

Page 1 of 81

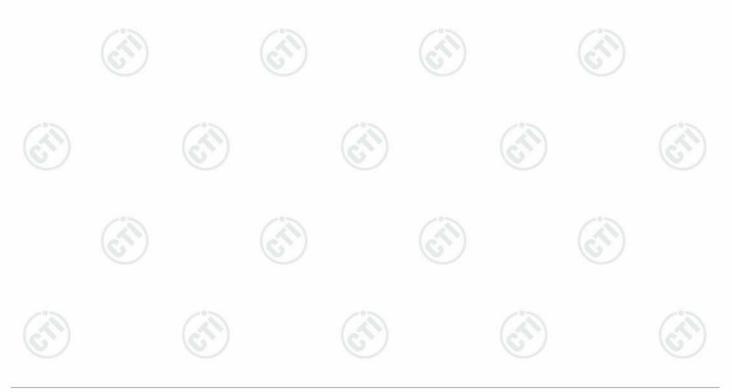
TEST REPORT

2 Vorsion

Version No.	Date		escription	
00	Jun. 21, 2017	(S)	Original	
	2	100	13	

3

Report No. : EED32J00095402

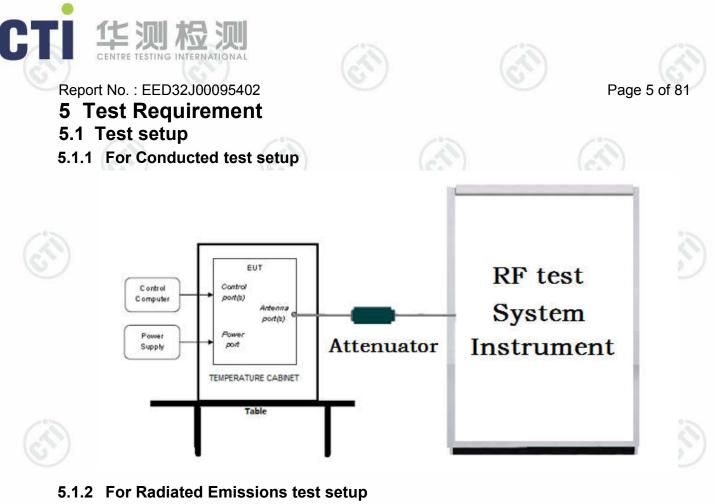


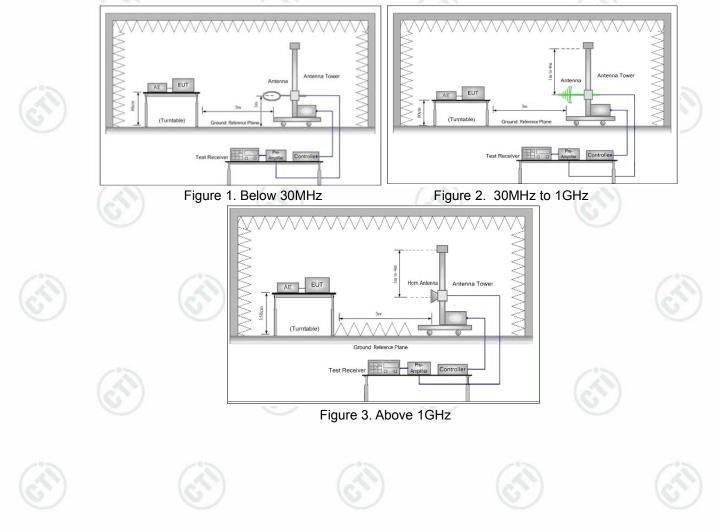
Test Summary Test Item **Test Requirement** Test method Result 47 CFR Part 15 Subpart C Section Antenna Requirement ANSI C63.10-2013 PASS 15.203/15.247 (c) **AC Power Line Conducted** 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 PASS Emission 15.207 **Conducted Peak Output** 47 CFR Part 15 Subpart C Section PASS ANSI C63.10-2013 Power 15.247 (b)(1) 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 6dB Occupied Bandwidth PASS 15.247 (a)(1) **Carrier Frequencies** 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 PASS Separation 15.247 (a)(1) 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 PASS Hopping Channel Number 15.247 (b) 47 CFR Part 15 Subpart C Section **Dwell Time** ANSI C63.10-2013 PASS 15.247 (a)(1) 47 CFR Part 15 Subpart C Section **Pseudorandom Frequency** 15.247(b)(4)&TCB Exclusion List ANSI C63.10-2013 PASS **Hopping Sequence** (7 July 2002) **RF Conducted Spurious** 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 PASS Emissions 15.247(d) **Radiated Spurious** 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 PASS 15.205/15.209 emissions

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

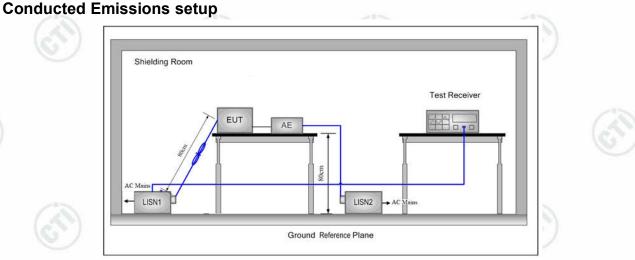
The tested sample and the sample information are provided by the client.




