

Report No. : EED32J00095404 Page 1 of 62

TEST REPORT

Product : WisePad 2
Trade mark : BBPOS

Model/Type reference : WPC23

Serial Number : N/A

Report Number : EED32J00095404

FCC ID : 2AB7X-WISEPAD2-3G

Date of Issue : Jun. 21, 2017

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BBPOS International Limited
Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,
Tsuen Wan, NT, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Compiled by:

Report Sea

Kevin yang (Project Engineer)

Mill chen

Reviewed by:

Sheek Luo (Reviewer)

kelm (m

Sheek Luo (Lab supervisor)

Date:

Jun. 21, 2017

Check No.:2402681052

Page 2 of 62

2 Version

Version No.	Date	Description
00	Jun. 21, 2017	Original

Page 3 of 62

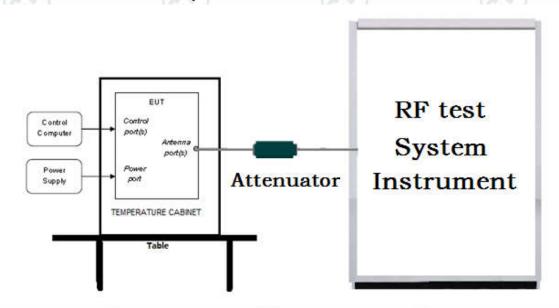
3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04 ANSI C63.10-2013/ KDB 558074 D01v04	PASS PASS PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)			
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04		
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04		
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

4 Content


1 COVER PAGE					
2 VERSION					
3 TEST SUMMARY	•••••				3
4 CONTENT			•••••	•••••	4
5 TEST REQUIREMENT		•••••			5
5.1 TEST SETUP	ip				5 6 6
6 GENERAL INFORMATION	•••••		••••••		8
6.1 CLIENT INFORMATION	O THIS STANDAR	RD.			
7 EQUIPMENT LIST					
8 RADIO TECHNICAL REQUIREMENTS S					
Appendix A): Conducted Peak Output Appendix B): 6dB Occupied Bandwidth Appendix C): Band-edge for RF Condu Appendix D): RF Conducted Spurious Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Appendix H): Restricted bands around Appendix I): Radiated Spurious Emissi	Power 1ucted Emissions Emissions ed Emission	sequency (Rac	liated)		
PHOTOGRAPHS OF TEST SETUP					
PHOTOGRAPHS OF EUT CONSTRUCTIO	NAL DETAILS	•••••		•••••	62

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

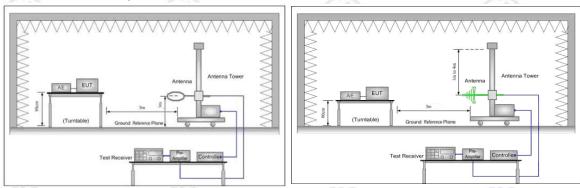


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 62

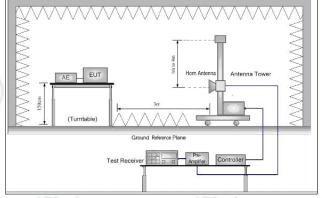
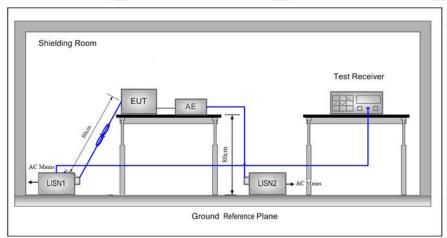


Figure 3. Above 1GHz



Page 6 of 62

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

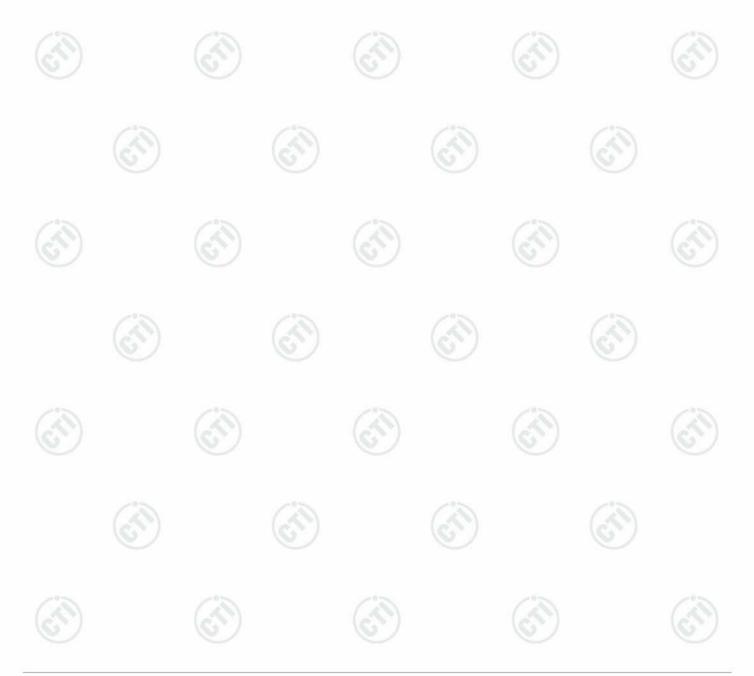
Operating Environment:			(3)
Temperature:	21°C	(0.)	6.
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		

5.3 Test Condition

Test channel:

Test Mode	Tv		RF Channel		
rest Mode	Тх	Low(L)	Middle(M)	High(H)	
000 44h/a/a/UIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b	/			(3)	
Data Rate		1Mbp	s 2Mbp	s 5.5Mbp	s 11Mbp	s			
Power(dBm)		19.80	19.87	7 19.98	20.02				
Mode 802.11g									
Data Rate		6Mbp	s 9Mbp	s 12Mbps	s 18Mbps	s 24Mbps	s 36Mbps	48Mbps	54Mbps
Power(dBm) (19.03	3 18.99	9 18.87	18.80	18.75	18.70	18.61	18.59
Mode			·		802.11n	(HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	6.71	16.66	16.59	16.48	16.40	16.31	16.27	16.21

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);

Page 8 of 62

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited		
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong		
Manufacturer:	BBPOS International Limited		
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong		

6.2 General Description of EUT

Product Name:	WisePad 2			
Mode No.(EUT):	WPC23		1:0	
Trade Mark:	BBPOS		(62)	
EUT Supports Radios application:	Wlan 2.4GHz 802.11b/g/n(HT20)			
Power Supply:	DC 3.7V by Battery DC 5V by USB port	(173)		
Battery	Li-polymer 3.7V, 750mAh			
Sample Received Date:	May 18, 2017			
Sample tested Date:	May 18, 2017 to Jun. 21, 2017			

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz					
Channel Numbers:	EEE 802.11b/g, IEEE 802.11n HT20: 11 Channels					
Channel Separation:	5MHz	100				
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)	(6,)				
Sample Type:	Portable					
Test Power Grade:	802.11b: 16, 802.11g: 15, 802.11n(HT20): 14					
Test Software of EUT:	wifi: BBPOS_Transaction					
Antenna Type:	Monopole					
Antenna Gain:	1dBi					
Test Voltage:	DC 3.7V by Battery DC 5V by USB port	(1)				

Operation	Operation Frequency each of channel(802.11b/g/n HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
laptop	LENOVO	E46L	FCC DOC	CTI
Keyboard	IBM	89P8300	FCC DOC	CTI
Mouse	L.Selectron	OP-200	FCC DOC	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

Page 9 of 62

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 10 of 62

7 Equipment List

	RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018		
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-13-2018		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018		
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2018		
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018		
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018		
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018		
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2018		

