

Page 1 of 35

TEST REPORT

2 Version

2	Version No.		Date		 Descriptio	n	
	00	Ju	un. 21, 2017		Original		
Ì				(JA)			(S)

3 Test Summary

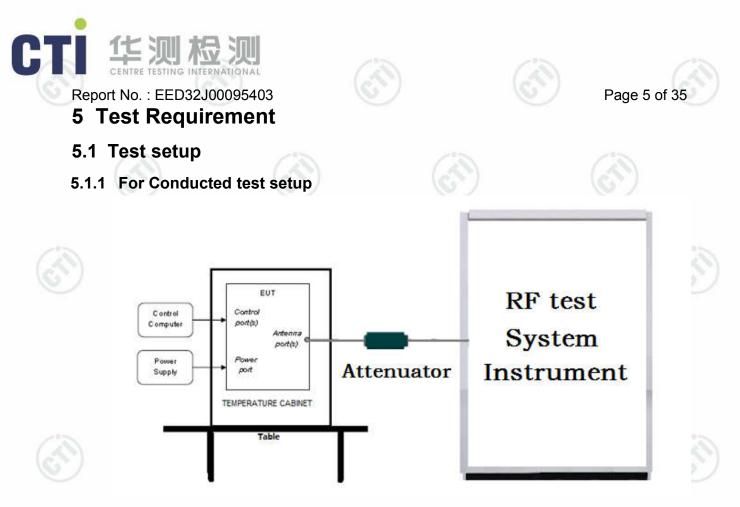
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

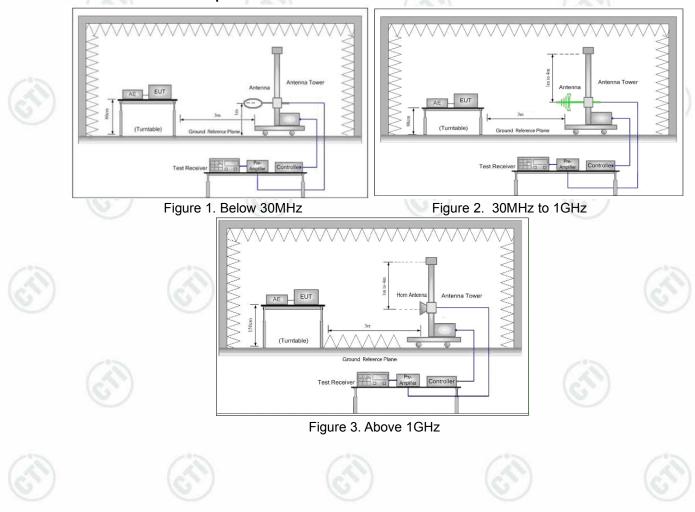
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

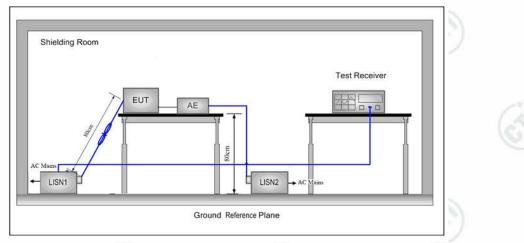
The tested sample and the sample information are provided by the client.

4 Content



1 COVER PAGE				
2 VERSION				2
3 TEST SUMMARY				
4 CONTENT		••••••		4
5 TEST REQUIREMENT				5
5.1 TEST SETUP		(5
	setup			
	ions test setup			
	ssions test setup			
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION				
6 GENERAL INFORMATION				
6.1 CLIENT INFORMATION				
6.2 GENERAL DESCRIPTION O				
6.3 PRODUCT SPECIFICATION				
6.4 DESCRIPTION OF SUPPOR				
6.5 TEST LOCATION 6.6 TEST FACILITY				
6.7 DEVIATION FROM STANDA				
6.8 ABNORMALITIES FROM ST				
6.9 OTHER INFORMATION REC				
6.10 MEASUREMENT UNCERT				
7 EQUIPMENT LIST			<u>()</u>	10
8 RADIO TECHNICAL REQUI	REMENTS SPECIFICATIO	DN		12
Appendix A): 6dB Occupi	ed Bandwidth			13
	Peak Output Power			
	for RF Conducted Emissio			
	ted Spurious Emissions			
	ctral Density			
	quirement			
	ine Conducted Emission			
	oands around fundamental urious Emissions			
PHOTOGRAPHS OF TEST SE	ETUP			33
PHOTOGRAPHS OF EUT CO	NSTRUCTIONAL DETAIL	S	••••••	




5.1.2 For Radiated Emissions test setup Radiated Emissions setup:

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32J00095403 5.1.3 For Conducted Emissions test setup Conducted Emissions setup

Page 6 of 35

5.2 Test Environment

Operating Environment:			
Temperature:	21°C	(25)	6
Humidity:	54% RH	U	e
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Ту		RF Channel	
Test Mode	Тх	Low(L)	Middle(M)	High(H)
		Channel 1	Channel 20	Channel 40
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT at Transmit mod	le.		\sim

Report No. : EED32J00095403 **General Information** 6

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong
1. 50.21	

6.2 General Description of EUT

Product Name:	WisePad 2
Mode No.(EUT):	WPC23
Trade Mark:	BBPOS
EUT Supports Radios application:	Bluetooth V4.0 BLE
Power Supply:	DC 3.7V by Battery DC 5V by USB port
Battery	Li-polymer 3.7V, 750mAh
Sample Received Date:	May 18, 2017
Sample tested Date:	May 18, 2017 to Jun. 21, 2017