content
content

2 VERSION		•••••
3 TEST SUMMARY	<u> </u>	•••••
4 CONTENT		
5 TEST REQUIREMENT		
5.1 Test setup		
5.1.1 For Conducted test setup		
5.1.2 For Radiated Emissions test setup.		
5.1.3 For Conducted Emissions test setup		
5.2 TEST ENVIRONMENT		
5.3 TEST CONDITION		
GENERAL INFORMATION		•••••
6.1 CLIENT INFORMATION		
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD		
6.4 DESCRIPTION OF SUPPORT UNITS		
6.5 TEST LOCATION		
6.6 TEST FACILITY		
6.7 DEVIATION FROM STANDARDS		
6.8 ABNORMALITIES FROM STANDARD CONDITIONS		
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER.		
6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST		
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	••••••	
Appendix A): 20dB Occupied Bandwidth		
Appendix B): Carrier Frequency Separation		
Appendix C): Dwell Time		
Appendix D): Hopping Channel Number		
Appendix E): Conducted Peak Output Power		
Appendix F): Band-edge for RF Conducted Emissions		
Appendix G): RF Conducted Spurious Emissions		
Appendix H): Pseudorandom Frequency Hopping Sequence		
Appendix I): Antenna Requirement		
Appendix J): AC Power Line Conducted Emission		
Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		
APPENDIX 2 PHOTOGRAPHS OF EUT		

Radiated Emissions setup:



Report No. : EED32J00095402 5.1.3 For Conducted Emissions test setup

Page 6 of 81

5.2 Test Environment

Operating Environment:			
Temperature:	21°C	0	0
Humidity:	54% RH		
Atmospheric Pressure:	10105mbar		

5.3 Test Condition

Test Mede	Toot Mada Tv		RF Channel			
Test Mode	Tx	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3,DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz		

Test mode:

Pre-scan under all rate at Highest channel 79

Mode		GFSK		
packets	1-DH1	1-DH3	1-DH5	
Power(dBm)	5.213	5.375	5.478	
6)	(or)		
Mode		π/4DQPSK		
packets	2-DH1	2-DH3	2-DH5	
Power(dBm)	7.011	6.997	7.114	
Mode	(25)	8DPSK		
packets	3-DH1	3-DH3	3-DH5	
Power(dBm)	7.487	7.501	7.516	

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK,

Hotline: 400-6788-333

General Information 6 6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong

6.2 General Description of EUT

•			
Product Name:	WisePad 2		
Mode No.(EUT):	WPC23	13	
Trade Mark:	BBPOS	(\bigcirc)	
EUT Supports Radios application:	Bluetooth V2.1+EDR	\smile	
Power Supply:	DC 3.7V by Battery DC 5V by USB port		
Battery	Li-polymer 3.7V, 750mAh		
Sample Received Date:	May 18, 2017		
Sample tested Date:	May 18, 2017 to Jun. 21, 2017	13	

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	z~2480MHz				
Bluetooth	Version:	Bluetooth	า V2.1+EDR				
Modulatio	n Type:	GFSK, π	/4DQPSK, 8DI	PSK	12		12
Number o	f Channel:	79	(2))	(25))	65
Sample T	ype:	Portable	V	·	V		Ľ
Test Powe	er Grade:	N/A					
Test softw	are of EUT	BBPOS	_Transaction	2014		285	
Antenna T	уре:	Monopol	е	(2)		(1)	
Antenna C	Gain:	1dBi		e	/	e	/
Test volta	ge:		by Battery y USB port				
Operation	Frequency ea	ch of channe			1		13
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz

8

2409MHz

28

2429MHz

48

68

2469MHz

2449MHz

	9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
	10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
7	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
	20	2421MHz	40	2441MHz	60	2461MHz	(G))
<u> </u>								

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

13	Description	Manufacturer	Model No.	Certification	Supplied by
G	laptop	LENOVO	E46L	FCC DOC	СТІ
-	Keyboard	IBM	89P8300	FCC DOC	СТІ
	Mouse	L.Selectron	OP-200	FCC DOC	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Page 8 of 81

Page 9 of 81

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

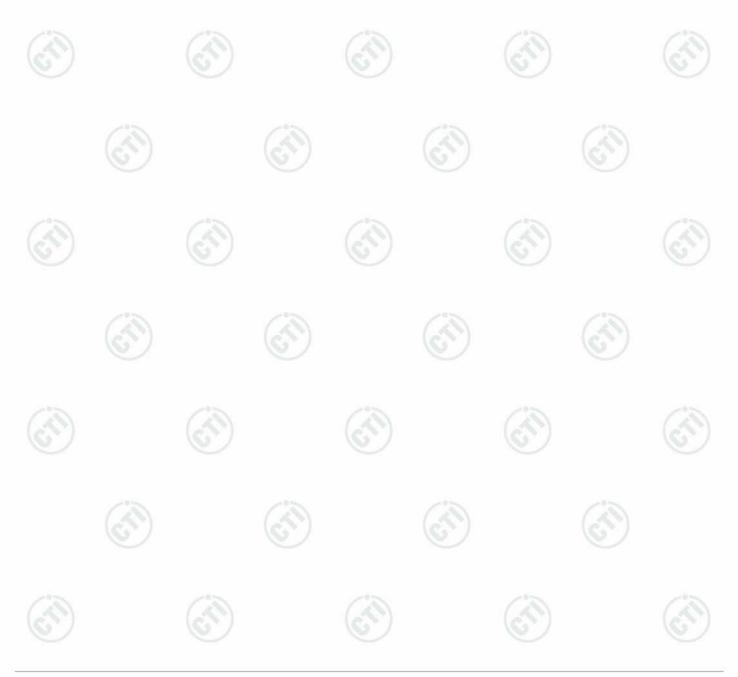
6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Hotline: 400-6788-333



