

FCC TEST REPORT for Anker Technology Co., Limited

SoundBuds Sport IE20 Model No.: A3230

Prepared for:Anker Technology Co., LimitedAddress:Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok,
Kowloon, Hongkong

Prepared By Address Shenzhen Anbotek Compliance Laboratory Limited
1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number	:	R011603245I
Date of Test	:	Mar. 09~28, 2016
Date of Report	:	Mar. 29, 2016

TABLE OF CONTENT

Description

Test Report

Page

1. GENERAL INFORMATION		
1.2. Auxiliary Equipment Used during Test. 5 1.3. Description of Test Facility. 5 1.4. Measurement Uncertainty. 5 2. TEST METHODOLOGY. 6 2.1. Summary of Test Results. 6 2.2. Description of Test Modes. 6 3. CONDUCTED EMISSION TEST. 7 3.1. Block Diagram of Test Setup. 7 3.2. Power Line Conducted Emission Measurement Limits (15:207). 7 3.3. Configuration of EUT on Measurement. 7 3.4. Operating Condition of EUT. 7 3.5. Test Procedure. 8 3.6. Test equipment. 8 3.7. Power Line Conducted Emission Measurement Results. 8 4. FCC PART 15:247 REQUIREMENTS FOR DSSS & OFDM MODULATION. 13 4.1 Test Setup. 13 4.2 6dB Bandwidth. 13 4.3. Maximum Peak output power test. 17 4.4. Band Edges Measurement. 20 4.5. Peak Power Spectral Density. 31 4.6. Radiated Emissions. 34 5.1. Antenna requirement. 45 5.2. Result. 45 6. PHOTOGRAPH. 46 6.1 Photo of Cond		
1.3. Description of Test Facility	1.1. Description of Device (EUT)	4
1.4. Measurement Uncertainty		
2. TEST METHODOLOGY 6 2.1. Summary of Test Results 6 2.2. Description of Test Modes. 6 3. CONDUCTED EMISSION TEST 7 3.1. Block Diagram of Test Setup 7 3.2. Power Line Conducted Emission Measurement Limits (15.207) 7 3.3. Configuration of EUT on Measurement. 7 3.4. Operating Condition of EUT 7 3.5. Test Procedure. 8 3.6. Test equipment. 8 3.7. Power Line Conducted Emission Measurement Results. 8 3.7. Power Line Conducted Emission Measurement Results. 8 4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION. 13 4.1 Test Setup. 13 4.2 6dB Bandwidth. 13 4.3. Maximum Peak output power test. 17 4.4. Band Edges Measurement. 20 4.5. Peak Power Spectral Density. 31 4.6. Radiated Emissions. 34 5.1. Antenna requirement. 45 5.2. Result. 45 6. PHOTOGRAPH. 46 6.1 Photo of Conducted Emission Test. 46 6.2 Photo of Radiation Emission Test. 46 <		
2.1. Summary of Test Results.62.2. Description of Test Modes.63. CONDUCTED EMISSION TEST.73.1. Block Diagram of Test Setup.73.2. Power Line Conducted Emission Measurement Limits (15.207).73.3. Configuration of EUT on Measurement.73.4. Operating Condition of EUT.73.5. Test Procedure.83.6. Test equipment.83.7. Power Line Conducted Emission Measurement Results.83.7. Power Line Conducted Emission Measurement Results.84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION.134.1 Test Setup.134.2 6dB Bandwidth.134.3. Maximum Peak output power test.174.4. Band Edges Measurement.204.5. Peak Power Spectral Density.314.6. Radiated Emissions.345.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48		
2.2. Description of Test Modes.63. CONDUCTED EMISSION TEST.73.1. Block Diagram of Test Setup.73.2. Power Line Conducted Emission Measurement Limits (15.207).73.3. Configuration of EUT on Measurement.73.4. Operating Condition of EUT73.5. Test Procedure.83.6. Test equipment.83.7. Power Line Conducted Emission Measurement Results.84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION.134.1 Test Setup.134.2 6dB Bandwidth.134.3. Maximum Peak output power test.174.4. Band Edges Measurement204.5. Peak Power Spectral Density.314.6. Radiated Emissions.345.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48	2. TEST METHODOLOGY	6
3. CONDUCTED EMISSION TEST	2.1. Summary of Test Results	6
3.1. Block Diagram of Test Setup. 7 3.2. Power Line Conducted Emission Measurement Limits (15.207). 7 3.3. Configuration of EUT on Measurement. 7 3.4. Operating Condition of EUT. 7 3.5. Test Procedure. 8 3.6. Test equipment. 8 3.7. Power Line Conducted Emission Measurement Results. 8 4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION. 13 4.1 Test Setup. 13 4.2 6dB Bandwidth. 13 4.3. Maximum Peak output power test. 17 4.4 Band Edges Measurement. 20 4.5. Peak Power Spectral Density. 31 4.6. Radiated Emissions. 34 5.1. Antenna requirement. 45 5.2. Result. 45 6. PHOTOGRAPH	2.2. Description of Test Modes	6