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-16-2016	06-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018	
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018	
LISN	R&S	ENV216	100098	06-16-2016	06-12-2018	
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-12-2018	
Voltage Probe	R&S	ESH2-Z3	(G) -J	06-13-2017	06-12-2018	
Current Probe	R&S	EZ17	100106	06-16-2016	06-12-2018	
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	02-22-2018	
			•	-140	-14-20	

Page 12 of 62

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2018	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-12-2018	
Receiver	R&S	ESCI	100435	06-16-2016	06-13-2018	
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2018	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-12-2018	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-12-2018	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-13-2018	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018	
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2018	
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2018	
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4	(4)	01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001	(2)	01-12-2016	01-11-2018	

8 Radio Technical Requirements Specification

Reference documents for testing:

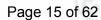
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

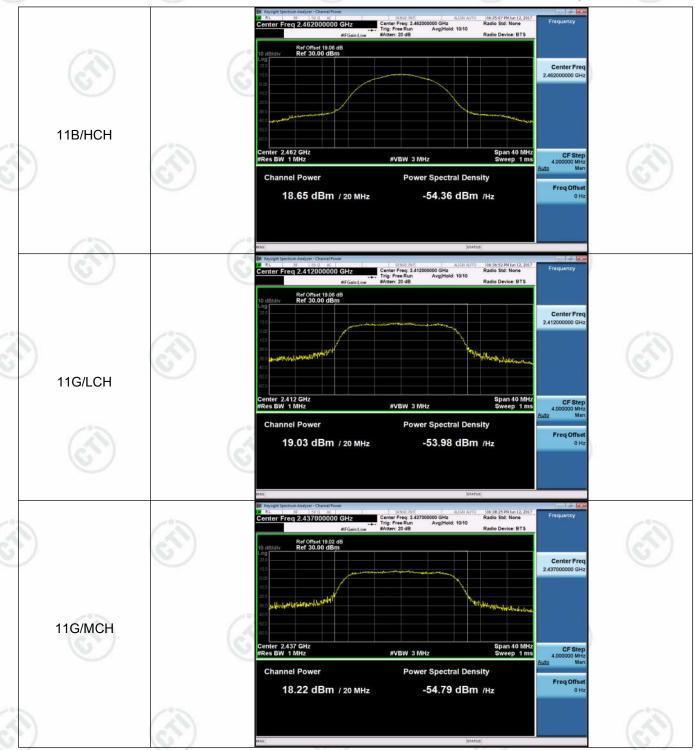
Test Results List:

est Results List:				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

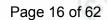
Page 14 of 62

Appendix A): Conducted Peak Output Power


Result Table


1 1 3 3 1 1 1 1 1		7 20 20 20	
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	20.02	PASS
11B	MCH	19.31	PASS
11B	HCH	18.65	PASS
11G	LCH	19.03	PASS
11G	MCH	18.22	PASS
11G	HCH	17.7	PASS
11N20SISO	LCH	16.71	PASS
11N20SISO	MCH	15.96	PASS
11N20SISO	НСН	15.36	PASS

Test Graph



Page 18 of 62

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.068	12.286	PASS	
11B	MCH	7.376	12.206	PASS	
11B	НСН	7.502	12.182	PASS	0.
11G	LCH	15.63	16.314	PASS	
11G	MCH	15.68	16.312	PASS	Peak
11G	НСН	15.62	16.309	PASS	detector
11N20SISO	LCH	16.08	17.475	PASS	
11N20SISO	MCH	16.09	17.491	PASS	
11N20SISO	НСН	16.28	17.491	PASS	~ 0

Test Graph

Page 19 of 62

Page 20 of 62

Page 22 of 62

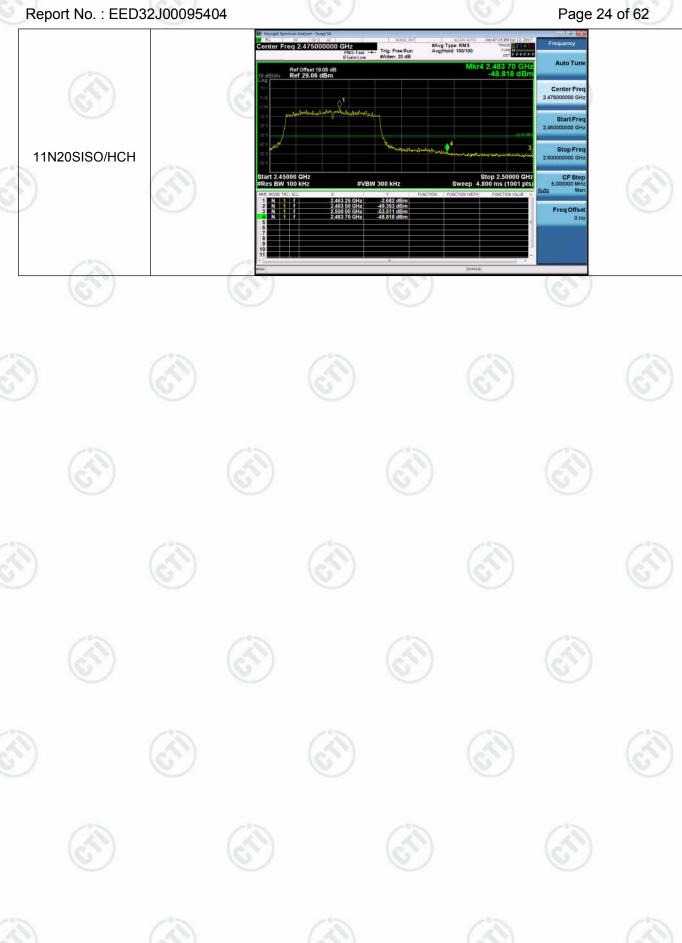
Appendix C): Band-edge for RF Conducted Emissions

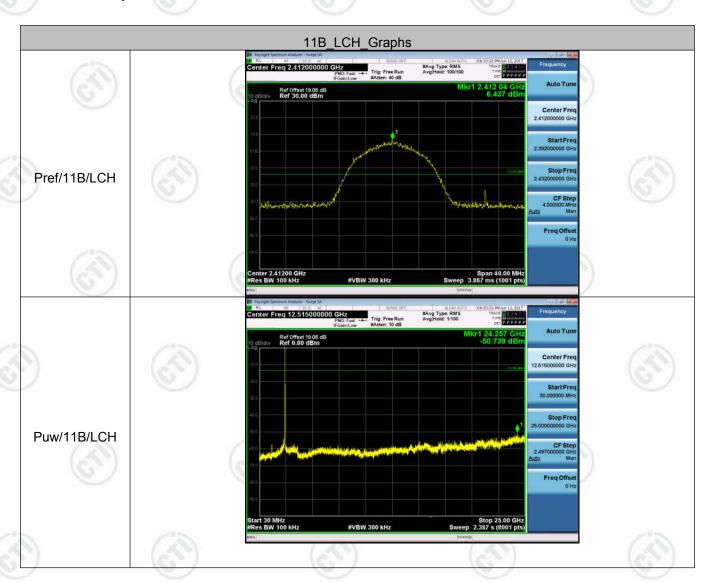
Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	6.581	-47.909	-23.420	PASS
11B	HCH	3.708	-49.696	-26.29	PASS
11G	LCH	0.399	-45.020	-29.600	PASS
11G	НСН	-0.943	-47.563	-30.940	PASS
11N20SISO	LCH	-1.534	-46.685	-31.530	PASS
11N20SISO	НСН	-2.682	-48.818	-32.680	PASS