6.10 Measurement Uncertainty (95% confidence levels, k=2)

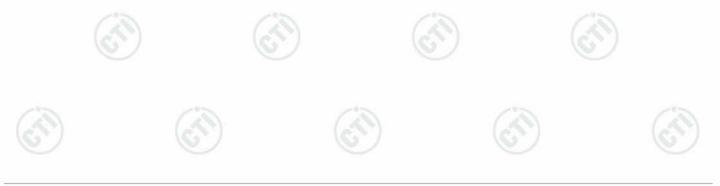
No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	RE power, conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Padiated Spurious omission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Page 10 of 81

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Communication test set	Agilent	N4010A	MY51400230	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	R	01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	S	01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2017	01-11-2018
DC Power	Keysight	E3642A	MY54436035	04-01-2017	03-31-2018
PC-1	Lenovo	R4960d		04-01-2017	03-31-2018
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2017	03-31-2018

	Cor	nducted distur	bance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Receiver	R&S	ESCI	100009	06-16-2016	06-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018
LISN	R&S	ENV216	100098	06-16-2016	06-12-2018
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-12-2018
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018
Current Probe	R&S	EZ17	100106	06-16-2016	06-12-2018
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	02-22-2018
					1



	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-12-2018
Receiver	R&S	ESCI	100435	06-16-2016	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112	<u> </u>	01-12-2016	01-11-2018
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2018

8 Radio Technical Requirements Specification

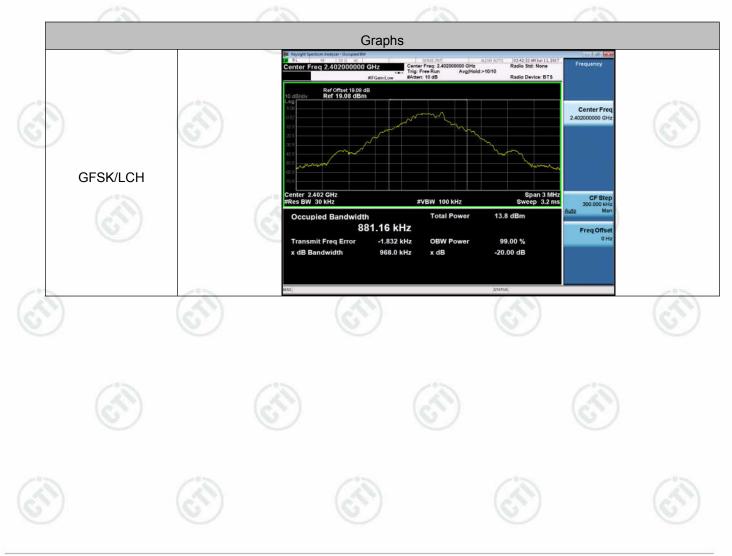
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

SI RESUILS LISI.				
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

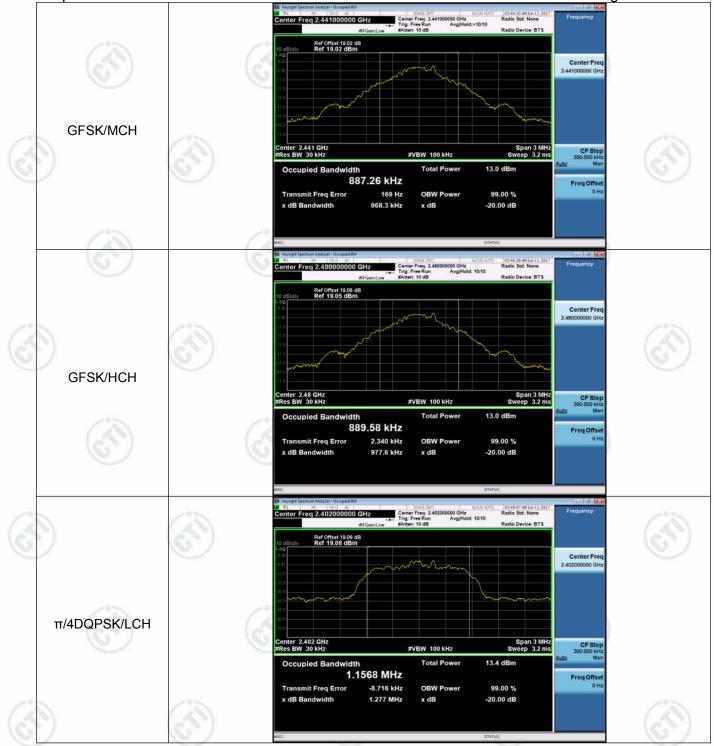
0095402

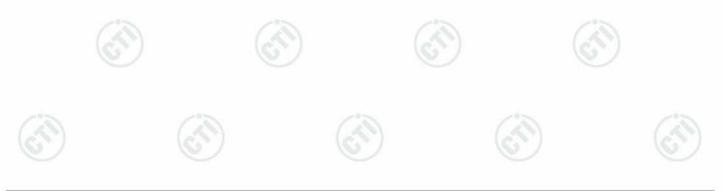


Appendix A): 20dB Occupied Bandwidth

Test Result

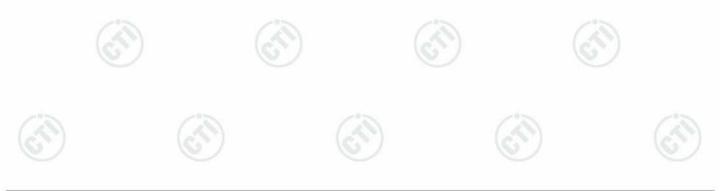
	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
63	GFSK	LCH	0.9680	0.88116	PASS	
e	GFSK	МСН	0.9683	0.88726	PASS	V
	GFSK	НСН	0.9776	0.88958	PASS	
	π /4DQPSK	LCH	1.277	1.1568	PASS	
	π /4DQPSK	МСН	1.281	1.1573	PASS	Peak
	π /4DQPSK	НСН	1.279	1.1577	PASS	detector
	8DPSK	LCH	1.259	1.1560	PASS	
13	8DPSK	МСН	1.262	1.1615	PASS	1
6	8DPSK	НСН	1.260	1.1559	PASS	(\mathcal{S}^{n})


