

EST REPORT

Product Trade mark Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

- Chipper BT :
- **BBPOS**
- : Chipper BT
- : N/A
- EED32I00206701
- : 2AB7X-CHIPPERBT
- Aug. 29, 2016
- : 47 CFR Part 15 Subpart C (2015)
- Prepared for:

: PASS

BBPOS International Limited Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom-Tom chen (Test Project)

Kevin yang (Reviewer)

Aug. 29, 2016

Compiled by:

Approved by:

Kevin lan(Project Engineer)

Shlek.

Sheek Luo (Lab supervisor)

Check No.: 2392182047

2 Version

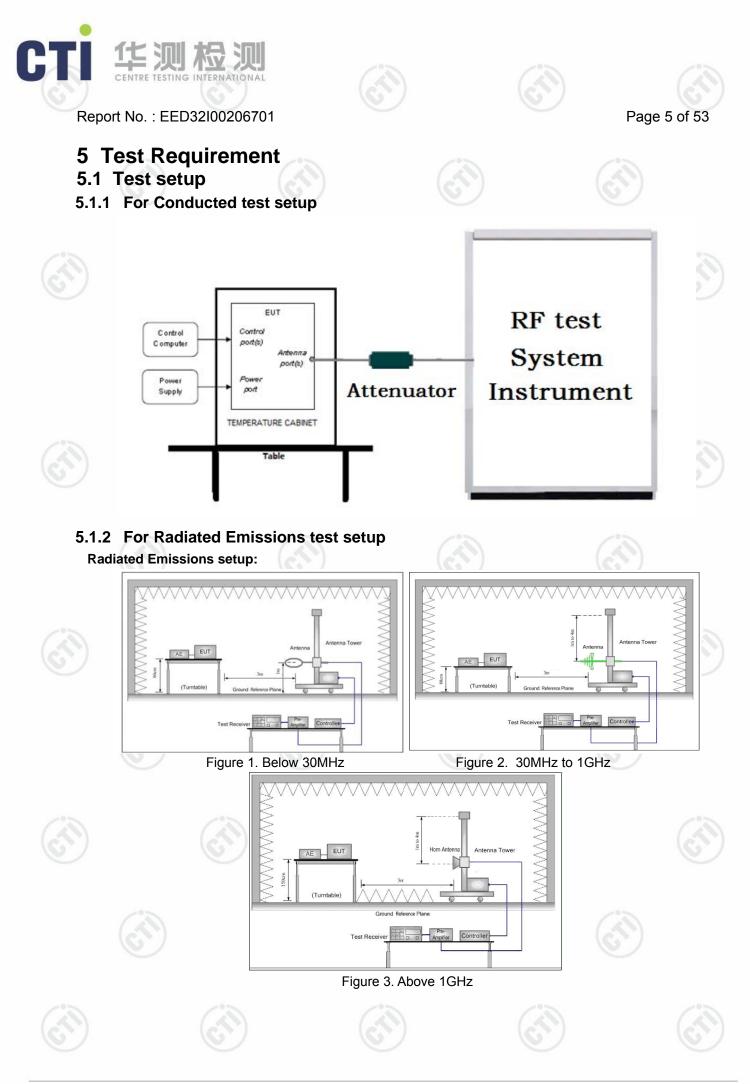
Page 2 of 53

Version No.	Date	Description)
00	Aug. 29, 2016	Original	
	S) (IS)		

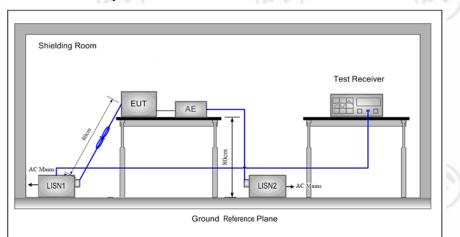
3 Test Summarv

iest Summary			(°>>		
Test Item	Test Requirement	Test method	Result		
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS		
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS		
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS		
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS		
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS		
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS		
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS		
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS		
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS		

Remark:


Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

4 Content			
1 COVER PAGE			1
2 VERSION		<u> </u>	2
3 TEST SUMMARY			3
4 CONTENT			
5 TEST REQUIREMENT			5
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 			5
6 GENERAL INFORMATION			7
 6.1 CLIENT INFORMATION	NDARD		
7 EQUIPMENT LIST		••••••	11
8 RADIO TECHNICAL REQUIREMENTS SPECIFICA			
Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emis Appendix G): RF Conducted Spurious Emission Appendix H): Pseudorandom Frequency Hopping Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundament	sions s g Sequence n tal frequency (Radiated)		
Appendix L): Radiated Spurious Emissions			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	AILS	•••••••••••••••••	



5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:	e e	S	C
Temperature:	22°C		
Humidity:	54% RH	11.24 TBP	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

	Test Mode		Tv	RF Channel			
100	Test Mode		Tx	Low(L)	Middle(M)	High(H)	
	OFOK			Channel 1	Channel 40	Channel79	
Se la	GFSK	2	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	
	TX mode:		The EUT transmitted specific channel(s)	the continuous	s modulation test	signal at the	

General Information 6

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK
Factory:	BBPOS International Limited
Address of Factory:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK

6.2 General Description of EUT

Product Name:	Chipper BT	
Model No.(EUT):	Chipper BT	
Trade Mark:	BBPOS	
EUT Supports Radios application:	2402MHz-2480MHz	()
Power Supply:	Lithium battery:3.7V, 125mAh	
USB cable:	150mm(Unshield)	
Sample Received Date:	Jul. 20, 2016	(3)
Sample tested Date:	Jul. 20, 2016 to Aug. 29, 2016	

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	z~2480MHz				
Bluetooth	Version:	3.0	(2))	(2))	(2)
Modulatio	n Technique:	Frequen	cy Hopping Sp	read Spectru	m(FHSS)		C
Modulatio	n Type:	GFSK					
Number o	f Channel:	79		185	S	-	
Hopping C	Channel Type:	Adaptive	Frequency Ho	opping syster	ns		
Sample T	ype:	Portable	production	6		e.	
Test Powe	er Grade:	N/A					
Test Softv	vare of EUT:	BTChipp	er-1.00.00.02.	exe (manufac	cturer declare)		
Antenna T	уре:	Printed A	Printed Antenna				
Antenna g	jain:	4dBi	4dBi				
Test Volta	ige:	AC 120V	/60Hz, AC 240	0V/50Hz, DC	3.7V		
Operation	Frequency ea	ch of channe	9				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
10	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz

Page 8 of 53

Report No. : EED32I00206701

6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		(6)

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	Model	Serial number	Supplied by
AE1	laptop computer	Lenovo	E46L	EB22995690	СТІ
AE2	mouse	a4tech	OP-520-NU	NA	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Page 9 of 53

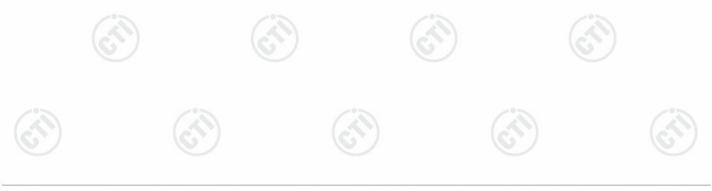
Measurement Uncertainty (95% confidence levels, k=2) 6.10

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10⁻ ⁸
2		0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Redicted Courieus emission test	4.5dB (30MHz-1GHz)
3 R	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
-		

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	G	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

	Cor	nducted distur	bance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017
(4					