Test Graph

Page 23 of 62




Page 25 of 62

Appendix D): RF Conducted Spurious Emissions

Result Table

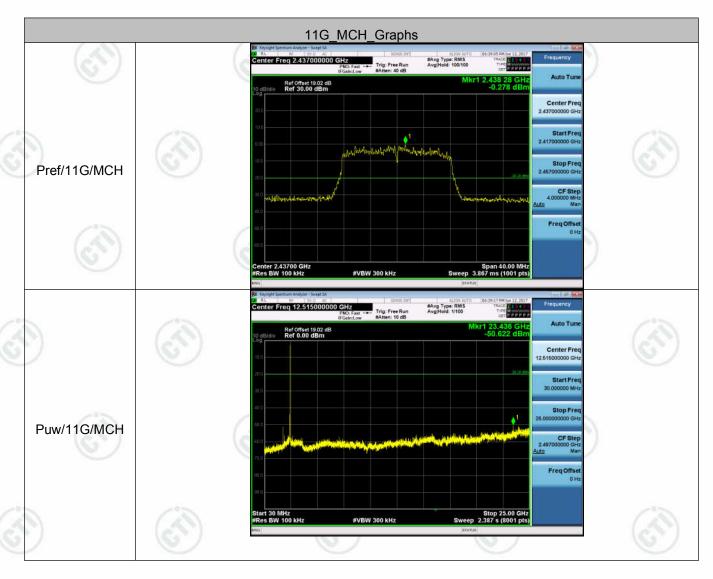
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	6.437	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.534	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	4.654	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	0.459	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-0.278	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-0.769	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-1.593	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-2.047	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-2.607	<limit< td=""><td>PASS</td></limit<>	PASS

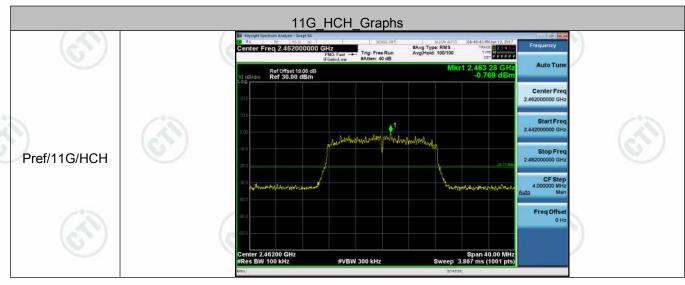
Test Graph



Page 26 of 62

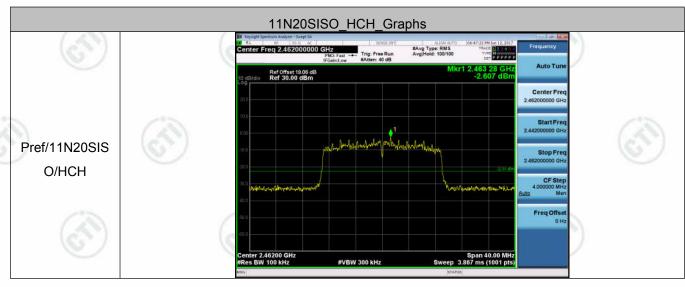
Page 27 of 62



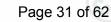


Page 28 of 62

Page 29 of 62



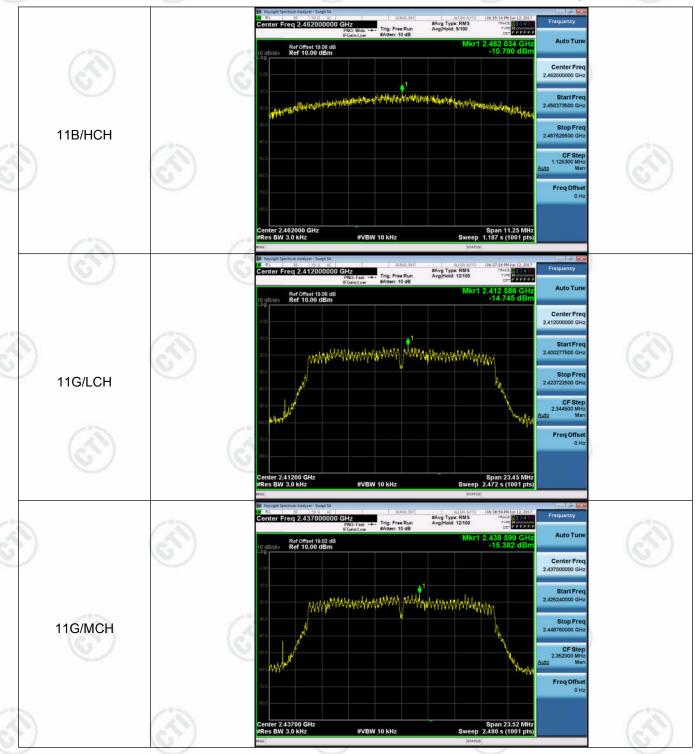
Page 30 of 62





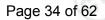
Page 32 of 62

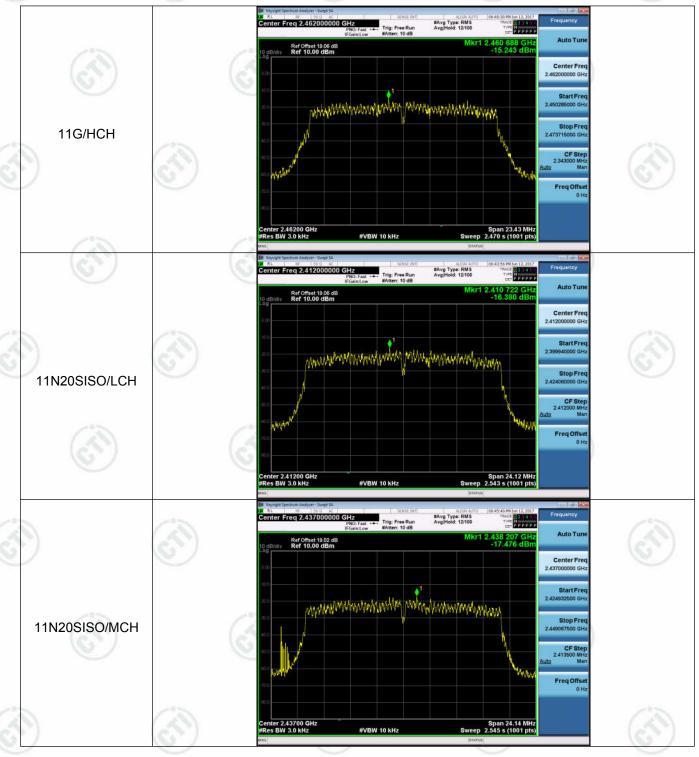
Appendix E): Power Spectral Density


Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-9.432	8	PASS
11B	мсн	-9.495	8	PASS
11B	НСН	-10.790	8	PASS
11G	LCH	-14.745	8	PASS
11G	MCH	-15.382	8	PASS
11G	HCH	-15.243	8	PASS
11N20SISO	LCH	-16.380	8	PASS
11N20SISO	MCH	-17.476	8	PASS
11N20SISO	НСН	-17.398	8	PASS

Page 33 of 62





Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

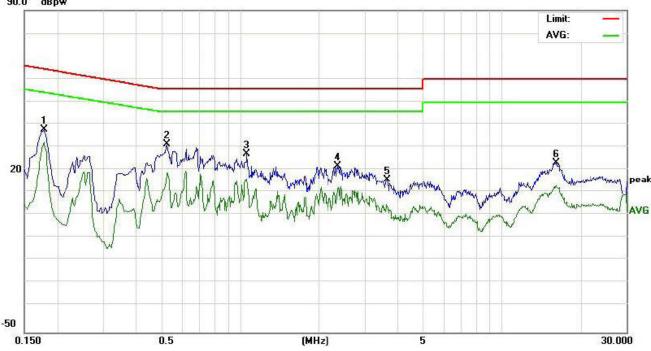
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Page 37 of 62

