Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE1710007002 R/C.....: 65224

FCC ID.....: 2AB7K-Z6010

Applicant's name.....: Anker Technology Co., Limited

Kowloon, Hong Kong

Address...... Section 37, Zhongkai High-tech Development Zone, Huizhou

City, Guang Dong Province, China

Test item description: Zolo Mojo

Trade Mark ZOLO

Model/Type reference...... Z6010

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of testing...... Aug. 30, 2017 – Sept. 08, 2017

Date of issue...... Oct. 20, 2017

Result.....: PASS

Compiled by

(Position+Printed name+Signature): File administrators Becky Liang

Supervised by

(Position+Printed name+Signature): Project Engineer Jeff Sun

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: TRE1710007002 Page: 2 of 58 Issued: 2017-10-20

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.4	Address of the test laboratory	7
4.1. 4.2.	Address of the test laboratory Test Facility	7 7
4.2. 4.3.	Environmental conditions	8
4.3. 4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emissions (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20 dB Bandwidth	18
5.5.	Carrier Frequencies Separation	22
5.6.	Hopping Channel Number	24
5.7.	Dwell Time	26
5.8.	Pseudorandom Frequency Hopping Sequence	30
5.9.	Restricted band (radiated)	31
5.10.	Band edge and Spurious Emissions (conducted)	33
5.11.	Spurious Emissions (radiated)	53
<u>6.</u>	TEST SETUP PHOTOS	57
7.	EXTERANAL AND INTERNAL PHOTOS	58

Report No.: TRE1710007002 Page: 3 of 58 Issued: 2017-10-20

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	Oct. 20, 2017	Original

Report No.: TRE1710007002 Page: 4 of 58 Issued: 2017-10-20

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	Pass	Baozhu Hu
AC Power Line Conducted Emissions	15.207	Pass	Baozhu Hu
Conducted Peak Output Power	15.247 (b)(1)	Pass	Baozhu Hu
20 dB Bandwidth	15.247 (a)(1)	Pass	Baozhu Hu
Carrier Frequencies Separation	15.247 (a)(1)	Pass	Baozhu Hu
Hopping Channel Number	15.247 (a)(1)	Pass	Baozhu Hu
Dwell Time	15.247 (a)(1)	Pass	Baozhu Hu
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass	Baozhu Hu
Restricted band	15.247(d)/15.205	Pass	Baozhu Hu
Radiated Emissions	15.247(d)/15.209	Pass	Baozhu Hu

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1710007002 Page: 5 of 58 Issued: 2017-10-20

3. **SUMMARY**

3.1. Client Information

Applicant:	Anker Technology Co., Limited
Address:	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong Kong
Manufacturer:	TCL Technoly Electronics(Huizhou) Co., Ltd.
Address:	Section 37, Zhongkai High-tech Development Zone, Huizhou City, Guang Dong Province, China

3.2. Product Description

3.2. Product Description			
Name of EUT:	Zolo Mojo		
Trade Mark:	ZOLO		
Model No.:	Z6010		
Listed Model(s):	-		
Power supply:	AC 120V/60Hz		
Adapter information:	Model: Z60-A00 Input: 100-240Va.c., 50-60Hz, 0.45A Output: 9.0Vd.c., 1.5A		
Bluetooth			
Bluetooth			
Bluetooth Version:	Supported BT4.2+EDR		
	Supported BT4.2+EDR GFSK, π/4DQPSK, 8DPSK		
Version:			
Version: Modulation:	GFSK, π/4DQPSK, 8DPSK		
Version: Modulation: Operation frequency:	GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz		
Version: Modulation: Operation frequency: Channel number:	GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79		

Report No.: TRE1710007002 Page: 6 of 58 Issued: 2017-10-20

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2403
:	:
39	2441
i i	
77	2479
78	2480

> TEST MODE

	_		_
L~~	$D\Gamma$	+00+	items:
	κ	1681	nems

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

Э	- su	pplied	by the	lab
---	------	--------	--------	-----

	Manufacturer:	/
/	Model No.:	/
,	Manufacturer:	/
/	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1710007002 Page: 7 of 58 Issued: 2017-10-20

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1710007002 Page: 8 of 58 Issued: 2017-10-20

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1710007002 Page: 9 of 58 Issued: 2017-10-20

4.5. Equipments Used during the Test

Cond	Conducted Emissions					
Item	Test Equipment Manufacturer Model No. S				Last Cal.	
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	-	-	