3.2. Power Line Conducted Emission Measurement Limits (15.207)	3. CONDUCTED EMISSION TEST	7
3.3. Configuration of EUT on Measurement.73.4. Operating Condition of EUT.73.5. Test Procedure.83.6. Test equipment.83.7. Power Line Conducted Emission Measurement Results.84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	3.1. Block Diagram of Test Setup	7
3.4. Operating Condition of EUT	3.2. Power Line Conducted Emission Measurement Limits (15.207)	7
3.5. Test Procedure83.6. Test equipment83.7. Power Line Conducted Emission Measurement Results84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION134.1 Test Setup134.2 6dB Bandwidth134.3. Maximum Peak output power test174.4. Band Edges Measurement204.5. Peak Power Spectral Density314.6. Radiated Emissions345. ANTENNA APPLICATION455.1. Antenna requirement455.2. Result456. PHOTOGRAPH466.1 Photo of Conducted Emission Test466.2 Photo of Radiation Emission Test46APPENDIX I (EXTERNAL PHOTOS)48		
3.5. Test Procedure83.6. Test equipment83.7. Power Line Conducted Emission Measurement Results84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION134.1 Test Setup134.2 6dB Bandwidth134.3. Maximum Peak output power test174.4. Band Edges Measurement204.5. Peak Power Spectral Density314.6. Radiated Emissions345. ANTENNA APPLICATION455.1. Antenna requirement455.2. Result456. PHOTOGRAPH466.1 Photo of Conducted Emission Test466.2 Photo of Radiation Emission Test46APPENDIX I (EXTERNAL PHOTOS)48	3.4. Operating Condition of EUT	7
3.7. Power Line Conducted Emission Measurement Results.84. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	3.5. Test Procedure	
4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION		
4.1 Test Setup.134.2 6dB Bandwidth.134.3. Maximum Peak output power test.174.4. Band Edges Measurement.204.5. Peak Power Spectral Density.314.6. Radiated Emissions.345. ANTENNA APPLICATION.455.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.466.2 Photo of Radiation Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48	3.7. Power Line Conducted Emission Measurement Results	
4.2 6dB Bandwidth	4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	
4.3. Maximum Peak output power test.174.4. Band Edges Measurement.204.5. Peak Power Spectral Density.314.6. Radiated Emissions.345. ANTENNA APPLICATION.455.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.466.2 Photo of Radiation Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48	4.1 Test Setup	13
4.4. Band Edges Measurement.204.5. Peak Power Spectral Density.314.6. Radiated Emissions.345. ANTENNA APPLICATION.455.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.466.2 Photo of Radiation Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48	4.2 6dB Bandwidth	
4.5. Peak Power Spectral Density	4.3. Maximum Peak output power test	
4.6. Radiated Emissions.345. ANTENNA APPLICATION.455.1. Antenna requirement.455.2. Result.456. PHOTOGRAPH.466.1 Photo of Conducted Emission Test.466.2 Photo of Radiation Emission Test.46APPENDIX I (EXTERNAL PHOTOS).48		
5. ANTENNA APPLICATION. 45 5.1. Antenna requirement. 45 5.2. Result. 45 6. PHOTOGRAPH. 46 6.1 Photo of Conducted Emission Test. 46 6.2 Photo of Radiation Emission Test. 46 APPENDIX I (EXTERNAL PHOTOS). 48		
5.1. Antenna requirement. 45 5.2. Result. 45 6. PHOTOGRAPH. 46 6.1 Photo of Conducted Emission Test. 46 6.2 Photo of Radiation Emission Test. 46 APPENDIX I (EXTERNAL PHOTOS). 48	4.6. Radiated Emissions	34
5.2. Result	5. ANTENNA APPLICATION	45
6. PHOTOGRAPH	5.1. Antenna requirement	45
6.1 Photo of Conducted Emission Test	5.2. Result	
6.2 Photo of Radiation Emission Test	6. PHOTOGRAPH	46
APPENDIX I (EXTERNAL PHOTOS) 48	6.1 Photo of Conducted Emission Test	46
	6.2 Photo of Radiation Emission Test	46
APPENDIX II (INTERNAL PHOTOS)	APPENDIX I (EXTERNAL PHOTOS)	48
	APPENDIX II (INTERNAL PHOTOS)	