6.3 Product Specification subjective to this standard

2402MHz~2480MHz				
4.0				
GFSK		12		10
40				(2)
Portable		U		V
N/A				
BBBPOS_Transaction	-		245	
Monopole			(A)	
1dBi	(e)		()	
DC 3.7V by Battery				
DC 5V by USB port				
	4.0GFSK40PortableN/ABBBPOS_TransactionMonopole1dBiDC 3.7V by Battery	4.0 GFSK 40 Portable N/A BBBPOS_Transaction Monopole 1dBi DC 3.7V by Battery	4.0 GFSK 40 Portable N/A BBBPOS_Transaction Monopole 1dBi DC 3.7V by Battery	4.0 GFSK 40 Portable N/A BBBPOS_Transaction Monopole 1dBi DC 3.7V by Battery

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequenc
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MH
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MH
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MH
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MH
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MH
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MH
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MH:

Rej	oort No. : I	EED32J000954	403	6		6	Pa	ge 8 of 35
	8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
	9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
	10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

-	Description	Manufacturer	Model No.	Certification	Supplied by
6	laptop	LENOVO	E46L	FCC DOC	СТІ
-	Keyboard	IBM	89P8300	FCC DOC	СТІ
	Mouse	L.Selectron	OP-200	FCC DOC	СТІ

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:


CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

S

Page 9 of 35

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

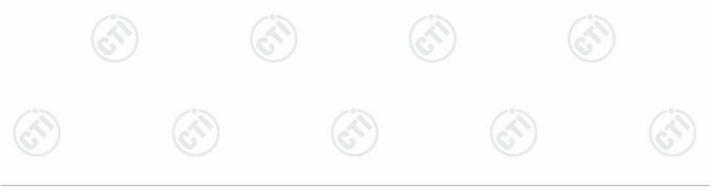
	•	. ,
No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Redicted Spurious omission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018	
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-13-2018	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018	
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	C	01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2018	
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2018	
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018	
PC-1	Lenovo	R4960d	45	04-01-2016	03-31-2018	
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018	
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2018	

Conducted disturbance Test

Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018
LISN	R&S	ENV216	100098	06-16-2016	06-12-2018
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-12-2018
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018
Current Probe	R&S	EZ17	100106	06-16-2016	06-12-2018
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	02-22-2018



Page 11 of 35

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-12-2018
Receiver	R&S	ESCI	100435	06-16-2016	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112	_	01-12-2016	01-11-2018
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	~	01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(\mathcal{S})	01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Page 12 of 35

Test Results List:

est Results List.	10-			
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2) ANSI C63.10/KDB 558074		6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3) ANSI C63.10/KDB 558074		Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d) ANSI C63.10/KDB 55807		RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207 ANSI C63.10		AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209 ANSI C63.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 13 of 35

Appendix A): 6dB Occupied Bandwidth

Test Res	sult	(in the second s	13	13	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7123	1.0657	PASS	
BLE	МСН	0.7127	1.0637	PASS	Peak detector
BLE	НСН	0.7116	1.0649	PASS	
Test Gra	phs				