Page 12 of 53

Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

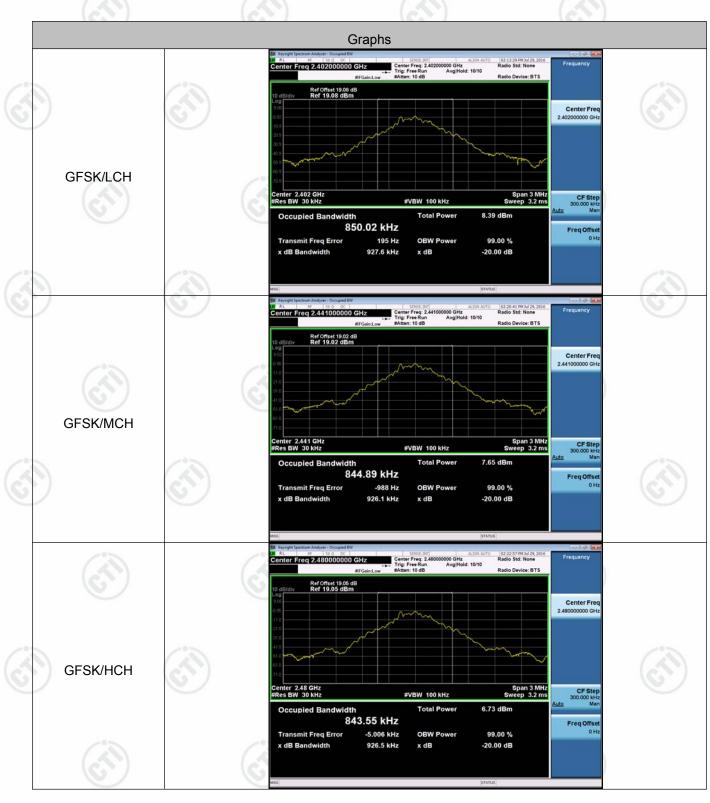
Reference documents for testing:

No.	Identity		Document Title			
1	FCC Part15C (2015)	Subpart C-Intentio	nal Radiators			
2	ANSI C63.10-2013	American National	I Standard for Testing Unlices	ed Wirele	ss Devices	
est R	esults List:	6	<u>)</u> (S)		6	
	Test requirement	Test method	Test item	Verdict	Note	
(Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A	
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B	
Part1	5C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C	
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D	
1	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power		Appendix E	
	Part15C Section 15.247(d)	ANSI 63 10		PASS	Appendix F	
	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G	
Part1	5C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H	
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I	
	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J	
	Part15C Section 15.205/15.209ANSI 63.10Restricted bands around fundamental frequency (Radiated) Emission)		PASS	Appendix K		
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L	

Appendix A): 20dB Occupied Bandwidth

Test Result

a	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
C	GFSK	LCH	0.9276	0.85002	PASS	
	GFSK	MCH	0.9261	0.84489	PASS	Peak
	GFSK	НСН	0.9265	0.84355	PASS	detector



Test Graph

Appendix B): Carrier Frequency Separation

Result Table

	Mode	Channel.	Carrier Freq	uency Separa	ation [MHz]	Verdict
	GFSK	LCH		0.998		PASS
e	GFSK	MCH		1.006	C	PASS
	GFSK	HCH		1.016		PASS

Test Graph

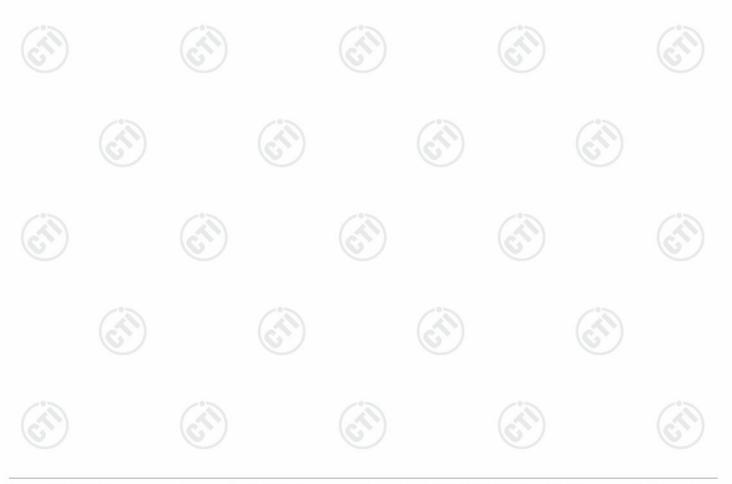
Appendix C): Dwell Time

Result Table

	Page 1	8 01 5

C	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
G	GFSK	DH5	LCH	2.95607	106.7	0.315	0.79	PASS
	GFSK	DH5	МСН	2.95607	106.7	0.315	0.79	PASS
	GFSK	DH5	НСН	2.95607	106.7	0.315	0.79	PASS

Test Graph


Appendix D): Hopping Channel Number

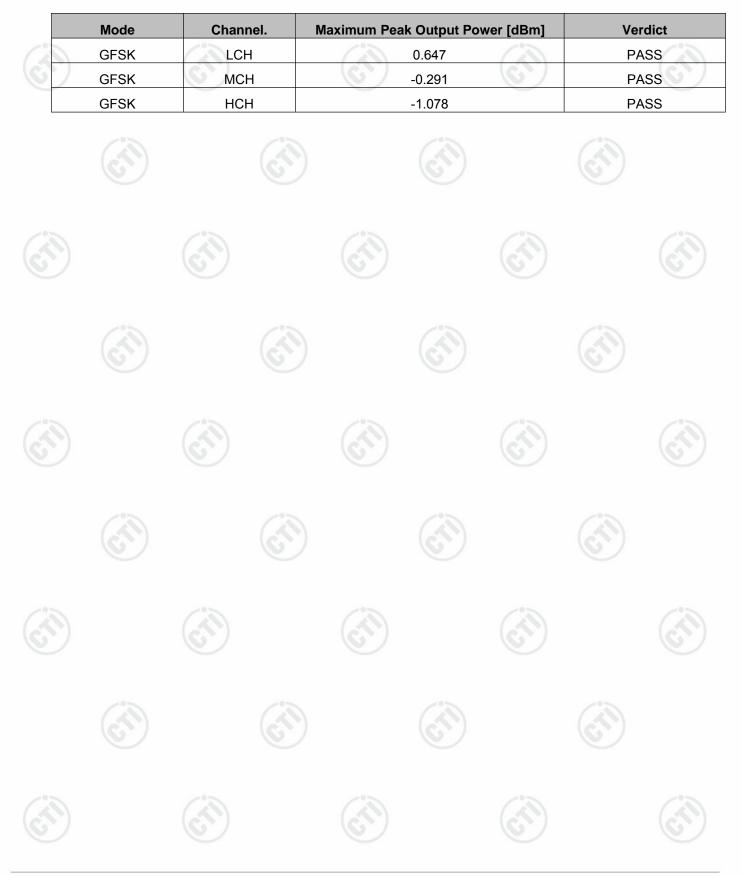
Result Table

	Mode	Channel.	Number of Hopping	g Channel	Verdict
2	GFSK	Нор	79		PASS

Test Graph

		Graphs			
	0	BE Royald Sector Markers - Serger SA. DE AL 8F 500 DC Center Freq 2.441750000 GHz PRO: Fast Freq Run Frequency Atten: 10 dB	ALION AUTO 02:31:28 PM 3ul 29, 2016 SAvg Type: RMS TRACE 02.4 Avg[Hold: 100/100 DVP	Frequency	
		Ref Offset 19.08 dB	ΔMkr1 77.822 0 MHz -1.626 dB	Auto Tune	
			142 มีสมบาลกักสุภาณบารกากการการการการการการการการการการการกา	Center Freq 2.441750000 GHz	
			annan an ann ann an an an an an an an an	Start Freq 2.40000000 GHz	
GFSK/Hop	$\langle \mathbf{C} \rangle$	809 609 709		Stop Freq 2.483500000 GHz	
		Start 2.40000 GHz #Res BW 100 kHz #VBW 300 kHz INFR MODE TRC SCL X Y FUN	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz Auto Man	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Δ2         1         f         (Δ)         77.822.0 MHz         (Δ)         -1.626 dB         -           2         F         1         f         2.402.004.0 GHz         0.181 dBm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		Freq Offset 0 Hz	
(c ⁴ )	(				
			STATUS		