TEST REPORT

Applicant	:	Anker Technology Co., Limited
Manufacturer	:	Anker Technology Co., Limited
EUT	:	SoundBuds Sport IE20
Model No.	:	A3230
Serial No.	:	N.A.
Trade Mark	:	ANKER
Rating	:	DC 5V, 150mA

Measurement Procedure Used: FCC Part15 Subpart C 2015, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test :

Mar. 09~28, 2016

Prepared by :

(Tested Engineer / Kebo Zhang)

(Project Manager / Amy Ding)

Ton dien

Reviewer :

Approved & Authorized Signer :

(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	SoundBuds Sport IE20
Model Number	:	A3230
Test Power Supply	:	AC 120V, 60Hz for adapter/ AC 240V, 60Hz for adapter/ DC 3.7V Battery inside
Frequency	:	2402~2480MHz
Modulation	:	GFSK
Channel Spacing	:	2MHz
Number of Channels	:	40
Antenna Type	:	Ceramic Chip Antenna
Antenna Gain	:	2.1 dBi
Applicant Address		Anker Technology Co., Limited Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Manufacturer Address		Anker Technology Co., Limited Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Factory Address	:	DONGGUAN HELE ELECTRONICS CO., LTD Dalingya Industrial Zone, Daojiao Town, DongGuan, Guangdong, China
Date of receipt	:	Mar. 09, 2016
Date of Test	:	Mar. 09~ 28, 2016

1.2. Auxiliary Equipment Used during Test

Adapter

: Manufacturer: ZTE M/N: STC-A2050I1000USBA-C S/N: 201202102100876 Input: 100-240V~50/60Hz 0.3A Output: DC 5V, 1000mA

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

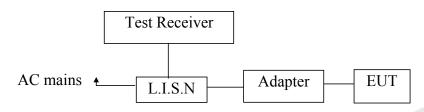
The EUT has been tested according to the following specifications:

	81		
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	- / -	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	_	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.


Channel Low(2402MHz), Channel Middle(2440MHz) and Channel High(2480MHz) are chosen for the final testing.

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits $dB(\mu V)$				
MHz	Quasi-peak Level	Average Level			
0.15 ~ 0.50	66 ~ 56*	56~46*			
0.50 ~ 5.00	56	46			
5.00 ~ 30.00	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency. 2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

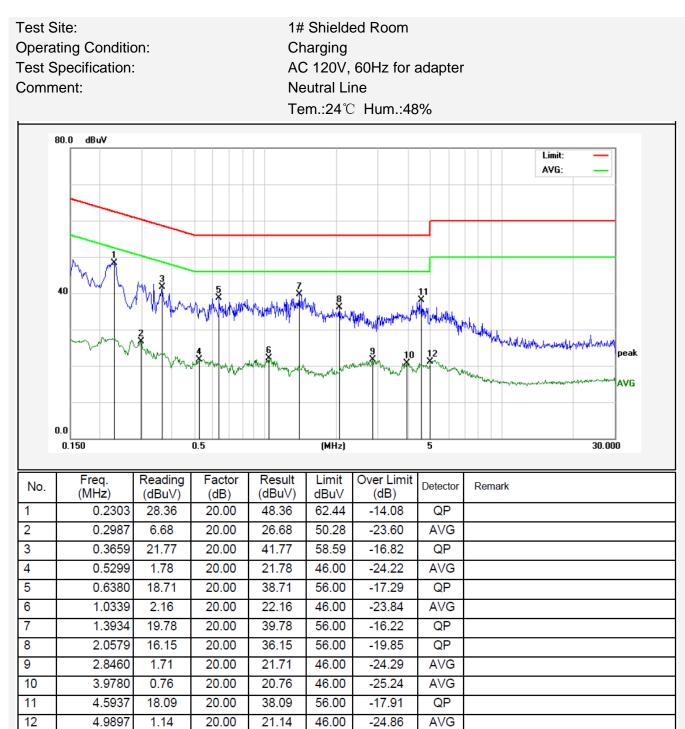
The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