Hotline: 400-6788-333 ww

www.cti-cert.com E-mail: info@cti-cert.com

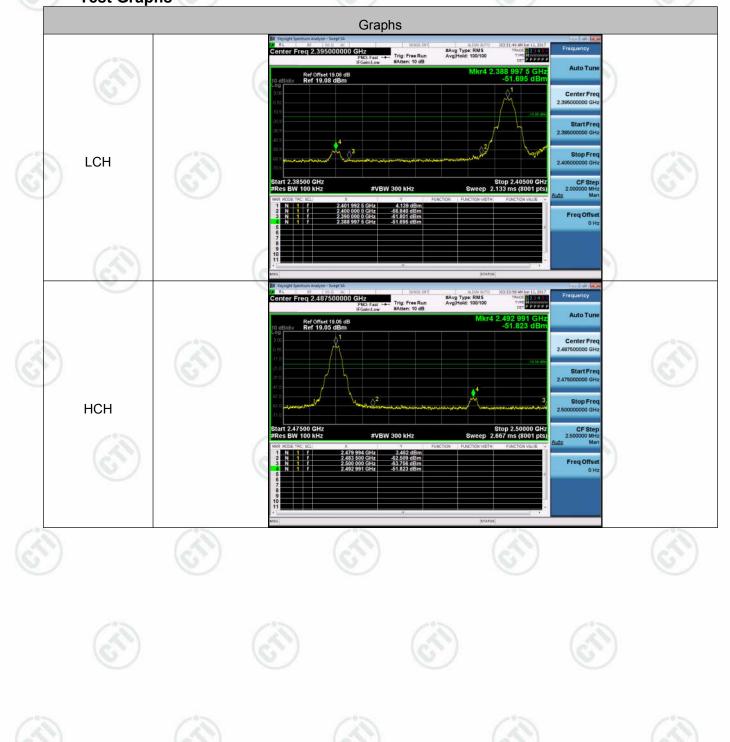


Appendix B): Conducted Peak Output Power

Page 14 of 35

Test Result

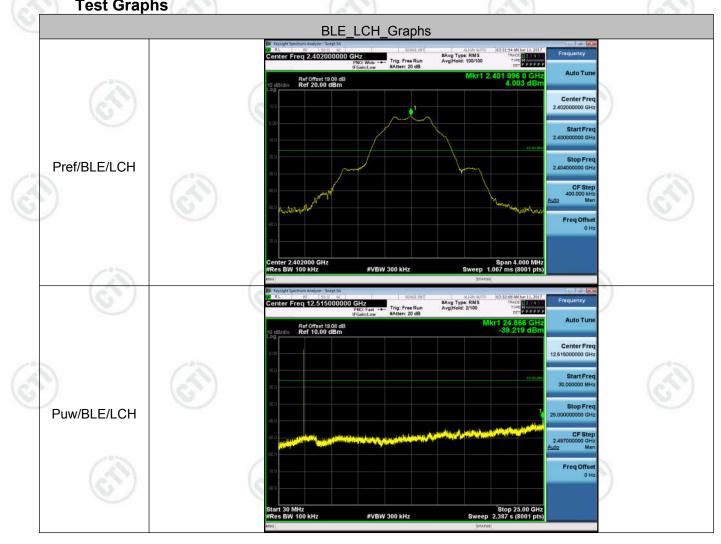
TC3t RC3un		215. 21	
Mode Channel		Channel Conduct Peak Power[dBm]	
BLE	LCH	4.785	PASS
BLE	МСН	4.091	PASS
BLE	НСН	4.133	PASS
Test Granh			



Appendix C): Band-edge for RF Conducted Emissions

-	
Result	Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	4.139	-51.695	-15.86	PASS
BLE	нсн	3.462	-51.823	-16.54	PASS
Test	Graphs 🔍				



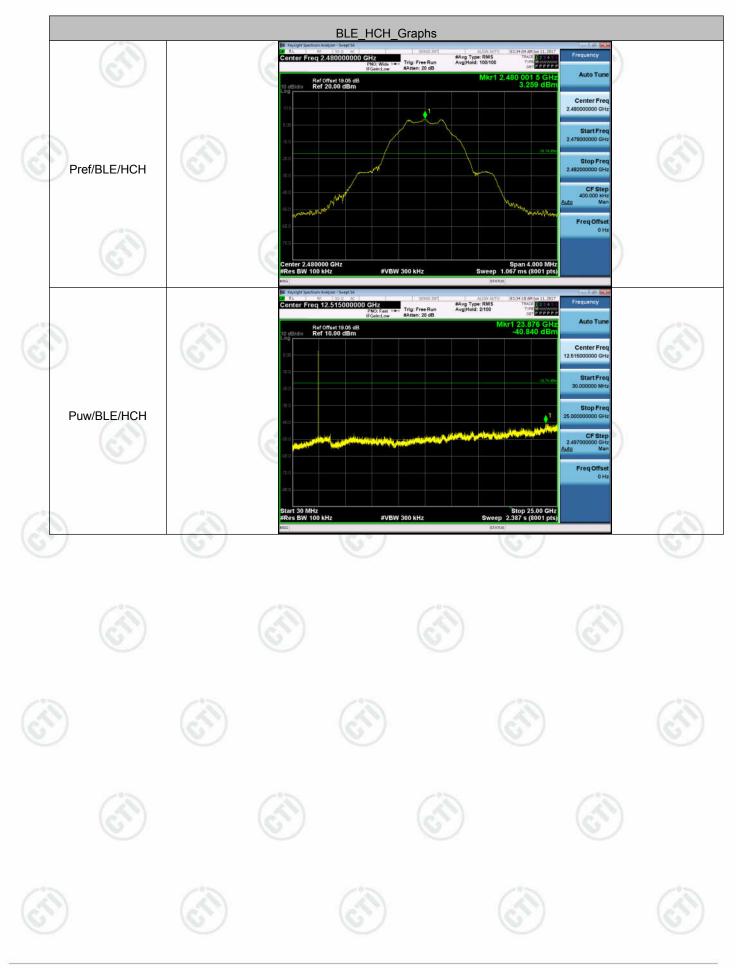
Appendix D): RF Conducted Spurious Emissions

Page 16 of 35

Result Table

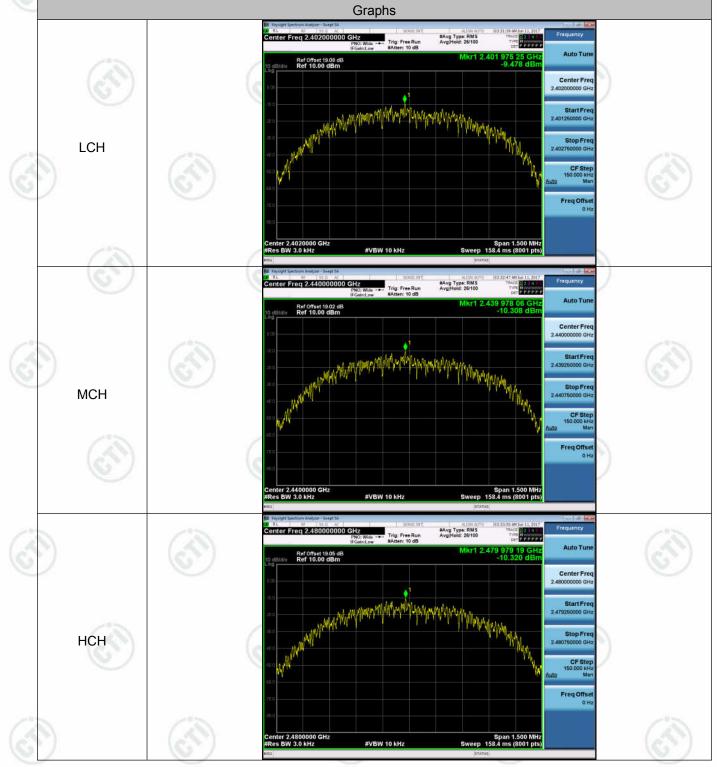
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	4.003	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	3.253	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	3.259	<limit< td=""><td>PASS</td></limit<>	PASS