Test Graph



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 15 of 81



Page 16 of 81

Page 17 of 81 Report No. : EED32J00095402 07:19:17 PM Jun 14, 301 Radio Std: None Center Freq 2.44100 Center Freq: 2.441000000 GHz Trig: Free Run AvgiHold: 10/10 00 GHz Radio Device: BTS Ref Offset 19.02 dB Ref 19.02 dBm Center Free 2.441000000 GH 8DPSK/MCH enter 2.441 GHz Res BW 30 kHz Span 3 MH: reep 3.2 ms CF St #VBW 100 kHz SV 12.7 dBn Occupied Bandwidth 1.1615 MHz Freq Offe -3.809 kHz 99.00 % it Freq Erro Tra OBW I 1.262 MHz 20.00 dB Radio Std: None Cramus Center Freq 2.4800 00 GHz AvaiHold: 10/10 000 GHz Radio Device: BTS Ref Offset 19.05 dB Ref 19.05 dBm Center Free 2.48000 8DPSK/HCH enter 2.48 GHz Res BW 30 kHz Span 3 MH eep 3.2 m CF St #VBW 100 kHz 9 13.0 dE Occupied Bandwidth 1.1559 MHz Freq Offe -91 Hz 99.00 % it Freq Erro Tra OBW PC 1.260 MHz -20.00 dB

Appendix B): Carrier Frequency Separation

Result Table

Q : /			- V2 : . /
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.112	PASS
GFSK	МСН	1.062	PASS
GFSK	НСН	1.016	PASS
π/4DQPSK	LCH	0.990	PASS
π/4DQPSK	МСН	1.188	PASS
π/4DQPSK	НСН	0.950	PASS
8DPSK	LCH	1.110	PASS
8DPSK	МСН	0.996	PASS
8DPSK	НСН	0.984	PASS

Test Graph

Page 19 of 81

Report No. : EED32J00095402
Appendix C): Dwell Time

Result Table

	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
12	GFSK	DH1	LCH	0.38127	320	0.122	30	PASS
6	GFSK	DH1	МСН	0.3812663	320	0.122	30	PASS
	GFSK	DH1	НСН	0.38127	320	0.122	30	PASS
	GFSK	DH3	LCH	1.6378	160	0.262	66	PASS
	GFSK	DH3	МСН	1.6378	160	0.262	66	PASS
	GFSK	DH3	нсн	1.6378	160	0.262	66	PASS
	GFSK	DH5	LCH	2.88547	106.7	0.308	77	PASS
100	GFSK	DH5	МСН	2.88546	106.7	0.308	77	PASS
2	GFSK	DH5	нсн	2.885467	106.7	0.308	77	PASS

Test Graph

Page 23 of 81

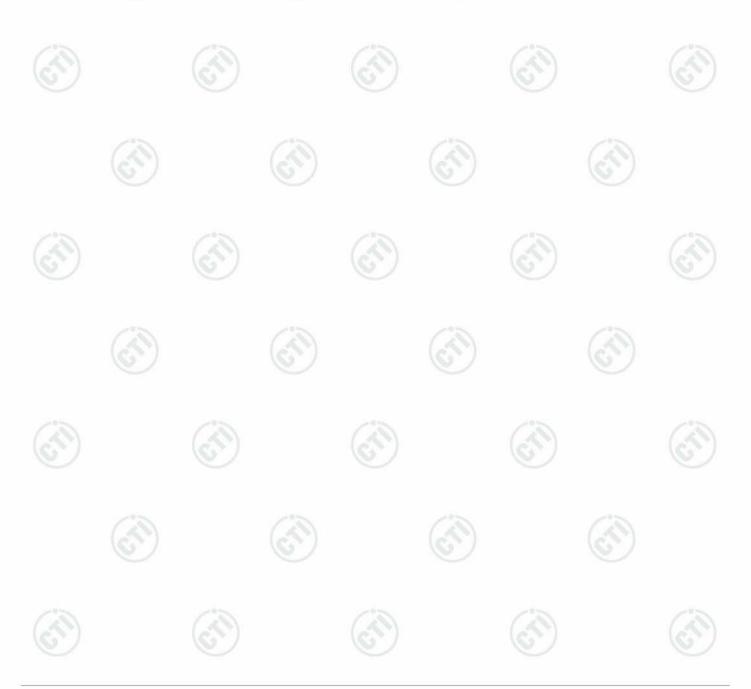
Page 24 of 81

Page 25 of 81

Report No. : EED32J00095402 Appendix D): Hopping Channel Number

Result Table

	Mode	Channel.	Number of Hopping Channel	Verdict
	GFSK	Нор	79	PASS
	π/4DQPSK	Нор	79	PASS
1	8DPSK	Нор	79	PASS