Radia	Radiated Emissions								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	EMI test receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13				
2	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13				
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13				
4	Horn antenna	ShwarzBeck	9120D	1011	2016/11/13				
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13				
6	Amplifier	Sonoma	310N	E009-13	2016/11/13				
7	JS Amplifier	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13				
8	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13				
9	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13				
10	EMI test Software	Rohde&Schwarz	ESK1	-	-				
11	EMI test Software	Audix	E3	-	-				
12	TURNTABLE	MATURO	TT2.0	-	-				
13	ANTENNA MAST	MATURO	TAM-4.0-P	-	-				

RF Co	RF Conducted methods							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Spectrum Analyzer Rohde&Schwarz		FSP	1164.4391.40	2016/11/13			
2	MXA Signal Analyzer	Agilent Technologies	N9020A	MY5050187	2016/11/13			

The Cal.Interval was one year.

Report No.: TRE1710007002 Page: 10 of 58 Issued: 2017-10-20

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

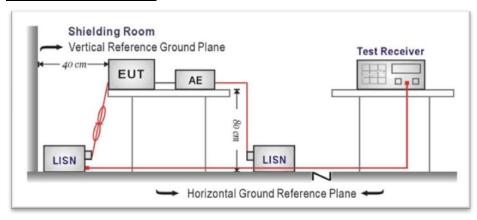
Test Result:

⊠ Passed	■ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: TRE1710007002 Page: 11 of 58 Issued: 2017-10-20

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguenay rango (MUT)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Note:

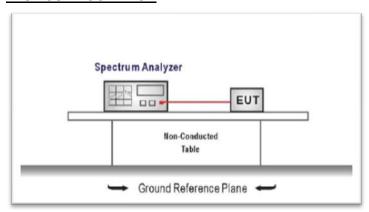
- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

Report No.: TRE1710007002 Page: 12 of 58 Issued: 2017-10-20

ine:			L				
Level [dBµV]							
80							;
70			i				;
60			!			[!
50 A-Ant		 				i	i
1 M/×/M/ M							
40 44444	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14 18 14 14 14 14 14 14 14 14 14 14 14 14 14				 -	
30 /-/	V	VA WILLIAM		en al ancignatura de la circa de la ci En el al acceptura de la circa de la c	U, E de la allida, L'alida, Alida de la lata de la compansión de la compan	A September 1	The Land
20		-	; 	-4	Total district of district of the second		TI HIH
10							كالشاع ومشارستات
0 150k 300l	k 400k 600k	800k 1M	2M	3M 4M 5N	I 6M 8M 10M	20M	30M
			Frequency [Hz]			
x x x MES GM17090	45036_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHZ	dBµV	dB	dBµV	dB	Decector	птие	111
11112	αБμν	QД	αυμν	QВ			
0.154500	47.80	10.4	66	18.0	QP	L1	GND
0.181500	46.20	10.3	64	18.2	QP	L1	GND
0.280500	43.00	10.2	61	17.8	QP	L1	GND
0.537000	48.80	10.2	56	7.2	QP	L1	GND
0.888000	39.60	10.1	56	16.4	QP	L1	GND
	4.0						
3.372000	40.20	10.3	56	15.8	QP	L1	GND
3.372000 4.038000	40.20 37.20	10.3 10.3	56	18.8	QP QP	L1	GND GND
4.038000 Frequency	37.20 Level	10.3 Transd	56 Limit		~		
4.038000	37.20	10.3	56	18.8	QP	L1	GND
4.038000 Frequency MHz	37.20 Level dBµV	10.3 Transd dB	56 Limit dBµV	18.8 Margin dB	QP Detector	L1 Line	GND PE
4.038000 Frequency MHz	37.20 Level dBµV 41.20	10.3 Transd dB	56 Limit dBµV	18.8 Margin dB	QP Detector	L1 Line	GND PE GND
4.038000 Frequency MHz 0.537000 0.888000	37.20 Level dBµV 41.20 34.80	10.3 Transd dB 10.2 10.1	56 Limit dBµV 46 46	18.8 Margin dB 4.8 11.2	QP Detector AV AV	L1 Line L1 L1	GND PE GND GND
4.038000 Frequency MHz 0.537000 0.888000 1.333500	37.20 Level dBµV 41.20 34.80 34.70	10.3 Transd dB 10.2 10.1 10.2	56 Limit dBµV 46 46 46	18.8 Margin dB 4.8 11.2 11.3	QP Detector AV AV AV	L1 Line L1 L1 L1	GND PE GND GND GND
4.038000 Frequency MHz 0.537000 0.888000 1.333500 2.040000	37.20 Level dBµV 41.20 34.80 34.70 35.30	10.3 Transd dB 10.2 10.1 10.2	56 Limit dBµV 46 46 46 46	18.8 Margin dB 4.8 11.2 11.3 10.7	QP Detector AV AV AV AV	L1 Line L1 L1 L1 L1	GND PE GND GND GND GND
4.038000 Frequency MHz 0.537000 0.888000 1.333500	37.20 Level dBµV 41.20 34.80 34.70	10.3 Transd dB 10.2 10.1 10.2	56 Limit dBµV 46 46 46	18.8 Margin dB 4.8 11.2 11.3	QP Detector AV AV AV	L1 Line L1 L1 L1	GND PE GND GND GND