Page 17 of 35


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 18 of 35

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

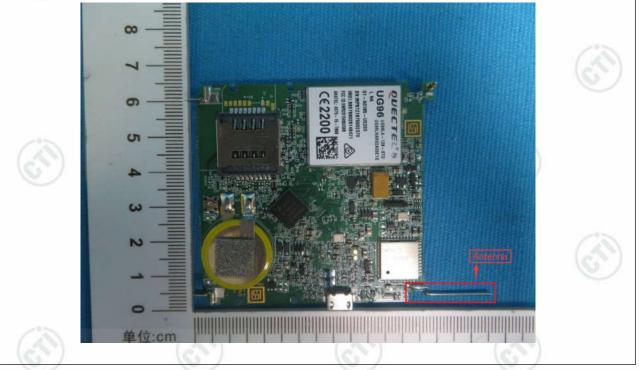


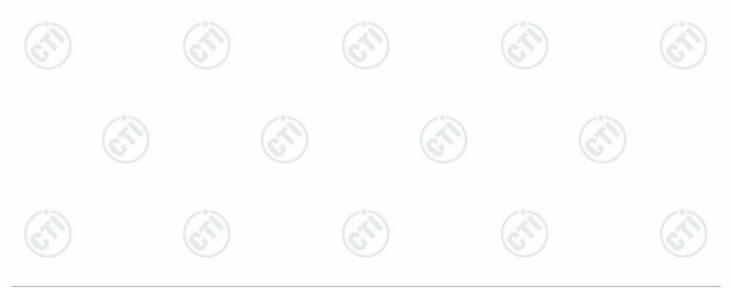
Appendix E): Power Spectral Density

Result T	able
----------	------

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict	
BLE	LCH 🔍	-9.478	8	PASS	
BLE	MCH	-10.308	8	PASS	
BLE	НСН	-10.320	8	PASS	
Test Granh					

Appendix F): Antenna Requirement


15.203 requirement:

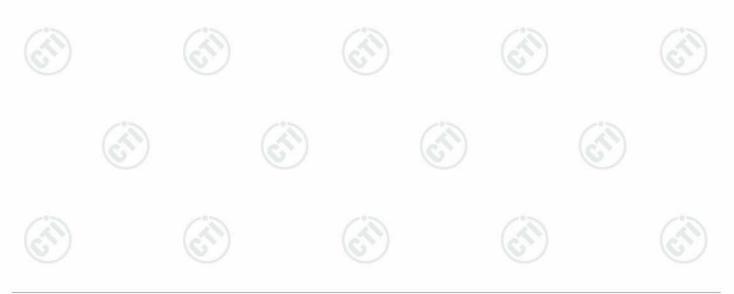

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Page 21 of 35

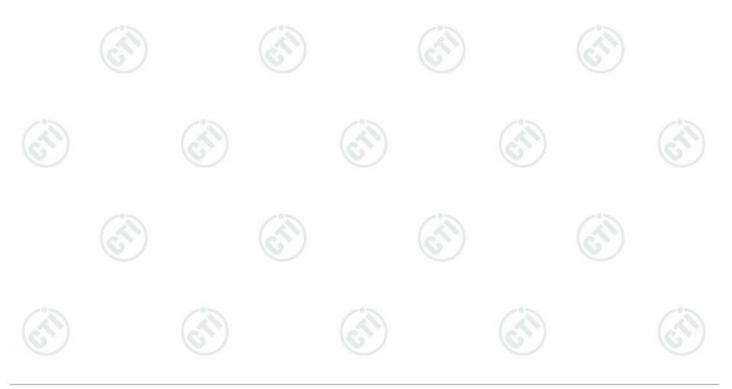

Report No. : EED32J00095403

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	30MHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connec multiple power cables to a single LISN provided the rating of the LISN was not exceeded.								
	 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 								
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.								
Limit:				_					
(3)		Limit (dBμV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46	100					
	5-30	60	50						
	 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency 								

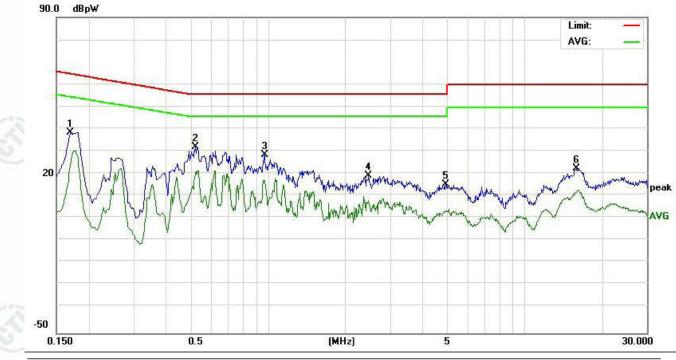
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Live line: 90.0 dBpW Limit: AVG: 6 20 MAMMAN weeker a peak AVG -50 0.150 0.5 (MHz) 5 30.000