Test Graph

		Graphs	
	4	B Accurati Station Analysis: Surget M. Statistics	
		Admit Admit <th< td=""><td></td></th<>	
<u>3</u>)	S)	399 399 399 2,40000000 GHz 499	
GFSK/Hop		303 Stop Freq 2453 245360000 GHz 70 9 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		Start 2.40000 GHz Stop 2.48350 GHz CF Step 2.48350 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 8.4000 ms (1001 pts) CF Step 2.48350 GHz More than 1000 THC1 SC. X Y FlatChini 4.0417 GB FlatChini 4.0417 GB A2 1 f f 1.402 GB CH 10 GB FlatChini 4.0417 GB FlatChini 4.0417 GB 2 f f f 2.402 040 GHz 6.570 GB FlatChini 4.0417 GB FlatChini 4.0417 GB	
(St)	(2 F 1 f 2.402 004 0 GHz 5.670 dBm Freq Offset 0 Hz 6 6 6 6 6 6 6 0 Hz	
3		8 Record Stational Audyor - Sweet 54 8 Record Stational Audyor - Sweet 54 Center Freq 2.441750000 GHz (Figure 54 audyor - Sweet 54 Record Stational Audyor - Sweet 54 Record Stational Audyor - Sweet 54 Frequency 100 Figure 54 Record Stational Audyor - Sweet 54 Record Stational Audyor - Sweet 54 Record Stational Audyor - Sweet 54 Frequency 100 Figure 54 Record Stational Audyor - Sweet 54 Figure 54 Record Stational Audyor - Sweet 54 Figure 54 Record Stational Audyor - Sweet 54 Record Stationa	
		10 gB/div Ref 19.08 dBm 2.486 dB 0 gB/div 100 100 0 gB/d	
		1129 2023 300 400 403	
π/4DQPSK/Hop	(20.9 Stop Freq 2.483500000 GHz 2.483500000 GHz	
		Start 2.40000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) CF Step 8.350000 MHz Mor Mode THC SQL X Y FlintToll Work Auto Man Mor Mode THC SQL X Y FlintToll Work Function Wate Man	
	-15	L 02 1 f (A) 77.922 0 MAr (IA) 2486 dB 2 F 1 f 2.402 171 0 GHz 1.073 dBm 4 G G G G G G G G G G G G G G G G G G G	
5)	(1)		

Report No. : EED32J00095402 Page 27 of 81 #Avg Type: RMS Avg Hold: 100/100 nter Freq 2.441750 000 GHz Trig: Free Run Auto Tu Ref Offset 19.08 dB Ref 19.08 dBm Center Fre 2.441750000 Gi Attended to a la dist. dillore to Start Fr Stop Fr 8DPSK/Hop Stop 2.48350 GH 2.40000 GHz CF #VBW 300 kHz 77.822 0 MHz (Δ) 2.402 087 5 GHz -0.778 dB 2.856 dBm Freq Off

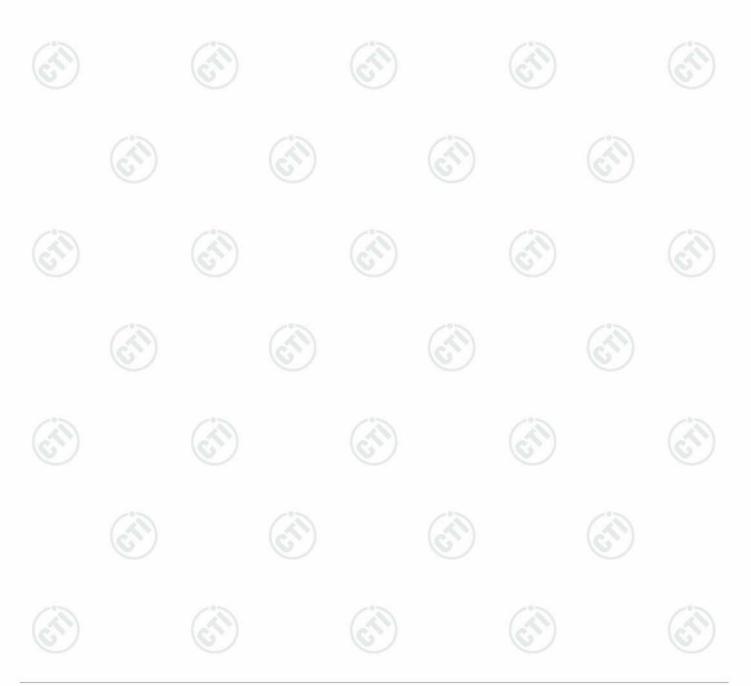
Report No. : EED32J00095402 Appendix E): Conducted Peak Output Power

Result Table

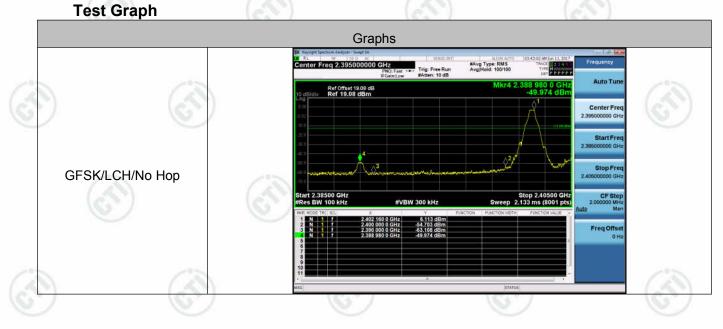
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	6.288	PASS
GFSK	МСН	5.478	PASS
GFSK	НСН	5.485	PASS
π/4DQPSK	LCH	7.114	PASS
π/4DQPSK	МСН	6.307	PASS
π/4DQPSK	нсн	6.287	PASS
8DPSK	LCH V	7.546	PASS
8DPSK	МСН	6.866	PASS
8DPSK	НСН	6.684	PASS