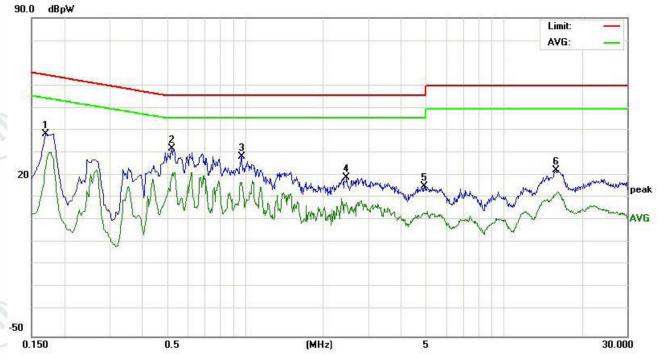
Test Procedure:	Test frequency range :150KHz-30MHz										
	1)The mains terminal disturban	ce voltage test was	conducted in a shielde	d room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for										
1	the unit being measured. A										
/	power cables to a single LIS exceeded.	in provided the ratio	g of the LISIN was not								
	3)The tabletop EUT was place reference plane. And for floorizontal ground reference	or-standing arrange		-							
	4) The test was performed with shall be 0.4 m from the reference plane was bonde was placed 0.8 m from the reference plane for LISNs	a vertical ground revertical ground refet to the horizontal groundary of the unit mounted on top of	erence plane. The ve pround reference plane under test and bonde the ground reference	ertical ground e. The LISN 1 ed to a ground e plane. This							
X.		·		distance was between the closest points of the LISN 1 and the EUT. All other units							
	of the EUT and associated equipment was at least 0.8 m from the LISN 2.										
")	11 7 7 7										
)	5) In order to find the maximum the interface cables must measurement.	emission, the relative	ve positions of equipm	nent and all of							
Limit:	5) In order to find the maximum the interface cables must	emission, the relative	ve positions of equipm	nent and all of							
Limit:	5) In order to find the maximum the interface cables must measurement.	emission, the relation changed accord	ve positions of equipming to ANSI C63.10	nent and all of							
Limit:	5) In order to find the maximum the interface cables must	emission, the relation changed accord	ve positions of equipm	nent and all of							
Limit:	5) In order to find the maximum the interface cables must measurement.	emission, the relative changed accord	ve positions of equipming to ANSI C63.10 dBµV)	nent and all of							
Limit:	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz)	emission, the relation changed accord Limit (Quasi-peak	ve positions of equipming to ANSI C63.10 dBμV) Average	nent and all of							
Limit:	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5	emission, the relation changed accord Limit (Quasi-peak 66 to 56*	dBμV) Average 56 to 46*	nent and all of							
Limit:	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w to 0.50 MHz.	emission, the relation changed accord Limit (Quasi-peak 66 to 56* 56 60 Ith the logarithm of the content	dBµV) Average 56 to 46* 46 50 he frequency in the ra	nent and all of on conducted							
Limit:	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w	emission, the relation changed accord Limit (Quasi-peak 66 to 56* 56 60 Ith the logarithm of the content	dBµV) Average 56 to 46* 46 50 he frequency in the ra	nent and all of on conducted							
Measurement Data	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is application.	emission, the relative changed accord Limit (Quasi-peak 66 to 56* 56 60 ith the logarithm of the content	dBµV) Average 56 to 46* 46 50 he frequency in the rain frequency	nent and all of on conducted							
Measurement Data	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is application.	emission, the relative changed accord Limit (Quasi-peak 66 to 56* 56 60 ith the logarithm of the content	dBµV) Average 56 to 46* 46 50 he frequency in the rain frequency	nent and all of on conducted							
Measurement Data An initial pre-scan w	5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is application.	emission, the relation changed accord Limit (Quasi-peak 66 to 56* 56 60 ith the logarithm of the changed accord ac	dBµV) Average 56 to 46* 46 50 he frequency in the rail frequency	nent and all of on conducted							



Page 38 of 62

Live line: 90.0 dBpW

No.	Freq.		ding_Le dBpW)	evel	Correct Factor	N	leasuren (dBpW)		Lin (dBp			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1779	28.12	25,31	22,80	9.76	37.88	35.07	32.56	64.58	54.58	-29.51	-22.02	Ρ	
2	0.5260	22.17	18.74	9.86	9.57	31.74	28.31	19,43	56.00	46.00	-27.69	-26.57	Р	
3	1.0620	17.91	13.24	6.90	9.51	27.42	22.75	16.41	56.00	46.00	-33.25	- 29.59	Р	
4	2.3660	12.45	9.33	2.36	9.70	22.15	19.03	12.06	56.00	46.00	- 36.97	- 33.94	Р	
5	3,6539	6.59	3.65	-5.00	9.73	16.32	13.38	4.73	56.00	46.00	-42.62	-41.2 7	Р	
6	16.1579	14.49	10,24	4.06	9.35	23.84	19.59	13,41	60.00	50.00	-40.41	-36.59	Р	



Page 39 of 62

Neutral line:

No.	Freq.		ding_Le dBpW)	vel	Correct Factor	M	leasuren (dBpW)		Lin (dBp			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	29.06	24.51	14.97	9.77	38.83	34.28	24.74	64.96	54.96	-30.68	-30.22	Р	
2	0.5220	22.75	19,14	10,82	9.57	32.32	28.71	20,39	56.00	46.00	-27.29	-25.61	Р	
3	0.9700	19.39	15.32	8.22	9.50	28.89	24.82	17.72	56.00	46.00	-31.18	- 28.28	Р	
4	2.4820	10.02	8.51	-0.98	9.72	19.74	18.23	8.74	56.00	46.00	-37.77	-37.26	Р	
5	4.9499	6.23	4.75	-5.96	9.60	15.83	14.35	3.64	56.00	46.00	-41.65	-42.36	Р	
6	15.9859	13.69	10.36	2.83	9.34	23.03	19.70	12,17	60.00	50.00	-40.30	-37.83	Р	

Notes:

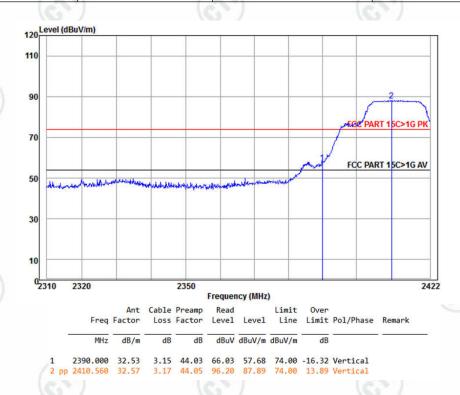
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Page 40 of 62

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW VBW	Remark
	30MHz-1GHz	Quasi-peak 1	20kHz 300kHz	Quasi-peak
	A 5 4 O I I -	Peak	1MHz 3MHz	Peak
	Above 1GHz	Peak	1MHz 10Hz	Average
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the semi-and determine the maximing polarizations of the and d. For each suspected of the antenna was tune was turned from 0 de e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show co bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between abot to fully Anechoic Cha 18GHz the distance is h. Test the EUT in the I i. The radiation measur Transmitting mode, a	on the top of a rotation on the top of a rotation of the highest radial neters away from the top of a variable-heigh avaried from one means are set to make the properties of the field of the highest of the field of the heights from 1 may be a set to heights from 1 may be a set to Peak the field of the restricted from Hold Mode. The end of the restricted from analyzer plot. For the test site, of the field of the set of the field of the restricted from the field of the field of the restricted from the field of the field o	table was rotated 3 ation. Interference-receipht antenna tower. Inter to four meters strength. Both hore we the measurement of the meter to 4 meters as to find the maximal band closest to the sure any emissions of the measurement of the meas	above the ground of the control of t
 _imit:	j. Repeat above proced			
73	Frequency	Limit (dBµV/m		mark
	30MHz-88MHz	40.0		eak Value
	88MHz-216MHz	43.5	-	eak Value
	216MHz-960MHz	46.0	-	eak Value
	960MHz-1GHz	54.0		eak Value
		54.0	Averag	je Value
	Above 1GHz	4.1		10.00