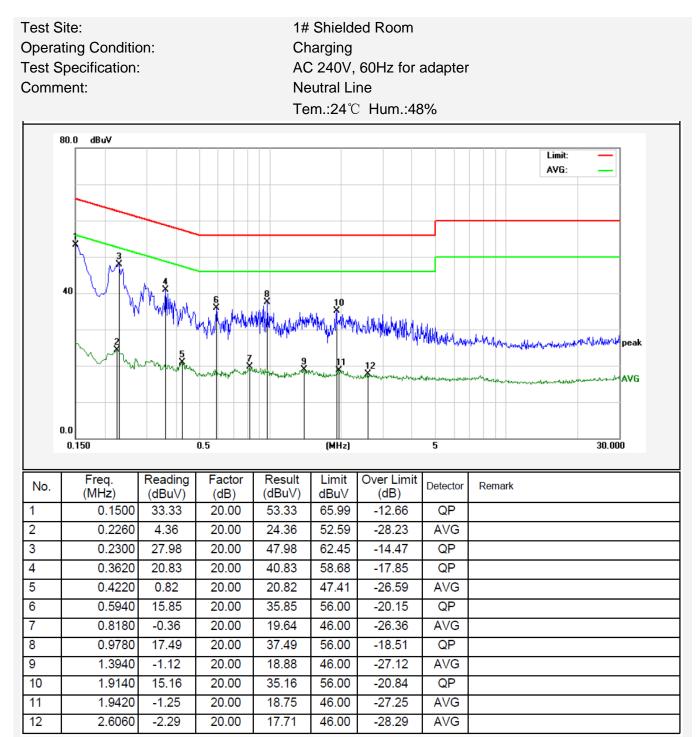
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 17, 2015	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 17, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 17, 2015	1 Year