Report No.: TRE1710007002 Page: 13 of 58 Issued: 2017-10-20

ine:			N				
Level [dBµV]							
80	,,						
70							
60						1	
50 Av AA			<u> </u>			i i	i
1 11 ² / MAA						į	
40	1/ Mil M 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	Museumhan Marin Jal	All the while was		والمالية المالية والمالية المالية		
30 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	W	M. M			THE PERSON AND THE PE	A Company	J. June
20	- F XXAVANA	MCNi -ii. + militarii.	i Hake Hird or elementalis	trible con a second	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	A CONTRACTOR	Mark Hall
10	·						الله الله واليسادية المادية الله المادية الله المادية الله الله الله الله الله الله الله الل
0 150k 300l	k 400k 600k	800k 1M	2M	3M 4M 5N	1 6M 8M 10M	20M	30M
			Frequency [Hz]			
x x x MES GM17090	45035_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHZ	dBµV	dB	dBµV	dB	Doccocco	штио	
0.159000	48.80	10.4	66	16.7	QP	N	GND
0.163500	48.50	10.4	65	16.8	QP	N	GND
0.244500	42.50	10.3	62	19.4	QP	N	GND
0.537000	45.60	10.2	56	10.4	QP	N	GND
2.359500	36.40	10.2	56	19.6	QP	N	GND
3.876000	34.50	10.3	56	21.5	QP	N	GND
						3.7	GND
4.402500	28.50	10.3	56	27.5	QP	N .	
4.402500 Frequency	Level	Transd	Limit	Margin	QP Detector	N Line	
4.402500							
4.402500 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
4.402500 Frequency MHz 0.541500	Level dBµV	Transd dB	Limit dBµV 46	Margin dB 7.8	Detector	Line N	PE GND
4.402500 Frequency MHz 0.541500 0.888000	Level dBµV 38.20 31.20	Transd dB 10.2 10.1	Limit dBµV 46 46	Margin dB 7.8 14.8	Detector AV AV	Line N N	PE GND GND
4.402500 Frequency MHz 0.541500 0.888000 2.359500	Level dBμV 38.20 31.20 32.10	Transd dB 10.2 10.1 10.2	Limit dBµV 46 46 46	Margin dB 7.8 14.8 13.9	Detector AV AV AV	Line N N	PE GND GND GND
4.402500 Frequency MHZ 0.541500 0.888000 2.359500 2.499000	Level dBμV 38.20 31.20 32.10 29.80	Transd dB 10.2 10.1 10.2 10.2	Limit dBµV 46 46 46 46	Margin dB 7.8 14.8 13.9 16.2	Detector AV AV AV AV	Line N N N	GND GND GND GND
4.402500 Frequency MHz 0.541500 0.888000 2.359500	Level dBμV 38.20 31.20 32.10	Transd dB 10.2 10.1 10.2	Limit dBµV 46 46 46	Margin dB 7.8 14.8 13.9	Detector AV AV AV	Line N N	PE GND GND GND