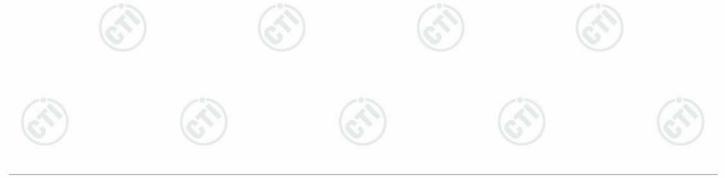
Test Graph

Page 29 of 81


Page 30 of 81

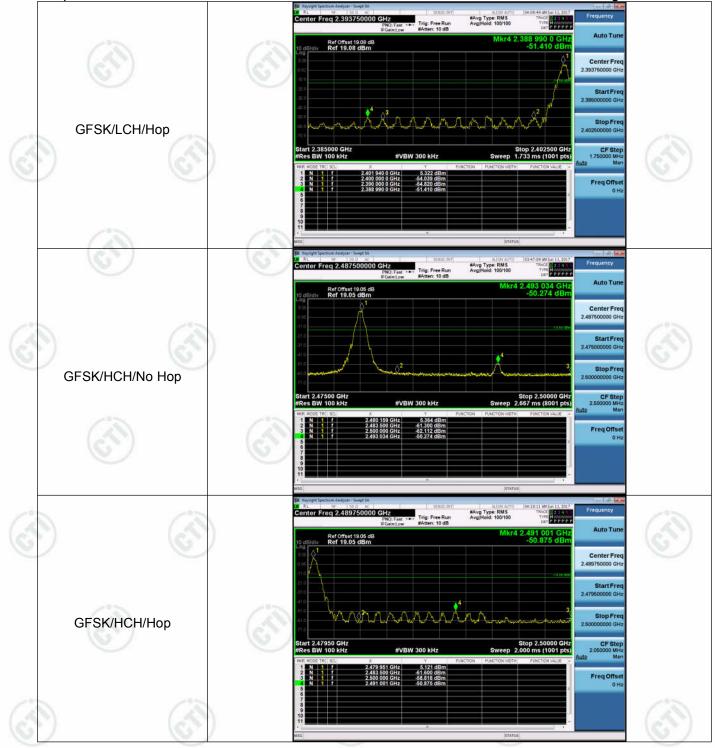
Report No. : EED32J00095402 Page 31 of 81 #Avg Type: RMS Avg Hold: 100/100 r Freq 2.480 00 GHz Trig: Free Run Auto Tu 10 6 Ref Offset 19.05 dB Ref 19.05 dBm Center Fre 2.480000000 GH Start Fr 2.47 8DPSK/HCH CF Freq Off enter 2.480000 GHz Res BW 3.0 MHz Span 5.000 MHz ep 1.067 ms (8001 pts) #VBW 8.0 MHz

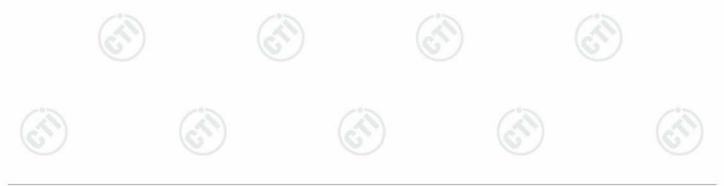




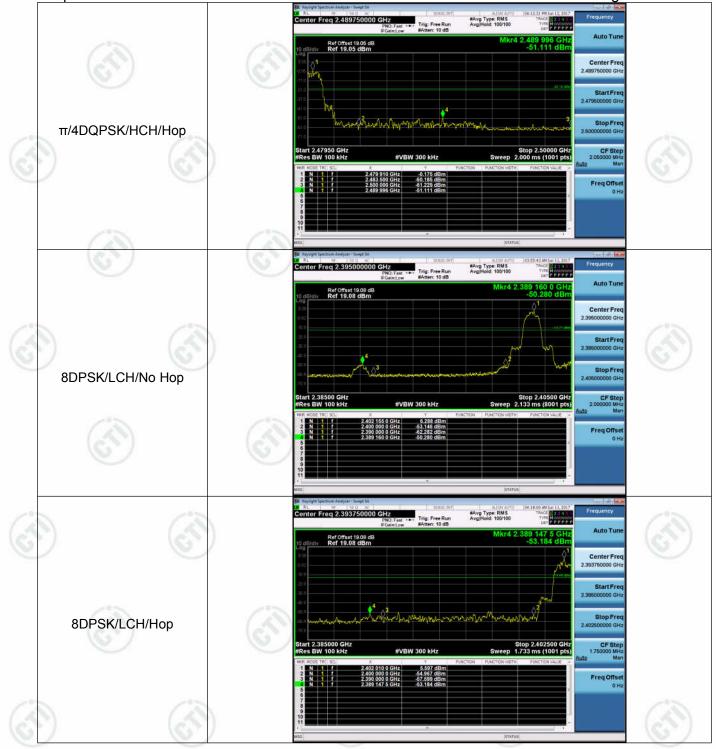
Report No. : EED32J00095402 Appendix F): Band-edge for RF Conducted Emissions