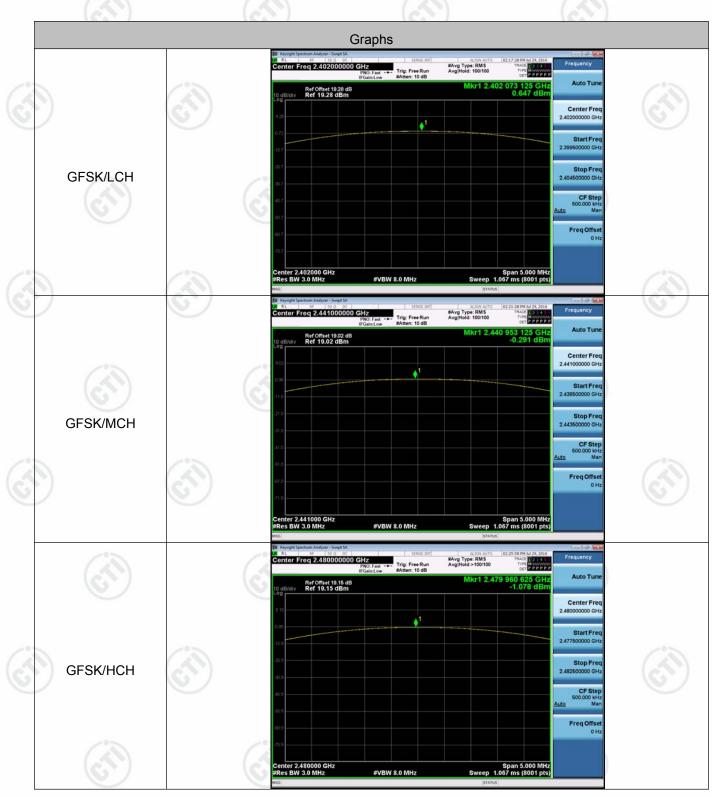







# Appendix E): Conducted Peak Output Power

**Result Table** 









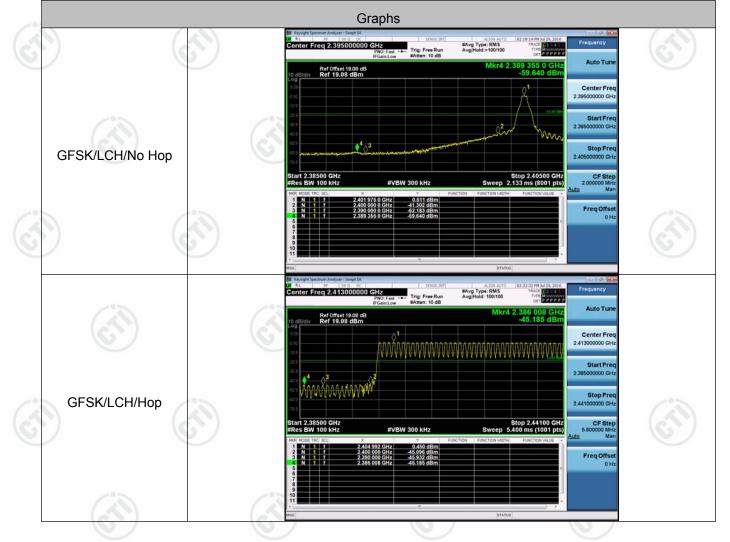

Test Graph










Page 23 of 53

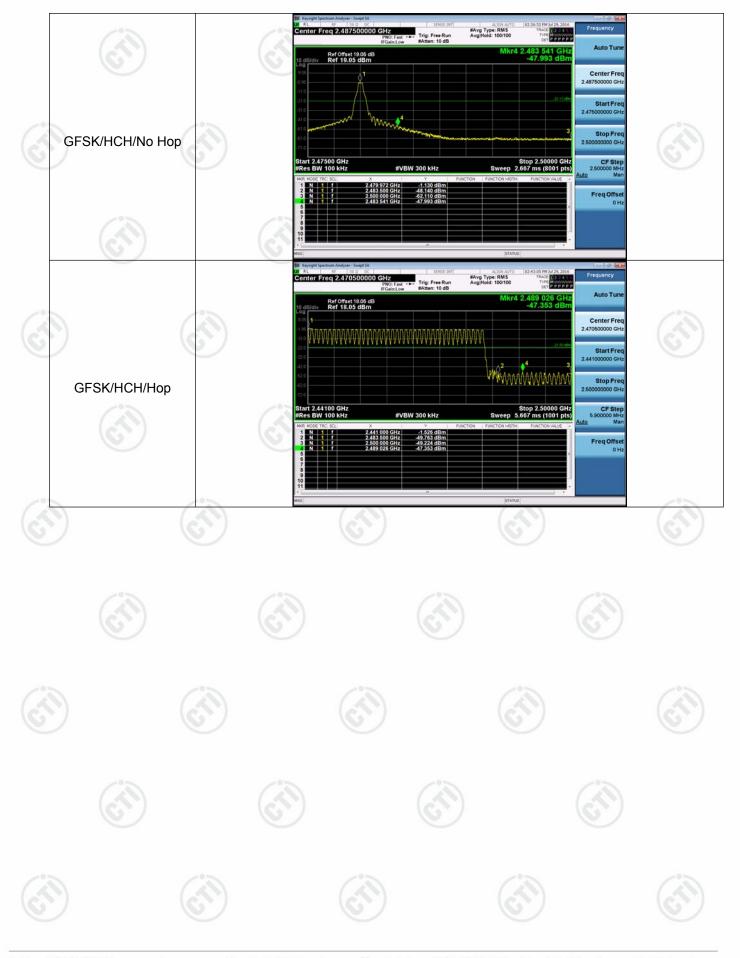
Report No. : EED32I00206701

# Appendix F): Band-edge for RF Conducted Emissions

_	Result Table		(cr)		$(\mathcal{O})$	Ġ		
	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
G	050%		0.400	0.511	Off	-59.640	-19.49	PASS
	GFSK	LCH	2402	0.450	On	-45.185	-19.55	PASS
	0501/		0.400	-1.130	Off	-47.993	-21.13	PASS
	GFSK	HCH	2480	-1.526	On	-47.353	-21.53	PASS
	S)		67		(CT)	(C)		