Report No.: TRE1710007002 Page: 14 of 58 Issued: 2017-10-20

5.3. Conducted Peak Output Power

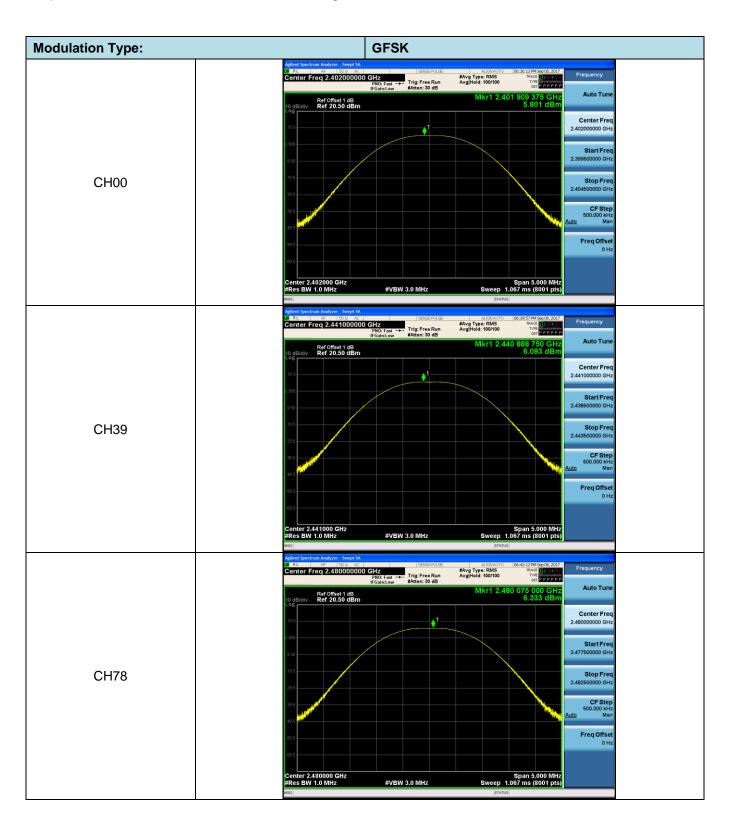
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

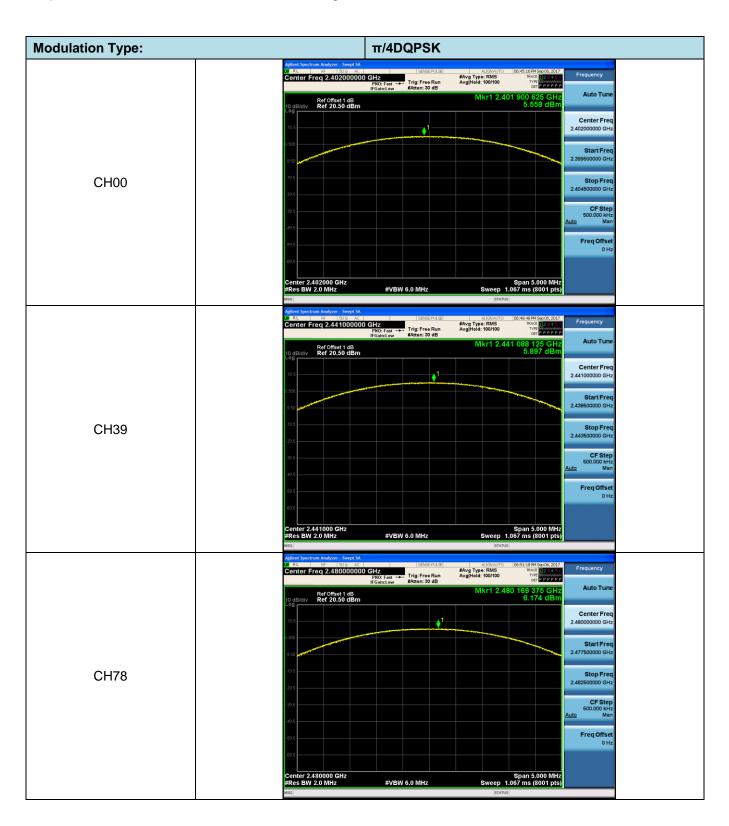
TEST CONFIGURATION

TEST PROCEDURE

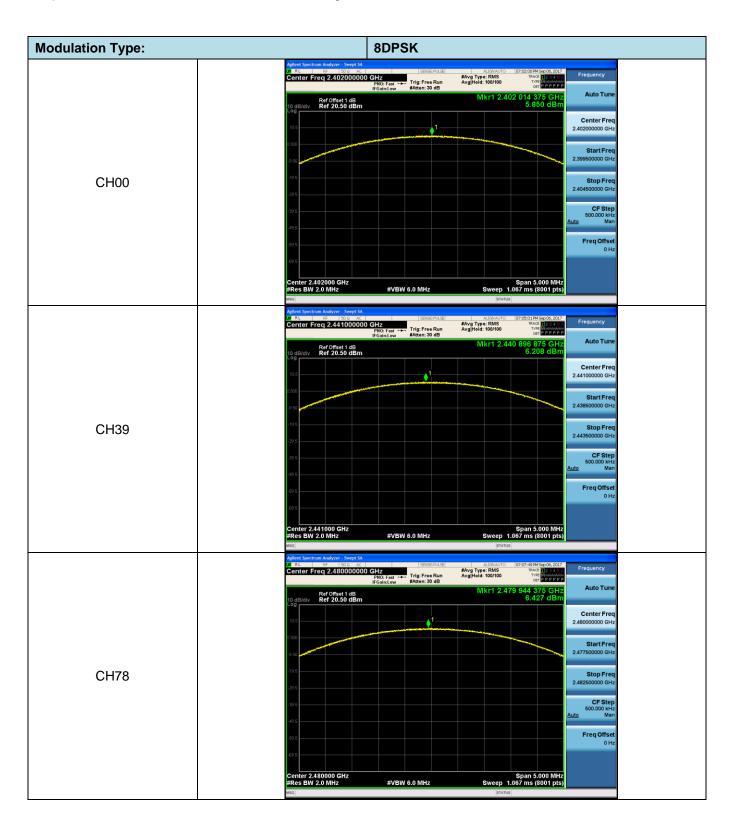
- The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