Result	Table
itoount	1 4 5 1 0


	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
12	GFSK	LCH	2402	6.113	Off	-49.974	-13.89	PASS
6				5.322	On	-51.410	-14.68	PASS
	GFSK	нсн	2480	5.364	Off	-50.274	-14.64	PASS
				5.121	On	-50.875	-14.88	PASS
	π/4DQPSK	LCH	2402	6.150	Off	-50.901	-13.85	PASS
				1.994	On	-54.125	-18.01	PASS
201	π/4DQPSK	НСН	2480	5.343	Off	-50.781	-14.66	PASS
				-0.175	On	-51.111	-20.18	PASS
A	8DPSK	LCH	2402	6.288	Off	-50.280	-13.71	PASS
2				5.597	On	-53.184	-14.4	PASS
		8DPSK HCH	2480	5.469	Off	-50.757	-14.53	PASS
	8DPSK			-0.904	On	-50.823	-20.9	PASS



Page 33 of 81


Page 34 of 81

Page 35 of 81

Page 36 of 81

Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	6.103	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	5.304	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	5.287	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	6.049	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	5.238	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	5.173	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	6.211	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	МСН	5.405	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	5.436	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph



Page 38 of 81

Page 39 of 81

Puw

 $\pi/4DQPSK_LCH_Graphs$ #Avg Type: RMS Avg[Hold: 100/100 Freg 2.402000000 GH Trig: Free Run NAtten: 10 dB Auto Tu Ref Offset 19.08 dB Ref 19.08 dBm 52 2 6 0 Center Fr Pref Freq Offs Span 3.000 Mi 1.067 ms (8001 -VBW 300 kH er Freq 12.515000000 GHz #Avg Type: RMS Avg Hold: 15/100 Trig: Free Run 1234 Month PPPP Auto Tu Ref Offset 19.08 dB Ref 10.00 dBm Center Fre Puw CF Freq Offs Stop 25.00 GH 2.387 s (8001 pts 0 MHz W 100 kHz #VBW 300 kH

Page 40 of 81

Puw

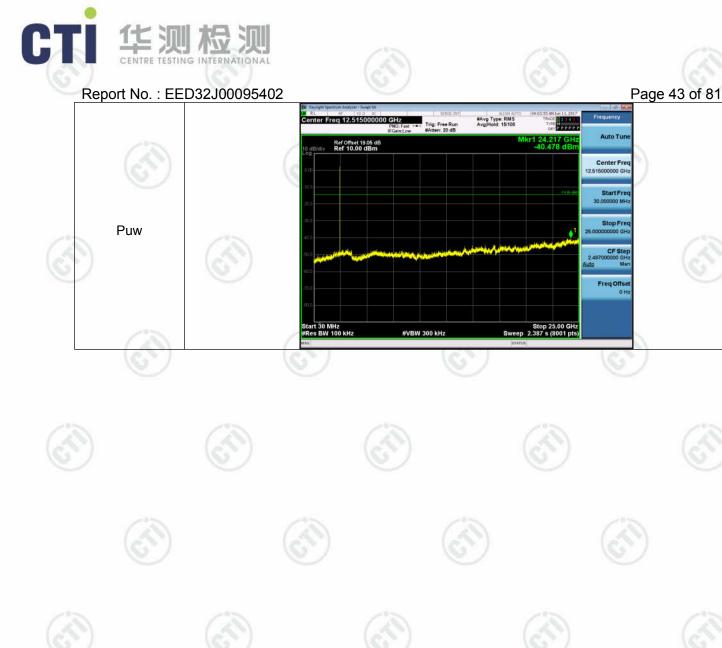
Page 41 of 81 Sector Freq 12.51000000 GHz Figure 200 Bit Sector Freq Secto

> Stop 25.00 GHz Sweep 2.387 s (8001 pts)

Freq Offs

Start 30 MHz #res BW 100 HHz #res BW 1

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com





Page 42 of 81

Appendix H): Pseudorandom Frequency Hopping Sequence

Test R	equirement:	47 CFR Part 15C Sect	ion 15.247 (a)(1) requirem	ient:					
kHz or Alterna channe channe The sy Pseudo each tr bandwi	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 Iz or the 20 dB bandwidth of the hopping channel, whichever is greater. Therenatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping annel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping annel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a seudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by ch transmitter. The system receivers shall have input bandwidths that match the hopping channel ndwidths of their corresponding transmitters and shall shift frequencies in synchronization with the insmitted signals.								
EUT P	seudorandom Frequency	Hopping Sequence							
outputs	seudorandom sequence m s are added in a modulo-to equence begins with the fir	wo addition stage. And	the result is fed back to the	ne input of the first stag					
	Number of shift register st	-							
	Length of pseudo-random								
	Longest sequence of zero	s: 8 (non-inverted signal		e e					
()+[]+[]+[]+[]+[]+[]+[]+[]+[]+[]+[]+[]+[]+							
	Linear Feedback S	Shift Register for Gene	eration of the PRBS seq	uence					
l A	An example of Pseudorand								
100	20 62 46 77	7 64 8 73	16	75 1					
5)				(St)					
r	Each frequency used equal The system receivers have Corresponding transmitters	input bandwidths that m	atch the hopping channel b						
	The device does not have t simultaneous occupancy of								

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.



Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz					
	 1)The mains terminal disturband is terminal disturband is terminal disturband is the end of the e	ice voltage test was of AC power source thr h provides a $50\Omega/50$ nits of the EUT were round reference plane d. A multiple socket of single LISN provided the ed upon a non-metall or-standing arrangem	ough a LISN 1 (Line μ H + 5 Ω linear imp connected to a sec in the same way a putlet strip was use the rating of the LIS ic table 0.8m above	e Impedance edance. Th cond LISN 2 is the LISN d to conneo N was not e the groun			
	 4) The test was performed with a vertical ground reference plane. The rear of t EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LIS 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EU All other units of the EUT and associated equipment was at least 0.8 m from t LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 						
Limit:							
	Frequency range (MHz)	Limit (o	dBμV)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46	(A)			
	5-30	60	50	G)			
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appli		e range 0.1				
~2~		2450					

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

6

16,1579

13,49

10.05

4.06

9.35

22.84

19.40

13,41

60.00

50.00

-40.60

-36.59

Ρ

Report No. : EED32J00095402

90.0 dBp₩ Limit: AVG: 5 20 peak AVG -50 0.150 0.5 (MHz) 5 30.000 Reading_Level Correct Measurement Limit Margin (dBpW) (dB) No. Freq. Factor (dBpW) (dBpW) MHz Peak QP AVG dB QP AVG QP AVG QP AVG P/F peak Comment 0 1779 27 62 23 61 22,80 33.37 32.56 -22.02 Ρ 1 9.76 37.38 64.58 54.58 -31.21 2 0.2660 17.00 13,41 9.68 9.64 26,64 23.05 19.32 61.24 51.24 -38,19 -31.92 Ρ 0.5260 21.67 18.57 9.86 9.57 31.24 28.14 56.00 46.00 Ρ 3 19.43 27.86 -26.57 4 1.0620 17.41 14.74 6.90 9.51 26.92 24.25 16.41 56.00 46.00 -31.75 29.59 Ρ 5 1.9737 13.36 10.37 -1.16 9.65 23.01 20.02 8.49 56.00 46.00 -35.98 -37.51 Ρ

Neutral line: 90.0 dBpW 4 VG: 4 VG

No.	Freq.	Reading_Level (dBpW)		Correct Factor	Measurement (dBpW)		Limit (dBpW)		Margin (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	29.56	25.31	14.97	9.77	39.33	35.08	24.74	64.96	54.96	-29.88	-30.22	Ρ	
2	0.2600	19.85	15.52	10.54	9.65	29.50	25.17	20,19	61.43	51.43	-36_26	-31.24	Ρ	
3	0.5220	24.25	19.51	10.82	9.57	33.82	29.08	20.39	56.00	46.00	-26.92	-25.61	Ρ	
4	0.9697	20.39	16.32	8.22	9.50	29.89	25.82	17.72	56.00	46.00	-30.18	-28.28	Ρ	
5	2.8260	10.79	7.15	-0.50	9.77	20.56	16.92	9.27	56.00	46.00	-39.08	-36.73	Ρ	
6	15.9859	13.69	9.37	2.83	9.34	23.03	18.71	12,17	60.00	50.00	-41.29	-37.83	Р	

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Appendix K): Restricted bands around fundamental frequency (Radiated)

		(A)	\				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak]	
	Above 1GHz	Peak 1MHz		3MHz	Peak		
1	Above IGH2	Peak	1MHz	10Hz	Average	1	
Test Procedure:	Below 1GHz test proced	ure as below:	(ć		(c.	
	 determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is determine the maximul polarizations of the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charmeter (Above 18GHz 	choic camber. T of the highest ra- eters away from op of a variable-l- varied from one im value of the fi tenna are set to mission, the EUT d to heights from 0 degrees to 36 em was set to Pe num Hold Mode. end of the restrice npliance. Also m trum analyzer pla channel ure as below: ve is the test site nber and change the distance is 1	imber. The table was rotated 360 degrees to highest radiation. The interference-receiving antenna, variable-height antenna tower. The one meter to four meters above the group of the field strength. Both horizontal and variate the field strength. Both horizontal and variate to fit the field strength and the measurement. The EUT was arranged to its worst case and this from 1 meter to 4 meters and the rotata es to 360 degrees to find the maximum real set to Peak Detect Function and Specified d Mode. The restricted band closest to the transmit alyzer plot. Repeat for each power and mod l				
Limit:	Transmitting mode, ar j. Repeat above proced	ements are perfo nd found the X as ures until all freq	kis position uencies me	ing which i easured wa	oositioning for t is worse case as complete.	6	
Limit:	Transmitting mode, ar j. Repeat above procedu Frequency	ements are perfo nd found the X ax ures until all freq Limit (dBµV	kis position uencies me /m @3m)	ing which i easured wa	oositioning for t is worse case as complete. mark	6 .	
Limit:	Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz	ements are perfo nd found the X ax ures until all freq Limit (dBµV 40.	kis position uencies me /m @3m) 0	ing which i easured wa Rei Quasi-pe	oositioning for t is worse case as complete. mark eak Value	e.	
Limit:	Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	ements are perfo nd found the X ax ures until all freq Limit (dBµV 40. 43.	kis position uencies me /m @3m) 0 5	ing which i easured wa Rei Quasi-pe Quasi-pe	oositioning for t is worse case as complete. mark eak Value eak Value	<u>.</u>	
Limit:	Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ements are perfo ad found the X ax ures until all freq Limit (dBµV 40. 43. 46.	kis position uencies me /m @3m) 0 5 0	ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	oositioning for t is worse case as complete. mark eak Value eak Value eak Value	<u>.</u>	
Limit:	Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	ements are perfo nd found the X ax ures until all freq Limit (dBµV 40. 43.	kis position uencies me /m @3m) 0 5 0 0	ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po	oositioning for t is worse case as complete. mark eak Value eak Value		