3.7. Power Line Conducted Emission Measurement Results **PASS.**


The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

Test S Opera	Site: ating Conditic	on:		Charg	•						
Test Specification:				AC 12	AC 120V, 60Hz for adapter						
Comment:				Live Li	Live Line						
				Tem.:2	24℃ H	um.:48%					
	80.0 dBuV										
									Limit: — AVG: —		
	× **										
	40	Man .	6X	X	3						
	No - 3	ראיי	ury half milli	ANA	man with the	AND	All Anon	uh hansen	when when the state of the stat		
								Providence of the second se			
	www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A WWW	9		1 12		when the strategy of the strat		
	1 Marine M	J. Martin	www.collection.com	and the former way	Man work	X Ý	1 1 12 12		when the work of the second of the peak		
		, mm 5	un altressen pr	myuntuntonin	9 Manukraw	X Ý	1 1 12				
	0.0		0.5	miner and the second	9 ////////////////////////////////////	X Ý	5	and such a such as			
	0.0		0.5		(MHz)	Weener Marker of Marker	Verene May		and the second s		
No.	0.0 0.150	Reading	0.5 Factor	Result	(MHz)	Over Limit	Verene May	Remark	and the second s		
	0.0		0.5		(MHz)	Weener Marker of Marker	5		and the second s		
No.	0.0 0.150 Freq. (MHz)	Reading (dBuV)	0.5 Factor (dB)	Result (dBuV)	(MHz) Limit dBuV	Over Limit (dB)	5 Detector		and the second s		
No.	0.0 0.150 Freq. (MHz) 0.1499	Reading (dBuV) 30.33	0.5 Factor (dB) 20.00	Result (dBuV) 50.33	(MHz) Limit dBuV 66.00	Over Limit (dB) -15.67	5 Detector		and the second s		
No. 1 2	0.0 0.150 Freq. (MHz) 0.1499 0.2232	Reading (dBuV) 30.33 7.60	0.5 Factor (dB) 20.00 20.00	Result (dBuV) 50.33 27.60	(MHz) (MHz) Limit dBuV 66.00 52.70	Over Limit (dB) -15.67 -25.10	5 Detector QP AVG		and the second s		
No. 1 2 3	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280	Reading (dBuV) 30.33 7.60 27.27	0.5 Factor (dB) 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27	(MHz) Limit dBuV 66.00 52.70 62.52	Over Limit (dB) -15.67 -25.10 -15.25	5 Detector QP AVG QP		and the second s		
No. 1 2 3 4	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618	Reading (dBuV) 30.33 7.60 27.27 20.83	0.5 Factor (dB) 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83	(MHz) Limit dBuV 66.00 52.70 62.52 58.69	Over Limit (dB) -15.67 -25.10 -15.25 -17.86	5 Detector QP AVG QP QP		and the second s		
No. 1 2 3 4 5	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618 0.4193	Reading (dBuV) 30.33 7.60 27.27 20.83 1.35	0.5 Factor (dB) 20.00 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83 21.35	(MHz) Limit dBuV 66.00 52.70 62.52 58.69 47.46	Over Limit (dB) -15.67 -25.10 -15.25 -17.86 -26.11	5 Detector QP AVG QP AVG		and the second s		
No. 1 2 3 4 5 6	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618 0.4193 0.5936	Reading (dBuV) 30.33 7.60 27.27 20.83 1.35 16.85	0.5 Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83 21.35 36.85	(MHz) Limit dBuV 66.00 52.70 62.52 58.69 47.46 56.00	Over Limit (dB) -15.67 -25.10 -15.25 -17.86 -26.11 -19.15	5 Detector QP AVG QP AVG QP		and the second s		
No. 1 2 3 4 5 6 7	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618 0.3618 0.4193 0.5936 0.9778	Reading (dBuV) 30.33 7.60 27.27 20.83 1.35 16.85 17.99	0.5 Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83 21.35 36.85 37.99	(MHz) (MHz) Limit dBuV 66.00 52.70 62.52 58.69 47.46 56.00 56.00	Over Limit (dB) -15.67 -25.10 -15.25 -17.86 -26.11 -19.15 -18.01	5 Detector QP AVG QP AVG QP AVG		and the second s		
No. 1 2 3 4 5 6 7 8	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618 0.4193 0.5936 0.9778 1.4858	Reading (dBuV) 30.33 7.60 27.27 20.83 1.35 16.85 17.99 17.68	0.5 Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83 21.35 36.85 37.99 37.68	(MHz) (MHz) Limit dBuV 66.00 52.70 62.52 58.69 47.46 56.00 56.00 56.00	Over Limit (dB) -15.67 -25.10 -15.25 -17.86 -26.11 -19.15 -18.01 -18.32	5 Detector QP AVG QP AVG QP AVG QP QP QP QP		and the second s		
No. 1 2 3 4 5 6 7 8 9	0.0 0.150 Freq. (MHz) 0.1499 0.2232 0.2280 0.3618 0.4193 0.5936 0.9778 1.4858 1.6377	Reading (dBuV) 30.33 7.60 27.27 20.83 1.35 16.85 17.99 17.68 2.77	0.5 Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	Result (dBuV) 50.33 27.60 47.27 40.83 21.35 36.85 37.99 37.68 22.77	(MHz) Limit dBuV 66.00 52.70 62.52 58.69 47.46 56.00 56.00 56.00 46.00	Over Limit (dB) -15.67 -25.10 -15.25 -17.86 -26.11 -19.15 -18.01 -18.32 -23.23	5 Detector QP AVG QP AVG QP QP QP QP QP QP QP QP		and the second s		