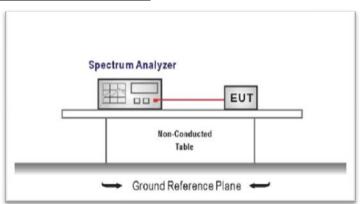

TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	5.801			
GFSK	39	6.093	≤ 30.00	Pass	
	78	6.333			
	00	5.558			
π/4DQPSK	39	5.897	≤ 21.00	Pass	
	78	6.174			
	00	5.850			
8DPSK	39	6.208	≤ 21.00	Pass	
	78	6.427			


Report No.: TRE1710007002 Page: 15 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 16 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 17 of 58 Issued: 2017-10-20


Report No.: TRE1710007002 Page: 18 of 58 Issued: 2017-10-20

5.4. 20 dB Bandwidth

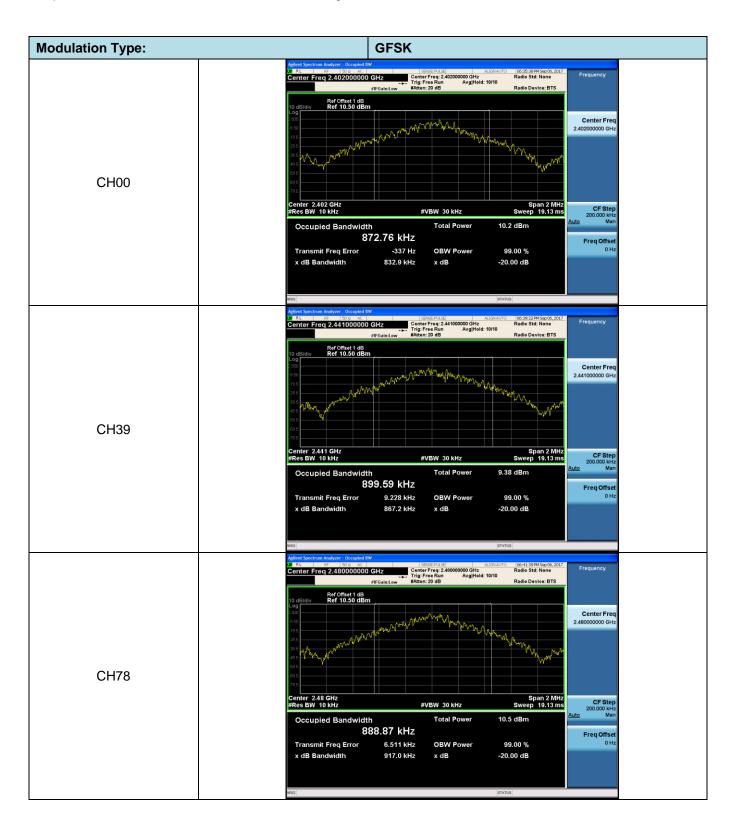
LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

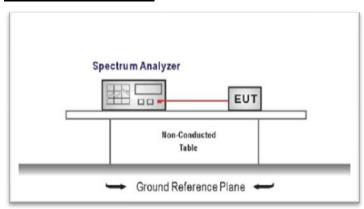
TEST RESULTS

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result	
	00	0.8329			
GFSK	39	0.8672	-	Pass	
	78	0.9170			
	00	1.299			
π/4DQPSK	39	1.342	-	Pass	
	78	1.339			
	00	1.329			
8DPSK	39	1.260	-	Pass	
	78	1.335			

Report No.: TRE1710007002 Page: 19 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 20 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 21 of 58 Issued: 2017-10-20


Report No.: TRE1710007002 Page: 22 of 58 Issued: 2017-10-20

5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 2/3*20 dB bandwidth of the hopping channel, whichever is greater.

