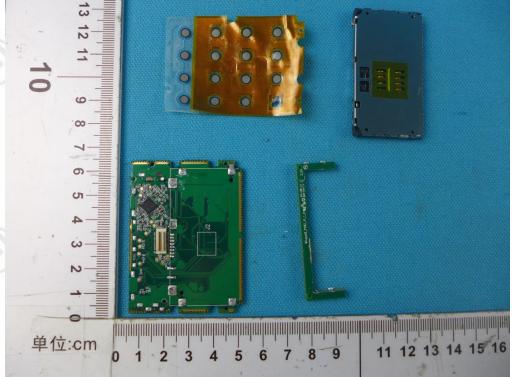


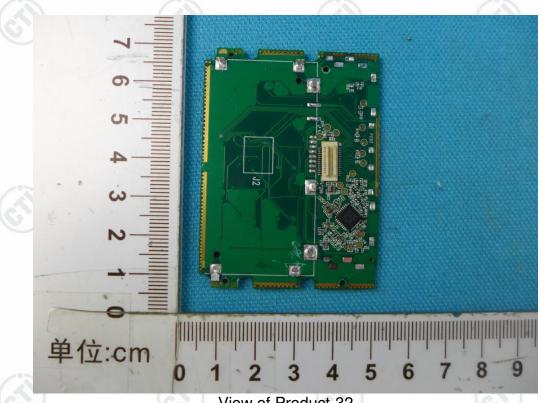
Page 65 of 67

View of Product-29

View of Product-30

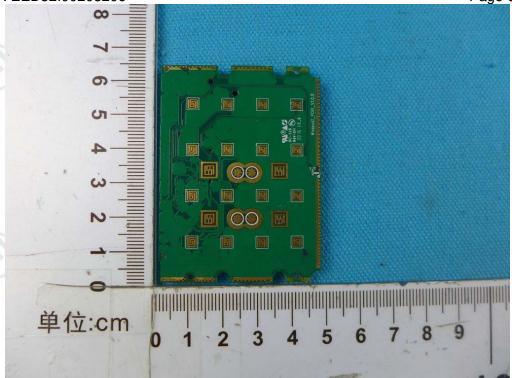






View of Product-31

View of Product-32




Report No.: EED32l00208206 Page 67 of 67

View of Product-33

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