No.	Freq.	Reading_Level (dBpW)									rgin dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	10.21	8.05	-4.66	9.78	19.99	17.83	5.12	65.15	55.15	-47.32	-50.03	Ρ	
2	0.2700	19.04	15.36	10.55	9.64	28.68	25.00	20.19	61.12	51.12	-36.12	-30.93	Ρ	
3	0.5260	22.41	18.41	9.19	9.57	31.98	27.98	18.76	56.00	46.00	-28.02	-27.24	Р	
4	0.9778	17.68	13.67	5.13	9.50	27.18	23.17	14.63	56.00	46.00	-32.83	-31.37	Р	
5	2.4739	13.84	10.77	2.10	9.72	23.56	20.49	11.82	56.00	46.00	-35.51	-34.18	Р	
6	16.3616	13.29	9.38	3.07	9.35	22.64	18.73	12,42	60.00	50.00	-41.27	-37.58	Р	



S

Neutral line:

No.	Freq.		Reading_Level (dBpW)		el Correct Measurement Limit Factor (dBpW) (dBpW)							rgin JB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	29.06	24.51	14.97	9.77	38.83	34.28	24.74	64.96	54.96	-30.68	-30.22	Ρ	
2	0.5220	22.75	19.14	10.82	9.57	32.32	28.71	20.39	56.00	46.00	-27.29	-25.61	Р	
3	0.9700	19.39	15.32	8.22	9.50	28.89	24.82	17.72	56.00	46.00	-31.18	-28.28	Ρ	
4	2.4820	10.02	8.51	-0.98	9.72	19.74	18.23	8.74	56.00	46.00	-37.77	-37.26	Ρ	
5	4.9499	6.23	4.75	-5.96	9.60	15.83	14.35	3.64	56.00	46.00	-41.65	-42.36	Ρ	
6	15.9859	13.69	10.36	2.83	9.34	23.03	19.70	12,17	60.00	50.00	-40.30	-37.83	Ρ	

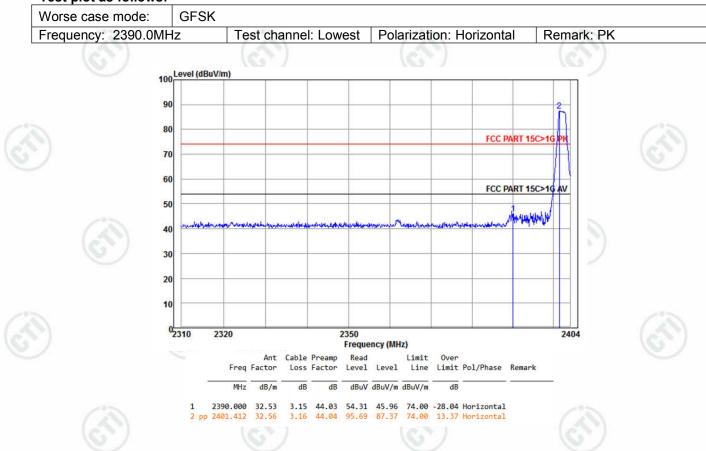
Notes:

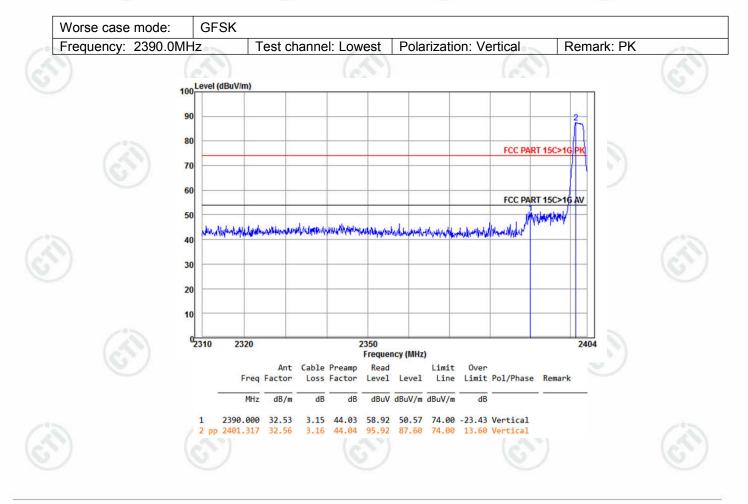
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the

above.