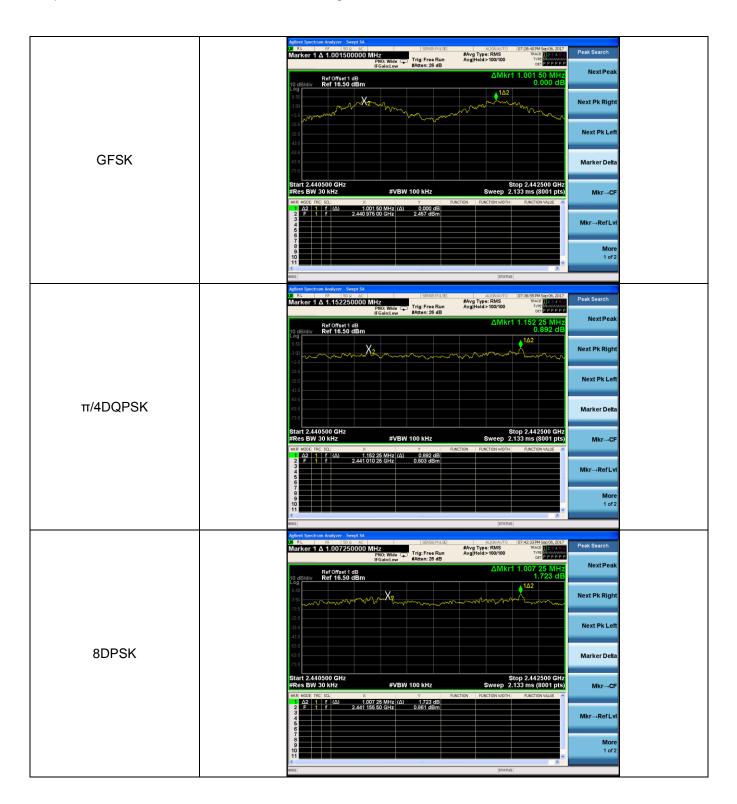
TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

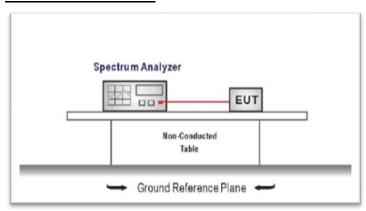

TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	39	1.002	≥0.932	Pass
π/4DQPSK	39	1.152	≥0.861	Pass
8DPSK	39	1.007	≥0.854	Pass

Note:

^{*:} GFSK limit = The maximum 20 dB Bandwidth for GFSK modulation on the section 5.4. $\pi/4DQPSK$ limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4DQPSK$ modulation on the section 5.4. 8DPSK limit = 2/3 * The maximum 20 dB Bandwidth for 8DPSK modulation on the section 5.4

Report No.: TRE1710007002 Page: 23 of 58 Issued: 2017-10-20


Report No.: TRE1710007002 Page: 24 of 58 Issued: 2017-10-20

5.6. Hopping Channel Number

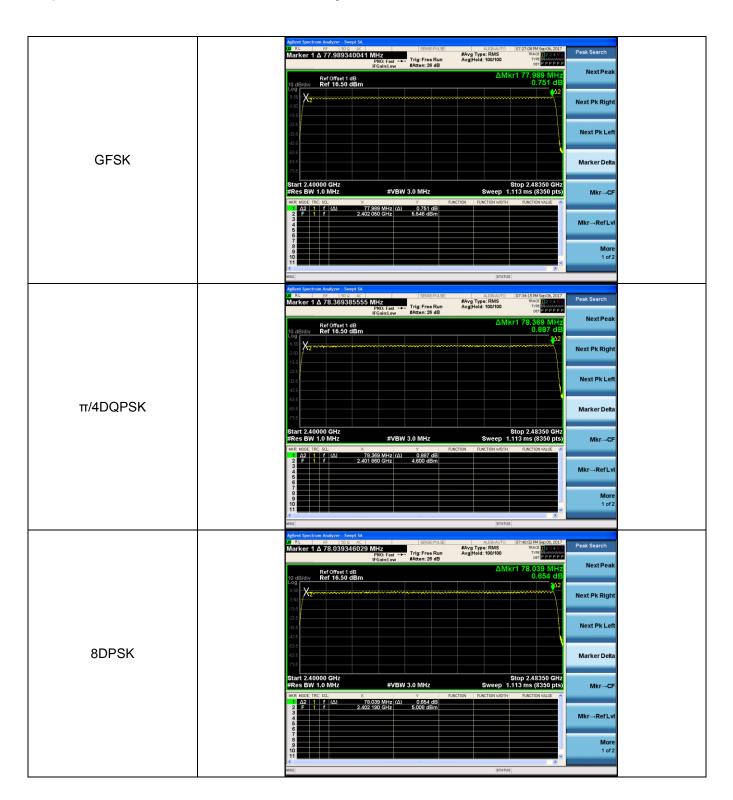
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = the frequency band of operation
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