### **Test Graph**











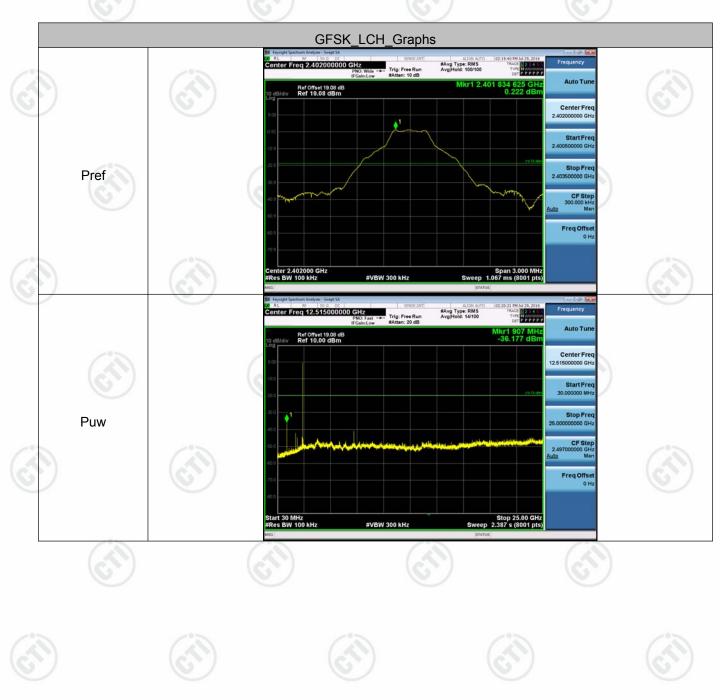

### Page 24 of 53







Page 25 of 53


Report No. : EED32I00206701

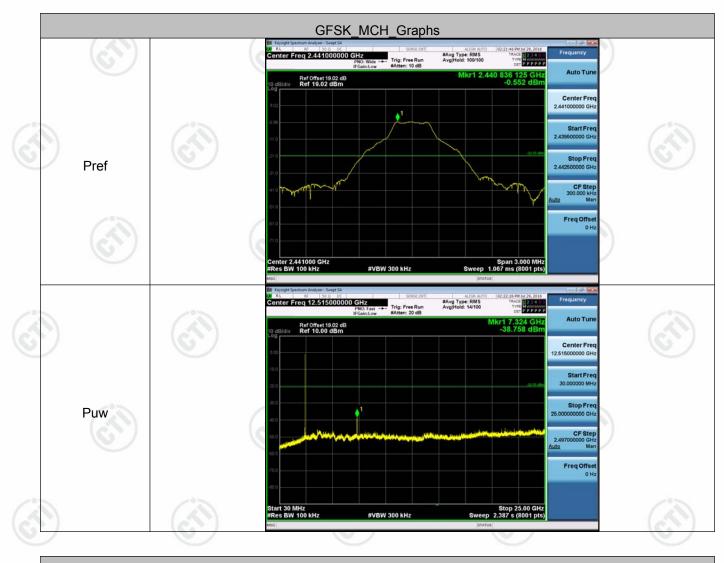
# Appendix G): RF Conducted Spurious Emissions

### **Result Table**

	Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
12	GFSK	LCH	0.222	<limit< td=""><td>PASS</td></limit<>	PASS
C	GFSK	МСН	-0.552	<limit< td=""><td>PASS</td></limit<>	PASS
	GFSK	НСН	-1.409	<limit< td=""><td>PASS</td></limit<>	PASS

**Test Graph** 









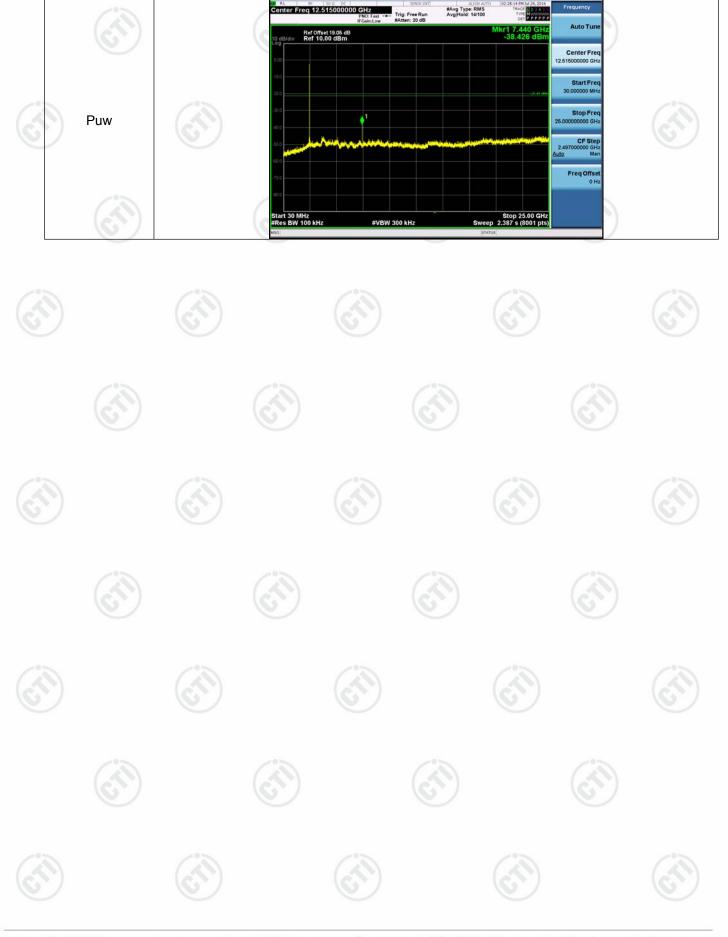



# Page 26 of 53



### GFSK_HCH_Graphs

(A)	Bit Republit Spectrum Analyzer - Swert IA.         Dit Ats.         Dit Ats.	R NO: Wide →→→ RGain:Low Atten: 10 dB	ALIGN AUTO #Avg Type: RMS Avg Hold: 100/100 Mkr1 2.4	02:27:34 PN 34 29, 2016 TRACE 12: 4 3 TYPE DET PPPPPP 9 993 625 GHz -1.409 dBm	Frequency Auto Tune	
	9.05				Center Freq 2.48000000 GHz	
	-11.0				Start Freq 2.478500000 GHz	
Pref	-21.0			21.01.00	Stop Freq 2.481500000 GHz	
	410			$\sim$	CF Step 300.000 kHz Auto Man	
	61.0				Freq Offset 0 Hz	
	Center 2.480000 GHz			Span 3.000 MHz .067 ms (8001 pts)		
	#Res BW 100 kHz	#VBW 300 kHz	Sweep 1			

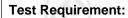









### Page 27 of 53





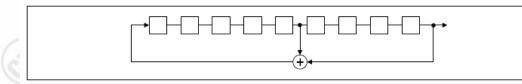





# **Appendix H): Pseudorandom Frequency Hopping Sequence**



47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77	7 64	8 73	16 75 1
	لـــالـــك	<u>_</u>	


Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

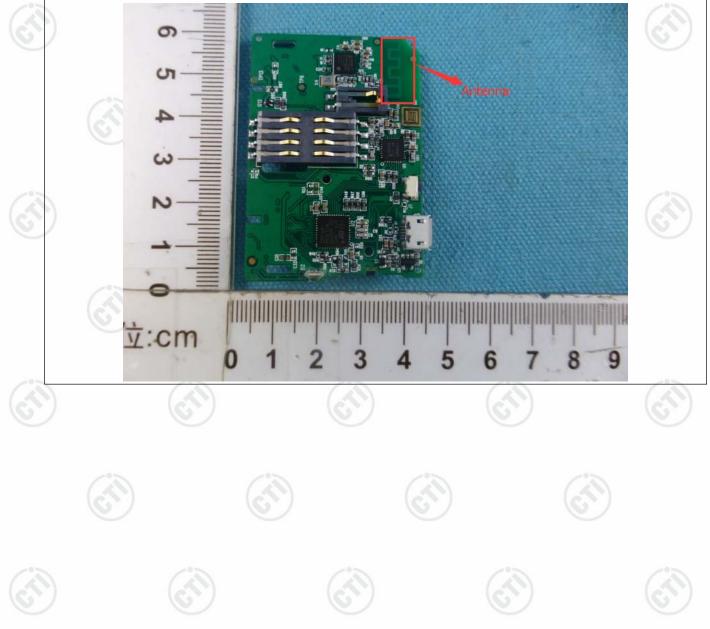






### **Appendix I): Antenna Requirement**

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is Printed on the main PCB and no consideration of replacement. The best case gain of the antenna is 4dBi.