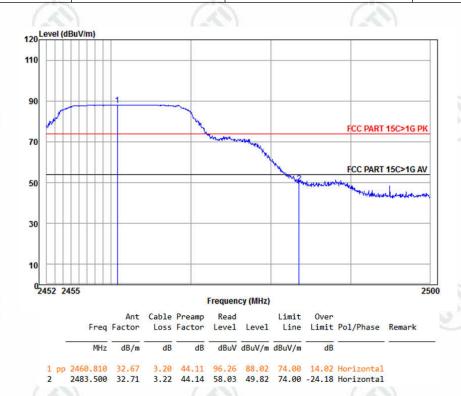



Page 41 of 62

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest Polarization: Vertical Remark: Peak	- /



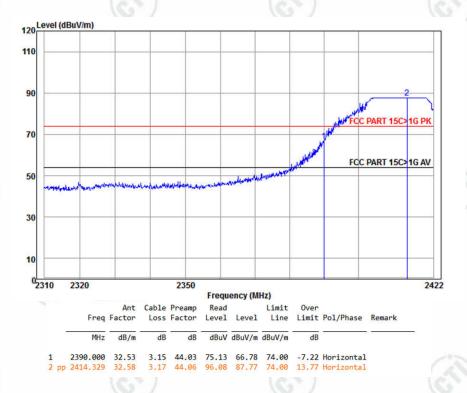
Page 42 of 62	
---------------	--

Worse case mode:	802.11b (11Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average	

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Page 43 of 62

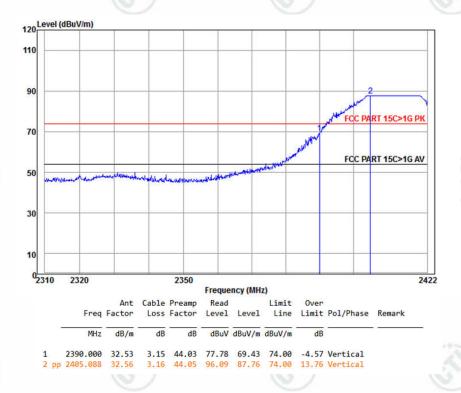
Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

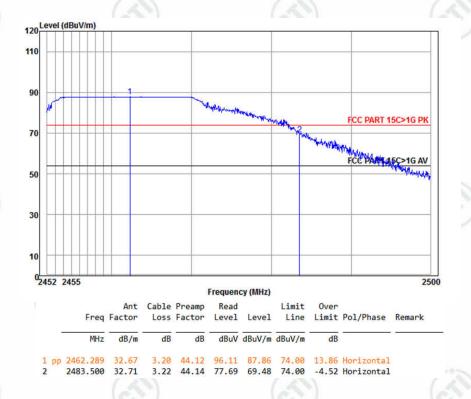


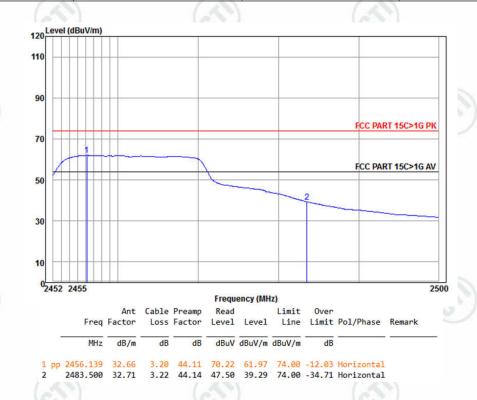
Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode: 802.11g (6Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

I age To or oz	Page	45	of	62
----------------	------	----	----	----

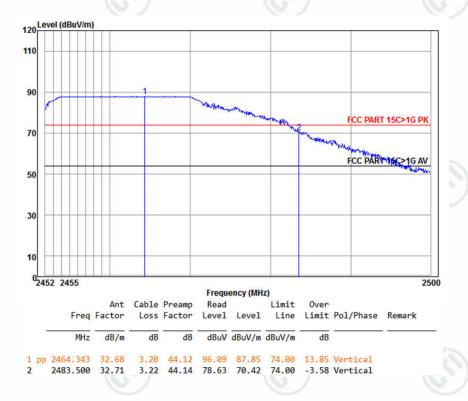
Worse case mode:	802.11g (6Mbps)	802.11g (6Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest Polarization: Vertical Remark: Peak	Test channel: Lowest Polarization: Vertical	ak

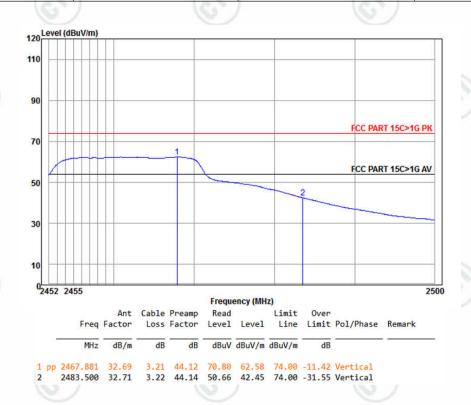

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest Polar	ization: Vertical	Remark: Average



Worse case mode:	802.11g (6Mbps)		
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

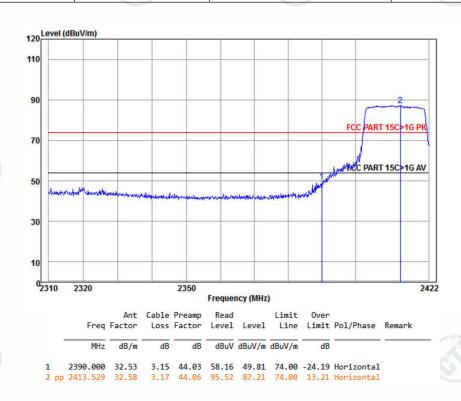
Page 46 of 62

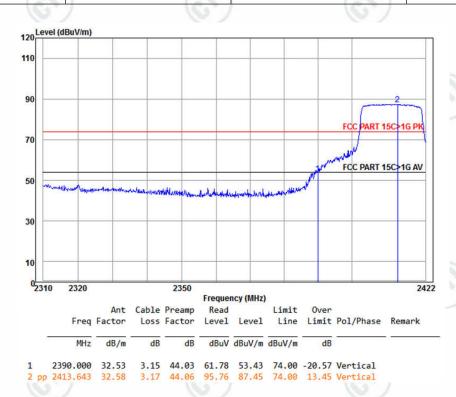

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average



I age TI UIUZ	Page	47	of	62
---------------	------	----	----	----

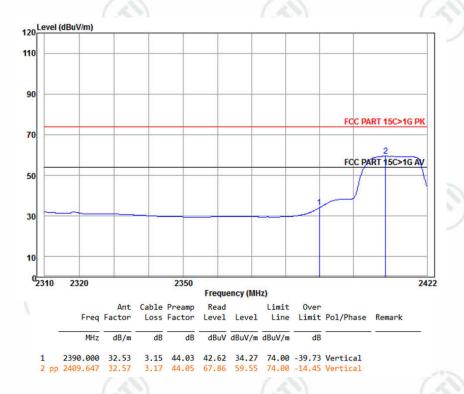
Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