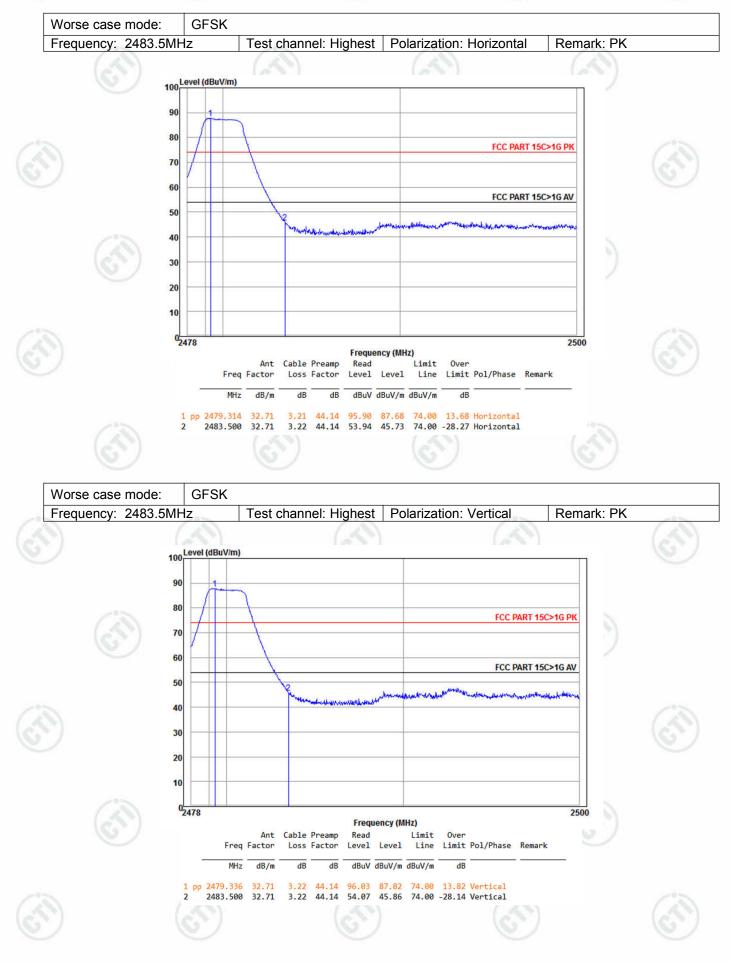
Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(Gr)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the fixed termine the maxim polarizations of the attraction of the antenna was turned from 0 determine threat the antenna was turned from 0 determine the maxim f. Place a marker at the frequency to show corbands. Save the spect for lowest and highes 	lure as below: on the top of a ro echoic camber. T n of the highest ra neters away from top of a variable-l s varied from one um value of the fintenna are set to emission, the EUT ed to heights from grees to 360 deg tem was set to Per num Hold Mode. e end of the restrice mpliance. Also me trum analyzer plot t channel	btating table he table wa adiation. the interfer meter to for eld strengt make the r Γ was arrar 1 meter to rees to find eak Detect	e 0.8 meter as rotated 3 ence-recenna tower. our meters h. Both home neasurement aged to its 4 meters the maxin Function a closest to the closest to the total of total of the total of total of the total of total of the total of tota	rs above the g 360 degrees to iving antenna, above the gro rizontal and ve ent. worst case and and the rotatal num reading. and Specified he transmit s in the restrict	whice whice
Limit:	Above 1GHz test proceed g. Different between about to fully Anechoic Cha 18GHz the distance is h Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proceed Frequency	ove is the test site mber change forr s 1 meter and tab lowest channel , ements are perfo nd found the X ax	n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	meter to 1 ter). t channel Y, Z axis p ing which i easured wa	.5 meter(Abov positioning for it is worse case	ve
		· ·	• /			
	30MHz-88MHz	40.			eak Value	
0	88MHz-216MHz	43.	/	eak Value		
	216MHz-960MHz	46.			eak Value	
	960MHz-1GHz	54.0		· · ·	eak Value	
	Above 1GHz	54.0			ge Value	
		74.	0	Peak	Value	

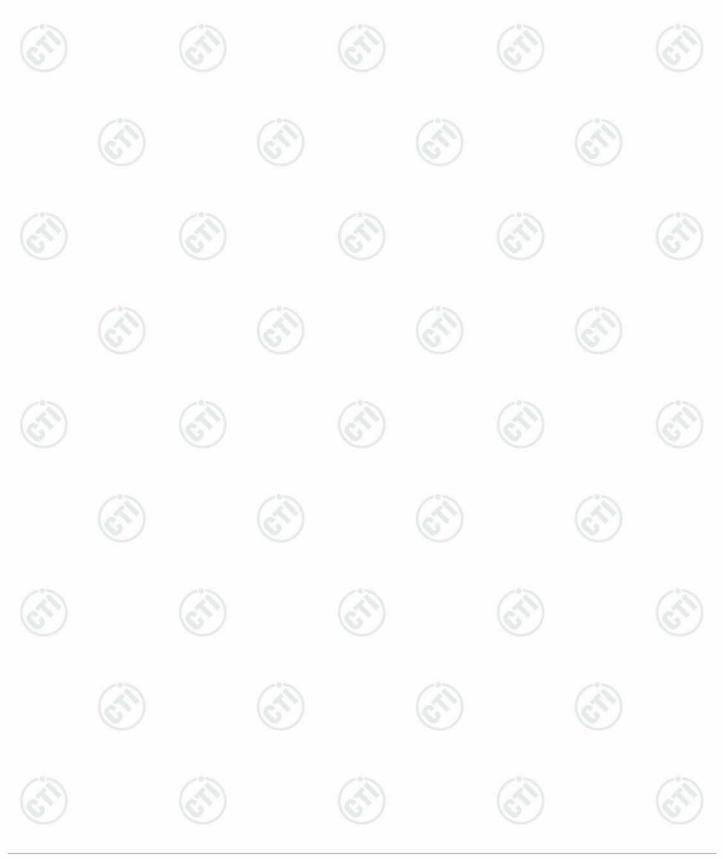




Test plot as follows:



Ì



Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
(25°)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
6	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	6	10	57		61

Test Procedure:

Limit:

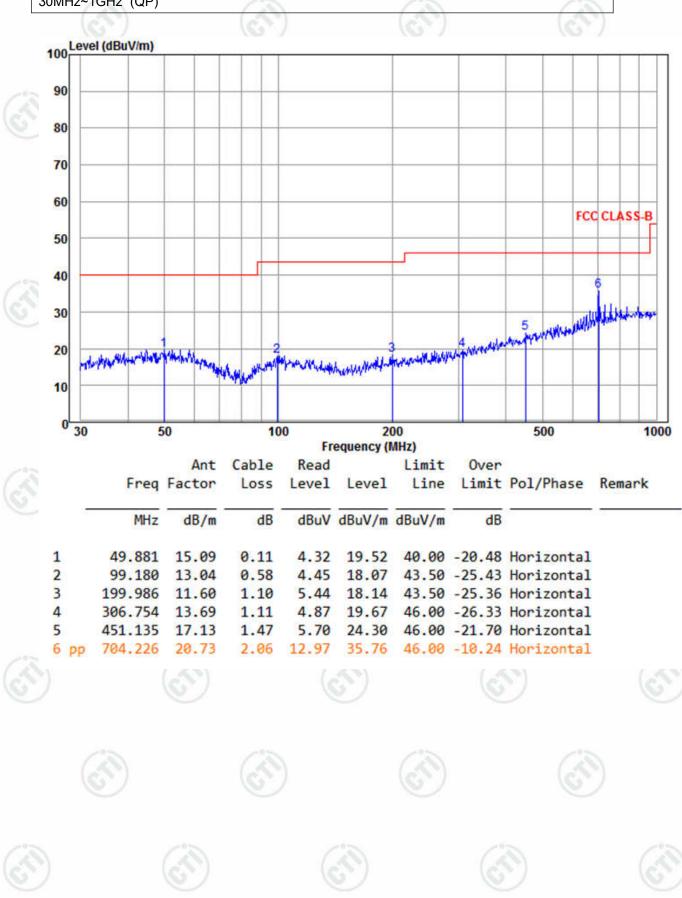
Below 1GHz test procedure as below:

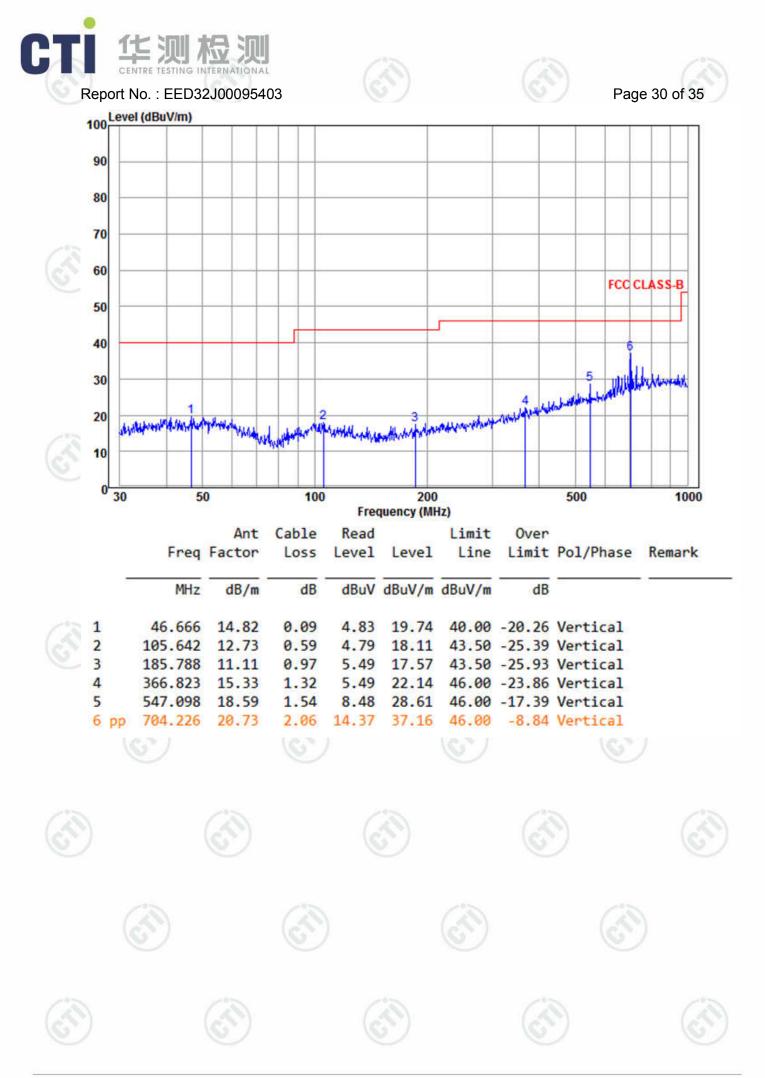
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	$\underline{\sim}$	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	20-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


ote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No. : EED32J00095403 **Radiated Spurious Emissions test Data: Radiated Emission below 1GHz**

30MHz~1GHz (QP)