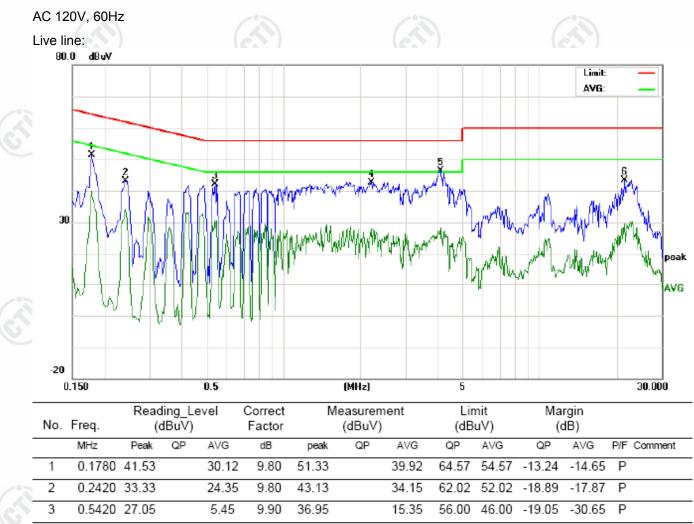


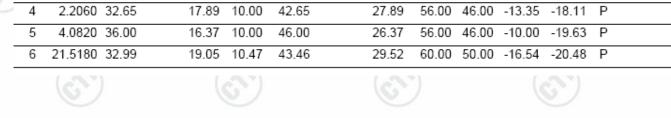




# Appendix J): AC Power Line Conducted Emission

	Test frequency range :150KHz	-30MHz									
	1)The mains terminal disturbance voltage test was conducted in a shielded room.										
	2) The EUT was connected to	•									
	Stabilization Network) whic										
	power cables of all other up										
°) (c	which was bonded to the gr										
	for the unit being measured multiple power cables to a s exceeded.										
	3)The tabletop EUT was place	ed upon a non-metalli	c table 0.8m above	the arou							
	reference plane. And for flo horizontal ground reference	or-standing arrangem									
	4) The test was performed wit	h a vertical ground re	eference plane. The	e rear of t							
	EUT shall be 0.4 m from the	5	•	•							
	reference plane was bonde										
	1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EU										
	plane. This distance was be	etween the closest po	ints of the LISN 1 a	nd the EL							
	All other units of the EUT a LISN 2.										
	All other units of the EUT a LISN 2. 5) In order to find the maximum	nd associated equipm	nent was at least 0.8 e positions of equipn	3 m from t							
	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	nd associated equipm	nent was at least 0.8 e positions of equipn	3 m from t							
	All other units of the EUT a LISN 2. 5) In order to find the maximum	nd associated equipm	nent was at least 0.8 e positions of equipn	3 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	nd associated equipm	nent was at least 0.8 e positions of equipn	8 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	nd associated equipm	nent was at least 0.8 e positions of equipn g to ANSI C63.10 of	3 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	nd associated equipm n emission, the relative be changed accordin	nent was at least 0.8 e positions of equipn g to ANSI C63.10 of	8 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	nd associated equipm n emission, the relative be changed accordin Limit (d	e positions of equipn g to ANSI C63.10 or BµV)	8 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz)	nd associated equipm n emission, the relative be changed accordin Limit (d Quasi-peak	e positions of equipn g to ANSI C63.10 or BμV) Average	8 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	nd associated equipm n emission, the relative be changed accordin Limit (d Quasi-peak 66 to 56*	e positions of equipn g to ANSI C63.10 or BμV) Average 56 to 46*	3 m from t							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	nd associated equipm n emission, the relative be changed accordin Limit (d Quasi-peak 66 to 56* 56 60	e positions of equipn g to ANSI C63.10 or BμV) Average 56 to 46* 46 50	B m from t nent and a n							
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30	nd associated equipm n emission, the relative be changed accordin Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of the	e positions of equipn g to ANSI C63.10 or BµV) Average 56 to 46* 46 50 the frequency in the	B m from t nent and a n							

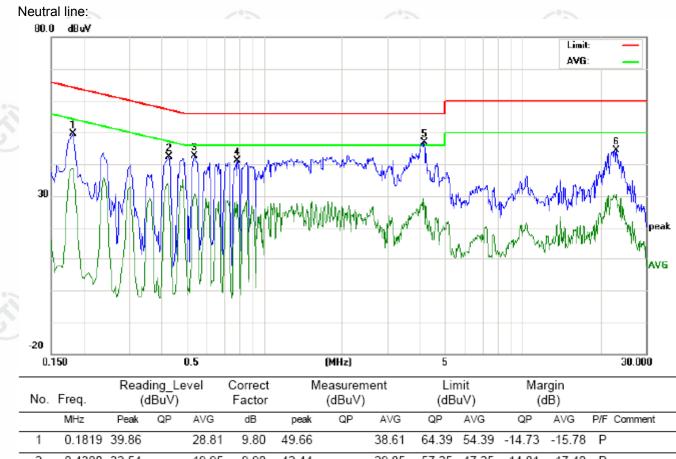

### **Measurement Data**


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.