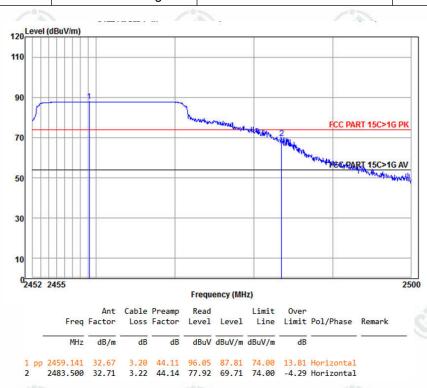

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average



Worse case mode:	802.11n(HT20) (6.5M	802.11n(HT20) (6.5Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

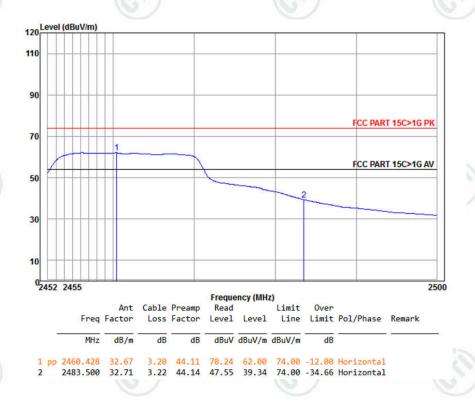
Worse case mode: 802.11n(HT20) (6.5Mbps)

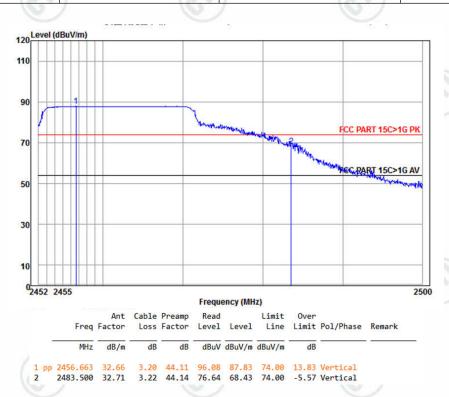

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak



Page 49 of 62

Worse case mode:	802.11n(HT20) (6.5Ml	bps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

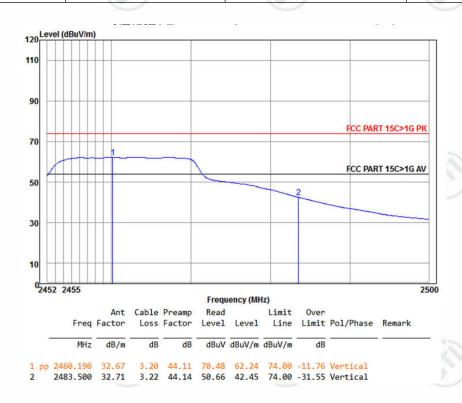

Worse case mode:	802.11n(HT20) (6.5Mb)	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

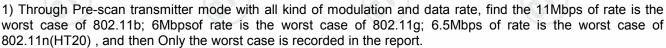

Page	50 of	62
------	-------	----

Worse case mode: 802.11n(HT20) (6.5Mbps)						
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average			

Worse case mode: 802.11n(HT20) (6.5Mbps)

Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: Peak





Page 51 of 62

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 52 of 62

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

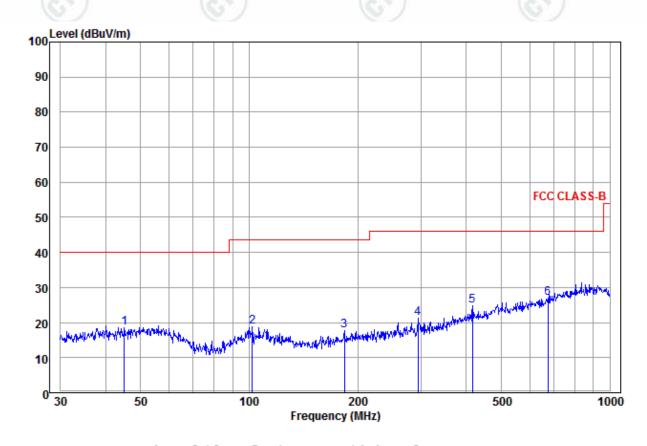
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

-	r	v	٦	1	٠	
- 1	ı	ı	1	ı	t	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	150	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Page 53 of 62

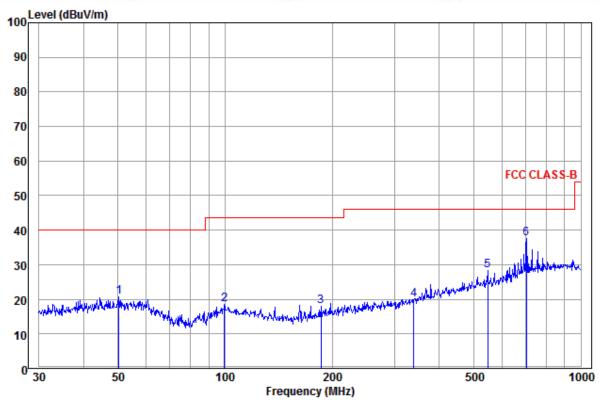
Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)

	Ant	Cable	Read		Limit	0ver		
Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
MHz	dB/m	dB.	dRuV	dBuV/m	dBuV/m	dB		
	GD/ III	45	ubu.	abar, iii	abar,	45		
45.058	14.68	0.08	3.86	18.62	40.00	-21.38	Horizontal	
102.001	13.03	0.59	5.15	18.77	43.50	-24.73	Horizontal	
183.844	11.04	0.96	5.63	17.63	43.50	-25.87	Horizontal	
294.114	13.38	1.10	6.79	21.27	46.00	-24.73	Horizontal	
416.179	16.57	1.37	6.90	24.84	46.00	-21.16	Horizontal	
672.845	20.11	1.92	4.93	26.96	46.00	-19.04	${\it Horizontal}$	
	MHz 45.058 102.001 183.844 294.114 416.179	Freq Factor MHz dB/m 45.058 14.68 102.001 13.03 183.844 11.04 294.114 13.38 416.179 16.57	Freq Factor Loss MHz dB/m dB 45.058 14.68 0.08 102.001 13.03 0.59 183.844 11.04 0.96 294.114 13.38 1.10 416.179 16.57 1.37	Freq Factor Loss Level MHz dB/m dB dBuV 45.058 14.68 0.08 3.86 102.001 13.03 0.59 5.15 183.844 11.04 0.96 5.63 294.114 13.38 1.10 6.79 416.179 16.57 1.37 6.90	MHz dB/m dB dBuV dBuV/m 45.058 14.68 0.08 3.86 18.62 102.001 13.03 0.59 5.15 18.77 183.844 11.04 0.96 5.63 17.63 294.114 13.38 1.10 6.79 21.27 416.179 16.57 1.37 6.90 24.84	Freq Factor Loss Level Level Line MHz dB/m dB dBuV dBuV/m dBuV/m dBuV/m 45.058 14.68 0.08 3.86 18.62 40.00 102.001 13.03 0.59 5.15 18.77 43.50 183.844 11.04 0.96 5.63 17.63 43.50 294.114 13.38 1.10 6.79 21.27 46.00 416.179 16.57 1.37 6.90 24.84 46.00	Freq Factor Loss Level Level Line Limit MHz dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 45.058 14.68 0.08 3.86 18.62 40.00 -21.38 102.001 13.03 0.59 5.15 18.77 43.50 -24.73 183.844 11.04 0.96 5.63 17.63 43.50 -25.87 294.114 13.38 1.10 6.79 21.27 46.00 -24.73 416.179 16.57 1.37 6.90 24.84 46.00 -21.16	Freq Factor Loss Level Level Line Limit Pol/Phase