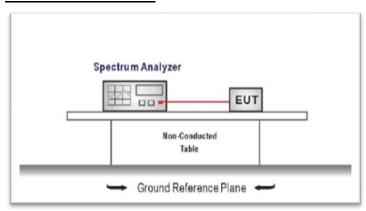

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result	
GFSK	79			
π/4DQPSK	79	≥15.00	Pass	
8DPSK	79			

Report No.: TRE1710007002 Page: 25 of 58 Issued: 2017-10-20


Report No.: TRE1710007002 Page: 26 of 58 Issued: 2017-10-20

5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

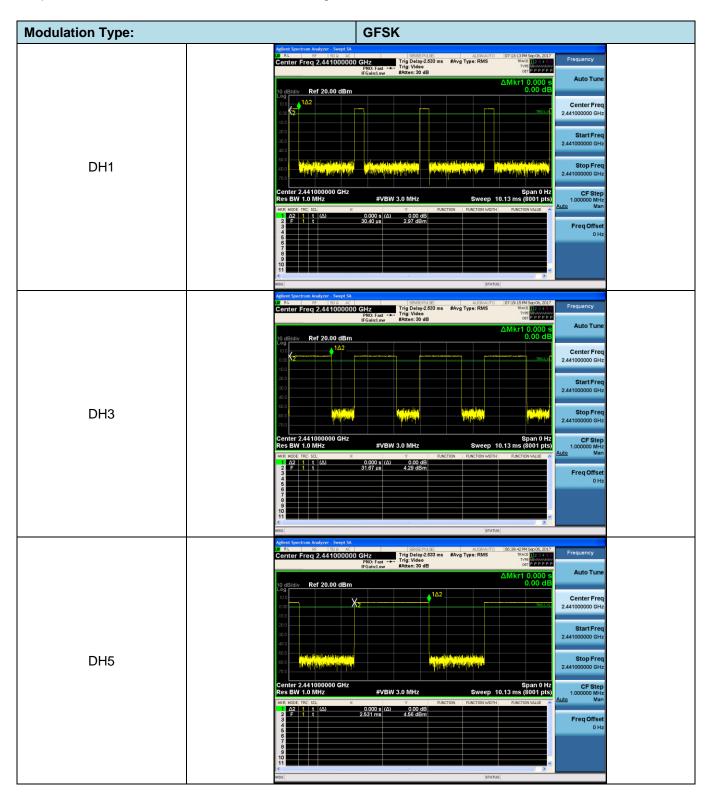
TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW
 - Sweep = as necessary to capture the entire dwell time per hopping channel,
 - Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result	
	DH1	0.118			
GFSK	DH3	0.261	≤ 0.40	Pass	
	DH5	0.306			
	2DH1	0.122			
π/4DQPSK	2DH3	0.261	≤ 0.40	Pass	
	2DH5	0.307			
	3DH1	0.122			
8DPSK	3DH3	0.261	≤ 0.40	Pass	
	3DH5	0.307			


Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2DH1, 3DH1 Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2DH3, 3DH3 Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2DH5, 3DH5

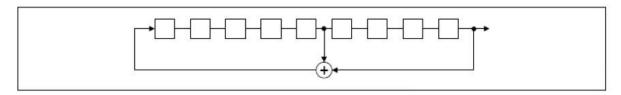
Report No.: TRE1710007002 Page: 27 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 28 of 58 Issued: 2017-10-20

Report No.: TRE1710007002 Page: 29 of 58 Issued: 2017-10-20

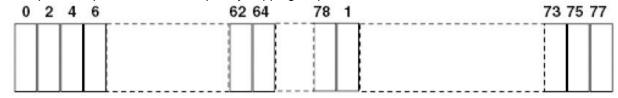
Report No.: TRE1710007002 Page: 30 of 58 Issued: 2017-10-20

5.8. Pseudorandom Frequency Hopping Sequence


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

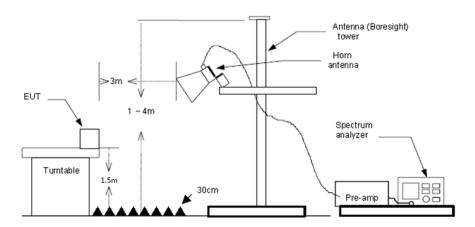
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No.: TRE1710007002 Page: 31 of 58 Issued: 2017-10-20