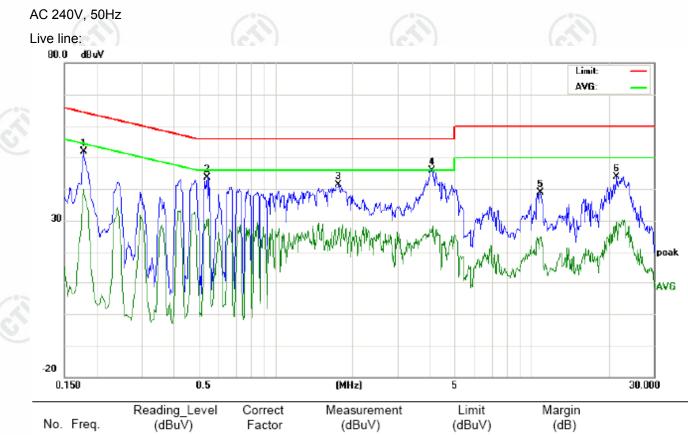










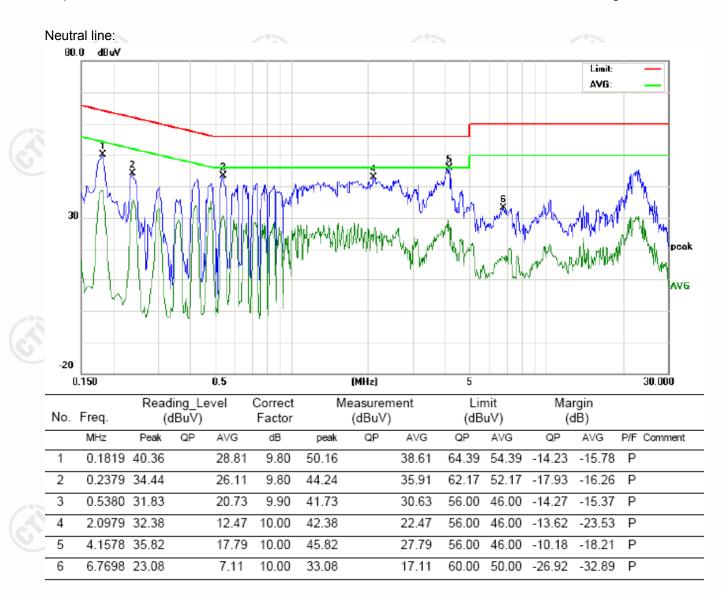




	1	0.1819 39.80	28.81	9.80	49.66	38.61	64.39	54.39	-14.73	-15.78	Р	
	2	0.4300 32.54	19.95	9.90	42.44	29.85	57.25	47.25	-14.81	-17.40	Р	
3	3	0.5380 32.83	20.73	9.90	42.73	30.63	56.00	46.00	-13.27	-15.37	Р	
2	4	0.7900 31.19	18.40	9.90	41.09	28.30	56.00	46.00	-14.91	-17.70	Р	
_	5	4.1579 36.82	17.79	10.00	46.82	27.79	56.00	46.00	-9.18	-18.21	Р	
	6	23.1259 33.92	20.04	10.44	44.36	30.48	60.00	50.00	-15.64	-19.52	Р	
	0	25.1255 55.52	20.04	10.44	44.50	50.40	00.00	50.00	-13.04	-15.52	·	










	No.	Freq.	(d	BuV)		Factor		(dBuV)		(dB	uV)	(d	iB)		
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
-	1	0.1779	42.03		30.12	9.80	51.83		39.92	64.58	54.58	-12.75	-14.66	Ρ	
5	2	0.5420	33.69		20.62	9.90	43.59		30.52	56.00	46.00	-12.41	-15.48	Ρ	
6	3	1.7660	31.43		17.73	10.00	41.43		27.73	56.00	46.00	-14.57	-18.27	Ρ	
1	4	4.0819	36.00		16.37	10.00	46.00		26.37	56.00	46.00	-10.00	-19.63	Ρ	
	5	10.8178	28.78		14.56	10.02	38.80		24.58	60.00	50.00	-21.20	-25.42	Ρ	
	6	21.5180	33.49		19.05	10.47	43.96		29.52	60.00	50.00	-16.04	-20.48	Ρ	
-															









#### Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.







# Appendix K): Restricted bands around fundamental frequency (Radiated)

	<u>()</u>				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Above 1011	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Below 1GHz test procedu	re as below:			
	<ul> <li>a. The EUT was placed of at a 3 meter semi-anecd determine the position</li> <li>b. The EUT was set 3 me was mounted on the to</li> <li>c. The antenna height is we determine the maximum polarizations of the anten</li> <li>d. For each suspected em the antenna was tuned table was turned from 0</li> <li>e. The test-receiver system Bandwidth with Maximum</li> <li>f. Place a marker at the em frequency to show com bands. Save the spectric for lowest and highest of the semi-antened frequency to show com bands.</li> </ul>	choic camber. The of the highest rad ters away from th p of a variable-he varied from one m n value of the field enna are set to m hission, the EUT v to heights from 1 0 degrees to 360 c m was set to Peal um Hold Mode. end of the restricted pliance. Also mea- rum analyzer plot.	table wa iation. e interfere ight anter veter to fo d strength ake the m vas arran meter to degrees to k Detect F ed band c asure any	s rotated 3 ence-recei ina tower. ur meters b. Both hor neasureme ged to its v 4 meters a o find the r function a losest to th emissions	360 degrees to ving antenna, w above the group rizontal and vert ent. worst case and and the rotatable maximum readin nd Specified he transmit s in the restricte
	<ul> <li>Above 1GHz test procedu</li> <li>g. Different between above to fully Anechoic Chammeter( Above 18GHz the meter)</li> </ul>	e is the test site, ber and change for			
	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and j. Repeat above procedu	lowest channel , the set of the s	heter and the Highest ned in X, ` positioni	table is 1.5 st channel Y, Z axis p ng which i	meter). positioning for t is worse case.
Limit:	<ul> <li>h. b. Test the EUT in the I</li> <li>i. The radiation measurer Transmitting mode, and</li> <li>j. Repeat above procedu</li> </ul>	lowest channel , the ments are perform d found the X axis res until all freque	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which i asured wa	meter). positioning for t is worse case.
Limit:	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and	lowest channel , the set of the s	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which i asured wa Rer	meter). positioning for t is worse case. as complete.
Limit:	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency	lowest channel , the ments are perform d found the X axis res until all freque	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe	meter). positioning for t is worse case. as complete. mark
Limit:	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	lowest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which ir asured wa Rer Quasi-pe Quasi-pe	meter). positioning for t is worse case. as complete. mark eak Value
Limit:	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	lowest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	o meter). Dositioning for t is worse case. as complete. mark eak Value eak Value
Limit:	h. b. Test the EUT in the I i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	lowest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5 46.0	heter and the Highest ned in X, ` positioni encies me	table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	o meter). Dositioning for t is worse case. as complete. mark eak Value eak Value eak Value









#### Test plot as follows: Worse case mode: GFSK Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak 120 Level (dBuV/m) 110 90 FCC PART 15C>1 70 FCC PART 15C>1G AV 50 30 10 -10<mark>____</mark>2310 2320 2350 2404 Frequency (MHz) Ant Cable Preamp Read Limit 0ver Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark MHz dB/m dB dB dBuV dBuV/m dBuV/m dB 2390.000 32.53 4.28 34.39 45.70 48.12 74.00 -25.88 Horizontal 1 2 pp 2402.179 32.56 4.31 34.39 93.82 96.30 74.00 22.30 Horizontal Worse case mode: GFSK Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak 120 Level (dBuV/m) 110 90 FCC PART 15C>1 70 FCC PART 15C>1G AV 50 30 10 -102310 2320 2350 2404 Frequency (MHz) Cable Preamp Limit Ant Read 0ver Line Limit Pol/Phase Remark Freq Factor Loss Factor Level Level MHz dB/m dB dB dBuV dBuV/m dBuV/m dB 2390.000 32.53 4.28 34.39 45.59 48.01 74.00 -25.99 Vertical 1 pp 2401.891 32.56 4.31 34.39 91.12 93.60 74.00 19.60 Vertical 2