		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		•			•	•			
1	50.232	15.07	0.11	5.49	20.67	40.00	-19.33	Vertical	
2	99.528	13.11	0.58	4.97	18.66	43.50	-24.84	Vertical	
3	185.788	11.11	0.97	5.89	17.97	43.50	-25.53	Vertical	
4	339.589	14.55	1.27	4.20	20.02	46.00	-25.98	Vertical	
5	547.098	18.59	1.54	8.26	28.39	46.00	-17.61	Vertical	
6 рр	704.226	20.73	2.06	14.85	37.64	46.00	-8.36	Vertical	

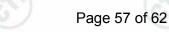
Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1998.475	31.70	2.86	43.50	47.73	38.79	74.00	-35.21	Pass	Horizontal
3216.838	33.41	4.26	44.68	50.84	43.83	74.00	-30.17	Pass	Horizontal
3844.279	32.91	6.12	44.61	51.02	45.44	74.00	-28.56	Pass	Horizontal
4824.000	34.73	6.72	44.60	48.21	45.06	74.00	-28.94	Pass	Horizontal
7236.000	36.42	8.38	44.80	45.35	45.35	74.00	-28.65	Pass	Horizontal
9648.000	37.93	7.63	45.57	46.02	46.01	74.00	-27.99	Pass	Horizontal
2092.175	31.91	2.93	43.63	49.26	40.47	74.00	-33.53	Pass	Vertical
3112.129	33.50	3.91	44.69	51.06	43.78	74.00	-30.22	Pass	Vertical
3776.385	32.96	5.94	44.62	52.08	46.36	74.00	-27.64	Pass	Vertical
4824.000	34.73	6.72	44.60	48.16	45.01	74.00	-28.99	Pass	Vertical
7236.000	36.42	8.38	44.80	50.38	50.38	74.00	-23.62	Pass	Vertical
9648.000	37.93	7.63	45.57	47.38	47.37	74.00	-26.63	Pass	Vertical

	Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1846.834	31.47	2.79	43.64	48.66	39.28	74.00	-34.72	Pass	Horizontal
	3653.463	33.05	5.59	44.63	51.56	45.57	74.00	-28.43	Pass	Horizontal
	4288.958	33.52	6.61	44.60	48.18	43.71	74.00	-30.29	Pass	Horizontal
	4874.000	34.84	6.73	44.60	47.53	44.50	74.00	-29.50	Pass	Horizontal
Ī	7311.000	36.43	8.44	44.86	46.99	47.00	74.00	-27.00	Pass	Horizontal
	9748.000	38.03	7.55	45.55	47.32	47.35	74.00	-26.65	Pass	Horizontal
	2124.374	31.98	2.96	43.68	49.16	40.42	74.00	-33.58	Pass	Vertical
	3653.463	33.05	5.59	44.63	52.92	46.93	74.00	-27.07	Pass	Vertical
	4223.950	33.36	6.59	44.60	49.66	45.01	74.00	-28.99	Pass	Vertical
	4874.000	34.84	6.73	44.60	48.92	45.89	74.00	-28.11	Pass	Vertical
1	7311.000	36.43	8.44	44.86	49.88	49.89	74.00	-24.11	Pass	Vertical
	9748.000	38.03	7.55	45.55	45.49	45.52	74.00	-28.48	Pass	Vertical

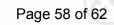
Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2275.515	32.30	3.07	43.88	53.10	44.59	74.00	-29.41	Pass	Horizontal
3690.853	33.02	5.70	44.63	54.85	48.94	74.00	-25.06	Pass	Horizontal
4343.896	33.65	6.62	44.60	49.40	45.07	74.00	-28.93	Pass	Horizontal
4924.000	34.94	6.74	44.60	50.96	48.04	74.00	-25.96	Pass	Horizontal
7386.000	36.44	8.50	44.92	49.70	49.72	74.00	-24.28	Pass	Horizontal
9848.000	38.14	7.47	45.53	45.40	45.48	74.00	-28.52	Pass	Horizontal
2281.315	32.32	3.08	43.89	53.39	44.90	74.00	-29.10	Pass	Vertical
3018.502	33.58	3.59	44.70	54.30	46.77	74.00	-27.23	Pass	Vertical
3700.260	33.02	5.73	44.63	52.70	46.82	74.00	-27.18	Pass	Vertical
4924.000	34.94	6.74	44.60	53.29	50.37	74.00	-23.63	Pass	Vertical
7386.000	36.44	8.50	44.92	49.06	49.08	74.00	-24.92	Pass	Vertical
9848.000	38.14	7.47	45.53	45.36	45.44	74.00	-28.56	Pass	Vertical

Test mode:	est mode: 802.11g(6Mbps)			uency: 24	12MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1791.273	31.38	2.76	43.69	48.52	38.97	74.00	-35.03	Pass	Horizontal	
3200.502	33.42	4.21	44.68	50.05	43.00	74.00	-31.00	Pass	Horizontal	
4223.950	33.36	6.59	44.60	49.37	44.72	74.00	-29.28	Pass	Horizontal	
4824.000	34.73	6.72	44.60	47.69	44.54	74.00	-29.46	Pass	Horizontal	
7236.000	36.42	8.38	44.80	47.29	47.29	74.00	-26.71	Pass	Horizontal	
9648.000	37.93	7.63	45.57	47.31	47.30	74.00	-26.70	Pass	Horizontal	
2050.000	31.82	2.90	43.57	49.35	40.50	74.00	-33.50	Pass	Vertical	
3176.155	33.44	4.13	44.68	49.86	42.75	74.00	-31.25	Pass	Vertical	
3903.444	32.87	6.28	44.61	50.44	44.98	74.00	-29.02	Pass	Vertical	
4824.000	34.73	6.72	44.60	47.28	44.13	74.00	-29.87	Pass	Vertical	
7236.000	36.42	8.38	44.80	46.40	46.40	74.00	-27.60	Pass	Vertical	
9648.000	37.93	7.63	45.57	45.42	45.41	74.00	-28.59	Pass	Vertical	



Test mode:	Test mode: 802.11g(6Mbps)			quency: 24	37MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1795.839	31.39	2.76	43.69	48.73	39.19	74.00	-34.81	Pass	Horizontal	
3192.366	33.43	4.18	44.68	50.93	43.86	74.00	-30.14	Pass	Horizontal	
3863.900	32.90	6.18	44.61	50.22	44.69	74.00	-29.31	Pass	Horizontal	
4874.000	34.84	6.73	44.60	48.06	45.03	74.00	-28.97	Pass	Horizontal	
7311.000	36.43	8.44	44.86	47.32	47.33	74.00	-26.67	Pass	Horizontal	
9748.000	38.03	7.55	45.55	46.66	46.69	74.00	-27.31	Pass	Horizontal	
2081.550	31.89	2.93	43.62	47.46	38.66	74.00	-35.34	Pass	Vertical	
3463.291	33.20	5.03	44.65	48.54	42.12	74.00	-31.88	Pass	Vertical	
4065.707	32.97	6.56	44.60	49.44	44.37	74.00	-29.63	Pass	Vertical	
4874.000	34.84	6.73	44.60	46.68	43.65	74.00	-30.35	Pass	Vertical	
7311.000	36.43	8.44	44.86	46.42	46.43	74.00	-27.57	Pass	Vertical	
9748.000	38.03	7.55	45.55	45.14	45.17	74.00	-28.83	Pass	Vertical	