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:
 RBW=1 MHz, VBW=3 MHz Peak detector for Peak value
 RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

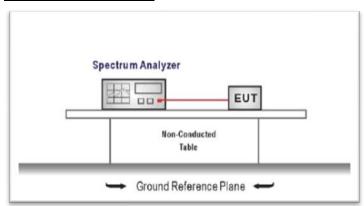
Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Report No.: TRE1710007002 Page: 32 of 58 Issued: 2017-10-20

					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	33.63	28.05	6.62	37.65	30.65	74.00	-43.35	Horizontal	Peak
2390.03	33.21	27.65	6.75	37.87	29.74	74.00	-44.26	Horizontal	Peak
2310.00	35.60	28.05	6.62	37.65	32.62	74.00	-41.38	Vertical	Peak
2390.03	35.52	27.65	6.75	37.87	32.05	74.00	-41.95	Vertical	Peak
2310.00	23.00	28.05	6.62	37.65	20.02	54.00	-33.98	Horizontal	Average
2379.05	26.61	27.70	6.74	37.84	23.21	54.00	-30.79	Horizontal	Average
2390.03	21.60	27.65	6.75	37.87	18.13	54.00	-35.87	Horizontal	Average
2310.00	23.01	28.05	6.62	37.65	20.03	54.00	-33.97	Vertical	Average
2390.03	22.46	27.65	6.75	37.87	18.99	54.00	-35.01	Vertical	Average

CH78									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	36.57	27.26	6.83	37.87	32.79	74.00	-41.21	Horizontal	Peak
2500.00	36.20	27.20	6.84	37.87	32.37	74.00	-41.63	Horizontal	Peak
2483.50	42.50	27.26	6.83	37.87	38.72	74.00	-35.28	Vertical	Peak
2500.00	36.66	27.20	6.84	37.87	32.83	74.00	-41.17	Vertical	Peak
2483.50	23.45	27.26	6.83	37.87	19.67	54.00	-34.33	Horizontal	Average
2500.00	21.84	27.20	6.84	37.87	18.01	54.00	-35.99	Horizontal	Average
2483.50	29.20	27.26	6.83	37.87	25.42	54.00	-28.58	Vertical	Average
2500.00	21.93	27.20	6.84	37.87	18.10	54.00	-35.90	Vertical	Average


Report No.: TRE1710007002 Page: 33 of 58 Issued: 2017-10-20

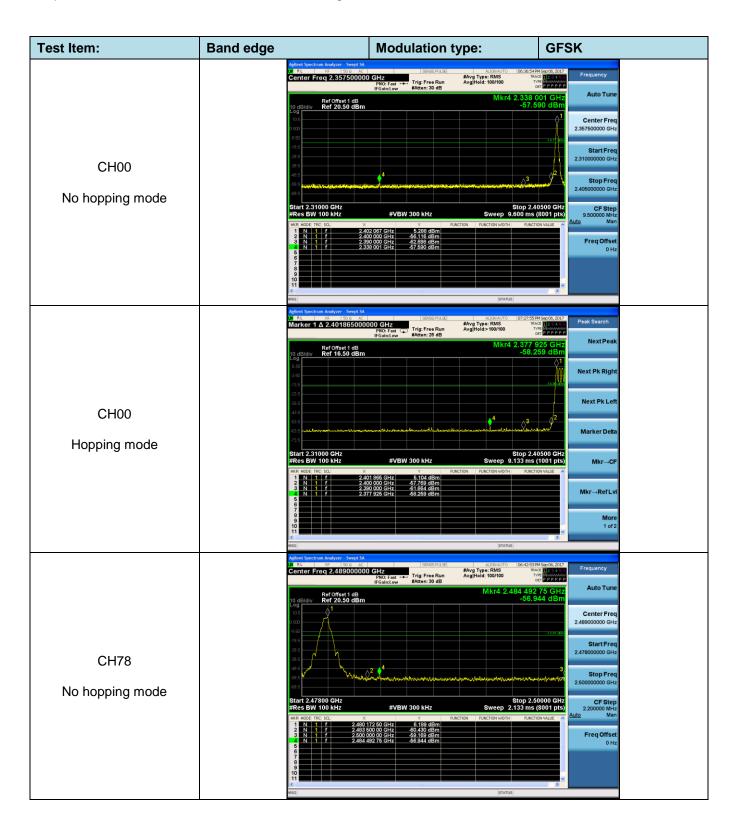
5.10. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - RBW = 100 kHz, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: TRE1710007002 Page: 34 of 58 Issued: 2017-10-20