Page 31 of 35

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
2086.856	31.90	2.93	43.63	48.50	39.70	74.00	-34.30	Pass	Horizontal	
3200.502	33.42	4.21	44.68	55.29	48.24	74.00	-25.76	Pass	Horizontal	
3766.785	32.97	5.91	44.62	51.34	45.60	74.00	-28.40	Pass	Horizontal	
4804.000	34.69	6.72	44.60	48.35	45.16	74.00	-28.84	Pass	Horizontal	
7206.000	36.42	8.35	44.77	46.81	46.81	74.00	-27.19	Pass	Horizontal	
9608.000	37.88	7.67	45.58	46.55	46.52	74.00	-27.48	Pass	Horizontal	
1581.218	31.02	2.65	43.91	49.30	39.06	74.00	-34.94	Pass	Vertical	
2013.795	31.73	2.87	43.52	49.73	40.81	74.00	-33.19	Pass	Vertical	
2854.107	33.37	3.45	44.55	48.78	41.05	74.00	-32.95	Pass	Vertical	
4804.000	34.69	6.72	44.60	47.66	44.47	74.00	-29.53	Pass	Vertical	
7206.000	36.42	8.35	44.77	47.15	47.15	74.00	-26.85	Pass	Vertical	
9608.000	37.88	7.67	45.58	44.62	44.59	74.00	-29.41	Pass	Vertical	

Worse case	mode:	GFSK		Test cha	nnel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2118.973	31.97	2.96	43.67	49.07	40.33	74.00	-33.67	Pass	Horizontal
3249.760	33.38	4.37	44.67	54.78	47.86	74.00	-26.14	Pass	Horizontal
3873.749	32.89	6.20	44.61	49.91	44.39	74.00	-29.61	Pass	Horizontal
4880.000	34.85	6.74	44.60	47.60	44.59	74.00	-29.41	Pass	Horizontal
7320.000	36.43	8.45	44.87	48.51	48.52	74.00	-25.48	Pass	Horizontal
9760.000	38.05	7.54	45.55	47.17	47.21	74.00	-26.79	Pass	Horizontal
1529.749	30.93	2.62	43.96	49.04	38.63	74.00	-35.37	Pass	Vertical
2060.463	31.84	2.91	43.59	49.07	40.23	74.00	-33.77	Pass	Vertical
3249.760	33.38	4.37	44.67	53.92	47.00	74.00	-27.00	Pass	Vertical
4880.000	34.85	6.74	44.60	53.65	50.64	74.00	-23.36	Pass	Vertical
7320.000	36.43	8.45	44.87	48.90	48.91	74.00	-25.09	Pass	Vertical
9760.000	38.05	7.54	45.55	46.85	46.89	74.00	-27.11	Pass	Vertical
1		07			/	0	1.		67

Page 32 of 35

Worse case	mode:	GFSK		Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2113.586	31.96	2.95	43.66	49.68	40.93	74.00	-33.07	Pass	Horizontal
3308.185	33.33	4.55	44.67	52.68	45.89	74.00	-28.11	Pass	Horizontal
4055.371	32.94	6.55	44.60	49.90	44.79	74.00	-29.21	Pass	Horizontal
4960.000	35.02	6.75	44.60	47.73	44.90	74.00	-29.10	Pass	Horizontal
7440.000	36.45	8.55	44.97	46.15	46.18	74.00	-27.82	Pass	Horizontal
9920.000	38.22	7.41	45.52	44.60	44.71	74.00	-29.29	Pass	Horizontal
1617.862	31.09	2.67	43.87	48.97	38.86	74.00	-35.14	Pass	Vertical
2097.507	31.92	2.94	43.64	49.32	40.54	74.00	-33.46	Pass	Vertical
3308.185	33.33	4.55	44.67	53.00	46.21	74.00	-27.79	Pass	Vertical
4960.000	35.02	6.75	44.60	53.79	50.96	74.00	-23.04	Pass	Vertical
7440.000	36.45	8.55	44.97	48.45	48.48	74.00	-25.52	Pass	Vertical
9920.000	38.22	7.41	45.52	46.61	46.72	74.00	-27.28	Pass	Vertical

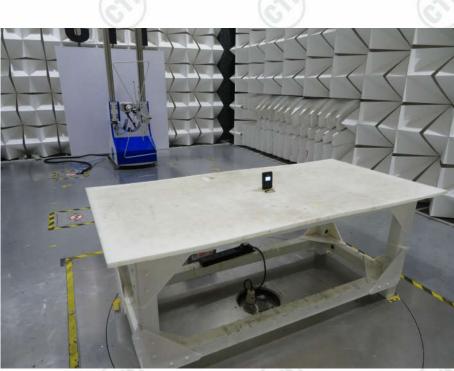
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor


Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

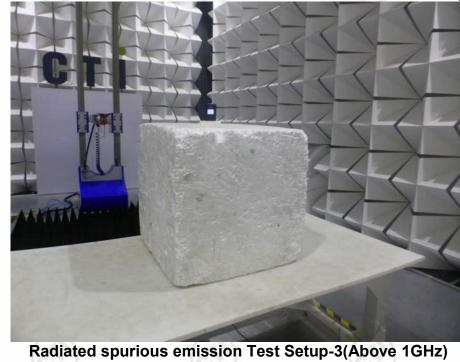
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



PHOTOGRAPHS OF TEST SETUP

Test mode No.: WPC23

Radiated emission Test Setup-1 (9kHz~30MHz)



Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 34 of 35

Conducted Emissions Test Setup

Page 35 of 35

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00095402 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