Test mode:	802.11g(6N	1bps)	Test Frequency: 2462MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
2097.507	31.92	2.94	43.64	49.03	40.25	74.00	-33.75	Pass	Horizontal	
3274.672	33.36	4.45	44.67	49.73	42.87	74.00	-31.13	Pass	Horizontal	
4076.070	32.99	6.56	44.60	48.13	43.08	74.00	-30.92	Pass	Horizontal	
4924.000	34.94	6.74	44.60	48.31	45.39	74.00	-28.61	Pass	Horizontal	
7386.000	36.44	8.50	44.92	46.67	46.69	74.00	-27.31	Pass	Horizontal	
9848.000	38.14	7.47	45.53	47.46	47.54	74.00	-26.46	Pass	Horizontal	
1809.605	31.41	2.77	43.67	47.84	38.35	74.00	-35.65	Pass	Vertical	
2740.198	33.18	3.38	44.43	46.75	38.88	74.00	-35.12	Pass	Vertical	
3359.099	33.29	4.71	44.66	49.33	42.67	74.00	-31.33	Pass	Vertical	
4924.000	34.94	6.74	44.60	47.45	44.53	74.00	-29.47	Pass	Vertical	
7386.000	36.44	8.50	44.92	46.37	46.39	74.00	-27.61	Pass	Vertical	
9848.000	38.14	7.47	45.53	48.20	48.28	74.00	-25.72	Pass	Vertical	



Test mode:	802.11n(HT	T20)(6.5M	lbps)	Test Frequency: 2412MHz Rem				ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1894.450	31.54	2.81	43.59	48.76	39.52	74.	00	-34.48	Pass	Horizontal
3200.502	33.42	4.21	44.68	50.11	43.06	74.	00	-30.94	Pass	Horizontal
4388.352	33.76	6.63	44.60	50.39	46.18	74.	00	-27.82	Pass	Horizontal
4824.000	34.73	6.72	44.60	47.12	43.97	74.	00	-30.03	Pass	Horizontal
7236.000	36.42	8.38	44.80	46.80	46.80	74.00		-27.20	Pass	Horizontal
9648.000	37.93	7.63	45.57	48.06	48.05	74.	00	-25.95	Pass	Horizontal
2076.259	31.88	2.92	43.61	49.39	40.58	74.	00	-33.42	Pass	Vertical
3690.853	33.02	5.70	44.63	50.53	44.62	74.	00	-29.38	Pass	Vertical
4388.352	33.76	6.63	44.60	48.63	44.42	74.	00	-29.58	Pass	Vertical
4824.000	34.73	6.72	44.60	47.10	43.95	74.	00	-30.05	Pass	Vertical
7236.000	36.42	8.38	44.80	47.12	47.12	74.	00	-26.88	Pass	Vertical
9648.000	37.93	7.63	45.57	46.72	46.71	74.	00	-27.29	Pass	Vertical

Test mode:	802.11n(HT	T20)(6.5N	1bps)	Test Frequency: 2437MHz Rema				ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lim (dBµ\	-	Over Limit (dB)	Result	Antenna Polaxis
1948.245	31.62	2.84	43.55	46.78	37.69	74.0	00	-36.31	Pass	Horizontal
3342.042	33.30	4.66	44.66	49.28	42.58	74.0	00	-31.42	Pass	Horizontal
4096.875	33.05	6.56	44.60	49.30	44.31	74.0	00	-29.69	Pass	Horizontal
4874.000	34.84	6.73	44.60	47.16	44.13	74.0	00	-29.87	Pass	Horizontal
7311.000	36.43	8.44	44.86	46.92	46.93	74.0	00	-27.07	Pass	Horizontal
9748.000	38.03	7.55	45.55	46.66	46.69	74.0	00	-27.31	Pass	Horizontal
2055.225	31.83	2.91	43.58	48.14	39.30	74.0	00	-34.70	Pass	Vertical
3570.714	33.12	5.35	44.64	48.24	42.07	74.0	00	-31.93	Pass	Vertical
4117.785	33.10	6.57	44.60	47.86	42.93	74.0	00	-31.07	Pass	Vertical
4874.000	34.84	6.73	44.60	49.31	46.28	74.0	00	-27.72	Pass	Vertical
7311.000	36.43	8.44	44.86	48.33	48.34	74.0	00	-25.66	Pass	Vertical
9748.000	38.03	7.55	45.55	47.46	47.49	74.0	00	-26.51	Pass	Vertical

Page 59 of 62

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2462MHz Remark:						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1755.164	31.32	2.74	43.73	47.19	37.52	74.0	00	-36.48	Pass	Horizontal
3200.502	33.42	4.21	44.68	50.39	43.34	74.0	00	-30.66	Pass	Horizontal
3815.033	32.93	6.04	44.62	50.49	44.84	74.00		-29.16	Pass	Horizontal
4924.000	34.94	6.74	44.60	48.42	45.50	74.0	00	-28.50	Pass	Horizontal
7386.000	36.44	8.50	44.92	47.65	47.67	74.0	00	-26.33	Pass	Horizontal
9848.000	38.14	7.47	45.53	45.74	45.82	74.0	00	-28.18	Pass	Horizontal
1791.273	31.38	2.76	43.69	48.25	38.70	74.0	00	-35.30	Pass	Vertical
3143.979	33.47	4.02	44.68	49.18	41.99	74.0	00	-32.01	Pass	Vertical
3943.392	32.84	6.39	44.60	47.87	42.50	74.0	00	-31.50	Pass	Vertical
4924.000	34.94	6.74	44.60	47.75	44.83	74.00		-29.17	Pass	Vertical
7386.000	36.44	8.50	44.92	47.77	47.79	74.0	00	-26.21	Pass	Vertical
9848.000	38.14	7.47	45.53	46.93	47.01	74.0	00	-26.99	Pass	Vertical

Remark

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20) and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

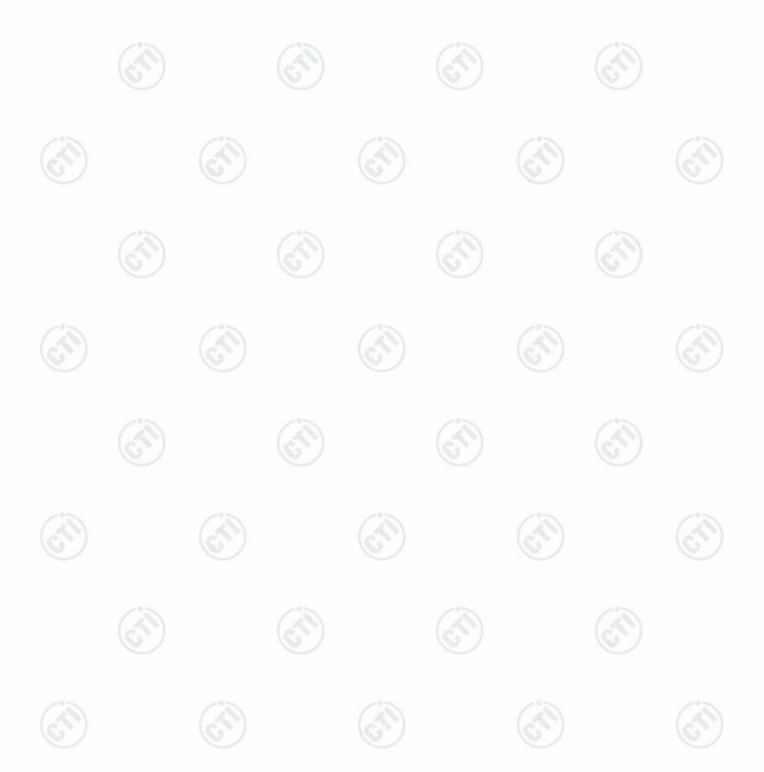
Page 60 of 62

PHOTOGRAPHS OF TEST SETUP

Test mode No.: WPC23

Radiated emission Test Setup-1 (9kHz~30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)


Page 62 of 62

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00095402 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