2500

Remark



Report No. : EED32I00206701

30

10

-10<mark>____</mark>2478

1 pp 2479.994

2483.500

2

Ant

dB/m

32.71

32.71

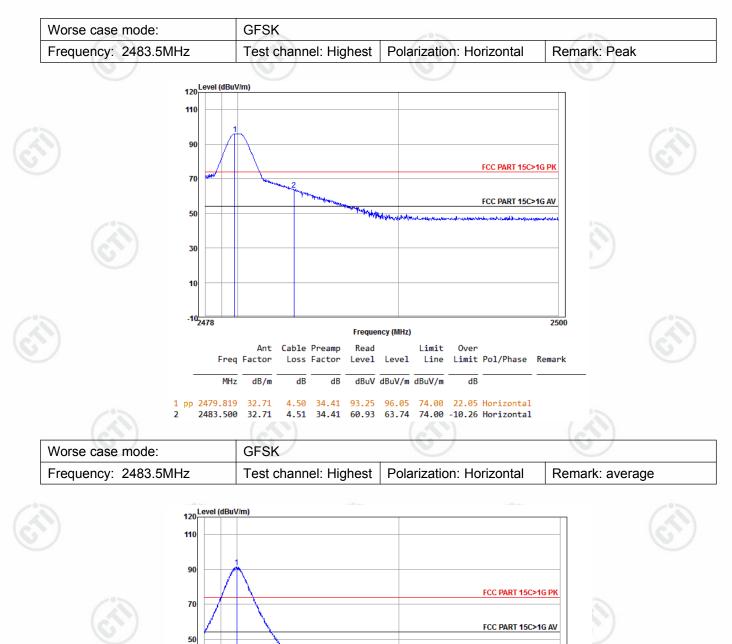
Freq Factor

MHz

Cable Preamp

dB

4.50


4.51

Loss Factor

dB

34.41

34.41



Frequency (MHz)

Level

dBuV dBuV/m dBuV/m

91.35

Limit

Line

0ver

dB

36.00 38.81 54.00 -15.19 Horizontal Average

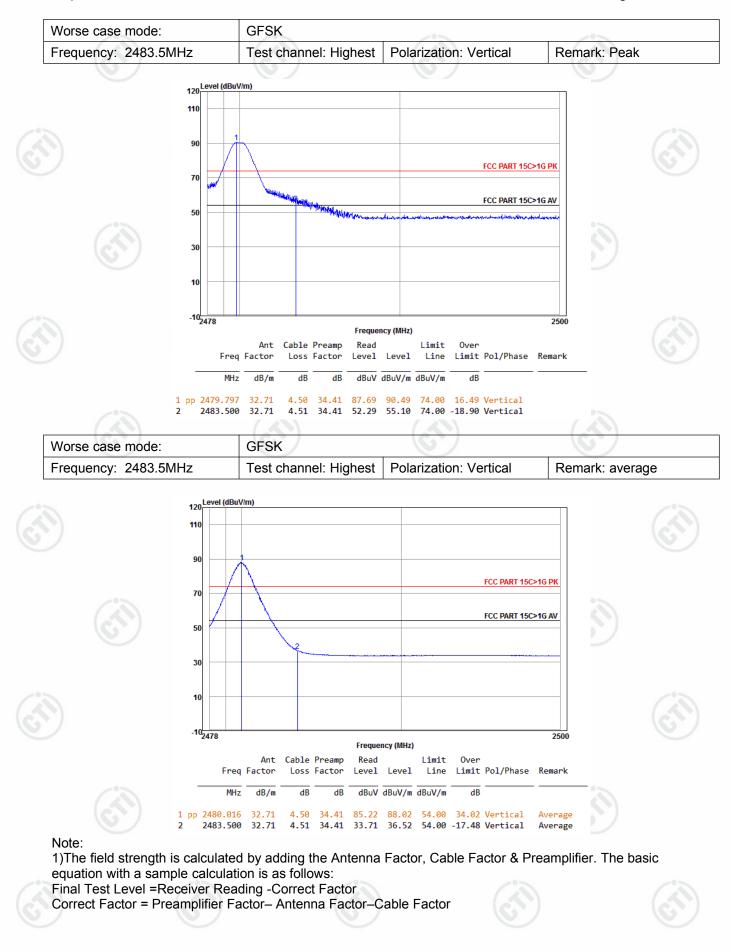
Limit Pol/Phase

54.00 37.35 Horizontal Average

Read

Level

88.55










Report No. : EED32I00206701









Page 39 of 53

# **Appendix L): Radiated Spurious Emissions**

Receiver Setup:	(6))	(c)	<u>N  </u>	-	$(\mathcal{A})$	
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(S)		Peak	1MHz	3MHz	Peak	
$\smile$	Above 1GHz	Peak	1MHz	10Hz	Average	

## Test Procedure:

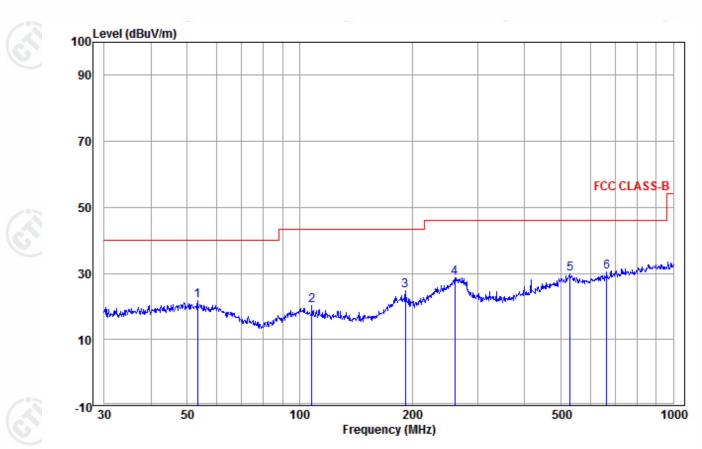
#### Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic a. camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a b. variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value c. of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. e. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be f. stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

### Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and g. change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel h.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X i. axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency		Limit (dBµV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	- /	())- -	30			
31)	1.705MHz-30MHz	30	- (	<u>6</u> 7)-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
1	216MHz-960MHz	200	46.0	Quasi-peak	3			
(~~)	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency							
	emissions is 20dB above the maximum permitted average emission limit							
3		equipment under te vel radiated by the o		k limit applies	to the total			




Report No. : EED32I00206701



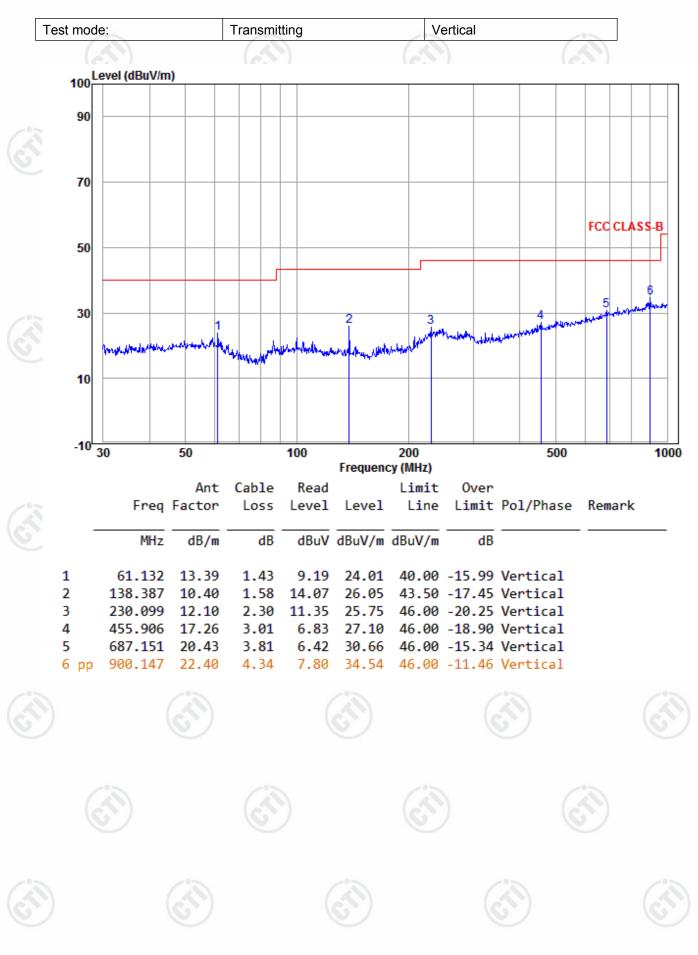
## Radiated Spurious Emissions test Data: Radiated Emission below 1GHz





	Freq		Cable Loss			Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	53.318	14.64	1.41	5.79	21.84	40.00	-18.16	Horizontal	
2	107.888	12.54	1.57	6.19	20.30	43.50	-23.20	Horizontal	
3	191.745	11.32	2.12	11.42	24.86	43.50	-18.64	Horizontal	
4	260.144	12.64	2.36	13.70	28.70	46.00	-17.30	Horizontal	
5	530.101	18.52	3.18	8.04	29.74	46.00	-16.26	Horizontal	
6 pp	663.473	19.90	3.66	6.84	30.40	46.00	-15.60	Horizontal	










Page 41 of 53

Report No. : EED32l00206701





# Report No. : EED32I00206701



# Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1173.943	30.16	2.48	34.99	43.99	41.64	74	-32.36	Pass	н
1943.292	31.62	3.19	34.34	44.11	44.58	74	-29.42	Pass	(H)
3208.660	33.41	5.58	34.52	44.52	48.99	74	-25.01	Pass	H
4804.000	34.69	5.11	34.35	42.29	47.74	74	-26.26	Pass	Н
7206.000	36.42	6.66	34.90	40.10	48.28	74	-25.72	Pass	Н
9608.000	37.88	7.73	35.08	37.46	47.99	74	-26.01	Pass	Н
1238.405	30.32	2.56	34.92	46.65	44.61	74	-29.39	Pass	V
1953.211	31.63	3.20	34.33	44.44	44.94	74	-29.06	Pass	V
3428.206	33.23	5.54	34.55	42.79	47.01	74	-26.99	Pass	V
4804.000	34.69	5.11	34.35	41.57	47.02	74	-26.98	Pass	V
7206.000	36.42	6.66	34.90	38.94	47.12	74	-26.88	Pass	V
9608.000	37.88	7.73	35.08	38.13	48.66	74	-25.34	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1222.743	30.28	2.54	34.94	45.78	43.66	74	-30.34	Pass	H
1818.842	31.43	3.10	34.42	42.41	42.52	74	-31.48	Pass	H
3700.260	33.02	5.49	34.57	43.06	47.00	74	-27.00	Pass	Ľн
4882.000	34.85	5.08	34.33	40.05	45.65	74	-28.35	Pass	н
7323.000	36.43	6.77	34.90	38.83	47.13	74	-26.87	Pass	н
9764.000	38.05	7.60	35.05	36.04	46.64	74	-27.36	Pass	Н
1188.980	30.20	2.50	34.98	44.93	42.65	74	-31.35	Pass	V
1818.842	31.43	3.10	34.42	44.10	44.21	74	-29.79	Pass	V
3543.550	33.14	5.52	34.56	42.99	47.09	74	-26.91	Pass	V
4882.000	34.85	5.08	34.33	40.83	46.43	74	-27.57	Pass	V
7323.000	36.43	6.77	34.90	36.80	45.10	74	-28.90	Pass	V
9764.000	38.05	7.60	35.05	36.53	47.13	74	-26.87	Pass	V









#### Page 43 of 53

## Report No. : EED32I00206701

Worse cas	se mode:	GFSK		Test chan	nel:	Highest			
Frequency (MHz)	y Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1232.117	30.30	2.55	34.93	43.73	41.65	74	-32.35	Pass	Н
1724.166	31.27	3.02	34.49	44.92	44.72	74	-29.28	Pass	н
3883.622	32.88	5.46	34.59	42.30	46.05	74	-27.95	Pass	H)
4960.000	35.02	5.05	34.31	39.84	45.60	74	-28.40	Pass	Ĥ
7440.000	36.45	6.88	34.90	37.75	46.18	74	-27.82	Pass	Н
9920.000	38.22	7.47	35.02	34.76	45.43	74	-28.57	Pass	Н
1232.117	30.30	2.55	34.93	44.77	42.69	74	-31.31	Pass	V
1875.258	31.51	3.14	34.38	44.97	45.24	74	-28.76	Pass	V
3160.026	33.46	5.59	34.52	44.04	48.57	74	-25.43	Pass	V
4960.000	35.02	5.05	34.31	39.55	45.31	74	-28.69	Pass	V
7440.000	36.45	6.88	34.90	38.84	47.27	74	-26.73	Pass	V
9920.000	38.22	7.47	35.02	35.51	46.18	74	-27.82	Pass	V

## Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

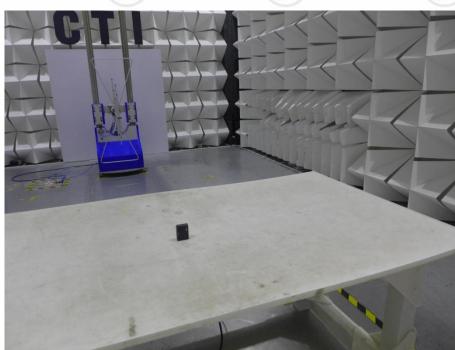
Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

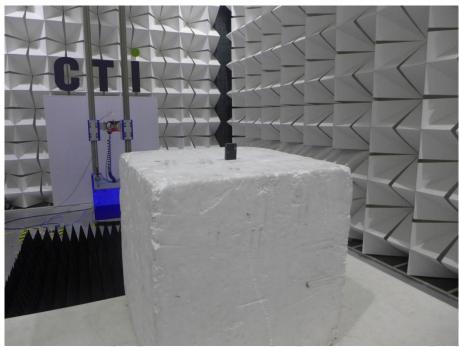
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.










# PHOTOGRAPHS OF TEST SETUP

Test mode No.: Chipper BT



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-2(Above 1GHz)













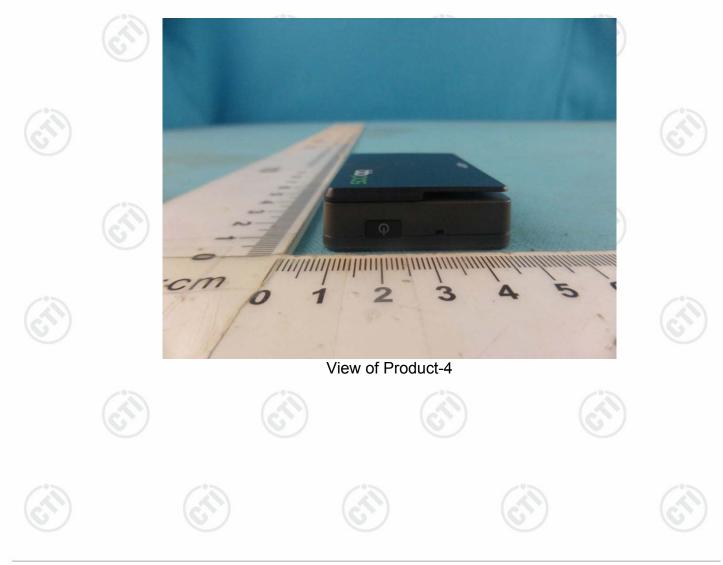



















View of Product-3















# View of Product-6













Hotline: 400-6788-333

#### www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No. : EED32I00206701