Test Site: Operating Condition: Test Specification: Comment:				Charg AC 24 Live Li	1# Shielded Room Charging AC 240V, 60Hz for adapter Live Line Tem.:24℃ Hum.:48%					
80.0	dBuV									
									Limit: AVG:	
40	Why	NA NA	5	in the second	10					
0.0		munt	0.5	6 B	9 (MHz)	11 12 4.00 Martin Mar	Holydd Hydrof Amer y Arwyd 5	nhhideyahanda nonnananan	Addition for a second	AVG 30.000
0.150	req.	Reading	Factor	€ Result (dBuV)	Limit	0ver Limit	Han and a second	Remark	Hellin Juneared	AVG
0.150 No. F				Result (dBuV) 51.25		11 12 	5	and the second s	/4/14/2	AVG
0.150 No. F (N	Freq. MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	Limit dBuV	Over Limit (dB)	5 Detector	and the second s	Hellin Juneared	AVG
0.150 No. (N 1 2	Freq. MHz) 0.1539	Reading (dBuV) 31.25	Factor (dB) 20.00	(dBuV) 51.25	Limit dBuV 65.78	11 12 0ver Limit (dB) -14.53	5 Detector QP	and the second s	140149	AVG
0.150 No. F (N 1 2 3	Freq. MHz) 0.1539 0.2900	Reading (dBuV) 31.25 22.13	Factor (dB) 20.00 20.00	(dBuV) 51.25 42.13	Limit dBuV 65.78 60.52	11 12 0ver Limit (dB) -14.53 -18.39	5 Detector QP QP	and the second s	/4////////////////////////////////////	AVG
0.150 No. F (N 1 2 3 4	Freq. MHz) 0.1539 0.2900 0.3940	Reading (dBu∨) 31.25 22.13 16.36	Factor (dB) 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36	Limit dBuV 65.78 60.52 57.98	0ver Limit (dB) -14.53 -21.62	5 Detector QP QP	and the second s	140149	AVG
0.150 No. F (1 2 3 4 5	Freq. MHz) 0.1539 0.2900 0.3940 0.4260	Reading (dBuV) 31.25 22.13 16.36 1.54	Factor (dB) 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54	Limit dBuV 65.78 60.52 57.98 47.33	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79	5 Detector QP QP QP AVG	and the second s	/4////p.,/	AVG
0.150 No. F (No. 2 2 3 4 5 6	Freq. MHz) 0.1539 0.2900 0.3940 0.4260 0.8420	Reading (dBuV) 31.25 22.13 16.36 1.54 14.36	Factor (dB) 20.00 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54 34.36	Limit dBuV 65.78 60.52 57.98 47.33 56.00	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79 -21.64	5 Detector QP QP AVG QP	and the second s	//////////////////////////////////////	AVG
0.150 No. F (No. 1 2 3 4 5 6 7	Freq. MHz) 0.1539 0.2900 0.3940 0.4260 0.8420 0.9220	Reading (dBuV) 31.25 22.13 16.36 1.54 14.36 -0.27	Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54 34.36 19.73	Limit dBuV 65.78 60.52 57.98 47.33 56.00 46.00	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79 -21.64 -26.27	5 Detector QP QP AVG QP AVG	and the second s	/4////////////////////////////////////	AVG
0.150	Freq. MHz) 0.1539 0.2900 0.3940 0.4260 0.8420 0.9220 1.4260	Reading (dBuV) 31.25 22.13 16.36 1.54 14.36 -0.27 14.05	Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54 34.36 19.73 34.05	Limit dBuV 65.78 60.52 57.98 47.33 56.00 46.00 56.00	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79 -21.64 -26.27 -21.95	5 Detector QP QP AVG QP AVG QP	and the second s	//////////////////////////////////////	AVG
0.150 No. F (N 1 2 3 4 5 6 7 8	Freq. MHz) 0.1539 0.2900 0.3940 0.4260 0.8420 0.9220 1.4260 1.4460	Reading (dBuV) 31.25 22.13 16.36 1.54 14.36 -0.27 14.05 -0.76	Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54 34.36 19.73 34.05 19.24	Limit dBuV 65.78 60.52 57.98 47.33 56.00 46.00 56.00 46.00	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79 -21.64 -26.27 -21.95 -26.76	5 Detector QP QP AVG QP AVG QP AVG	and the second s	//////////////////////////////////////	AVG
No. F (No. 150 2 3 4 5 6 7 8 9	Freq. MHz) 0.1539 0.2900 0.3940 0.4260 0.8420 0.9220 1.4260 1.4460 1.9580	Reading (dBuV) 31.25 22.13 16.36 1.54 14.36 -0.27 14.05 -0.76 -0.76	Factor (dB) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	(dBuV) 51.25 42.13 36.36 21.54 34.36 19.73 34.05 19.24 18.65	Limit dBuV 65.78 60.52 57.98 47.33 56.00 46.00 56.00 46.00 46.00	11 12 Over Limit (dB) -14.53 -18.39 -21.62 -25.79 -21.64 -26.27 -21.95 -26.76 -27.35	5 Detector QP QP AVG QP AVG QP AVG AVG	and the second s	/ 4/ / 1/9, June 1200 / 1 0	AVG

4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1 Test Setup

4.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port
- to the spectrum analyzer.
- 3. Set the spectrum analyzer as:
- RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup See 4.1

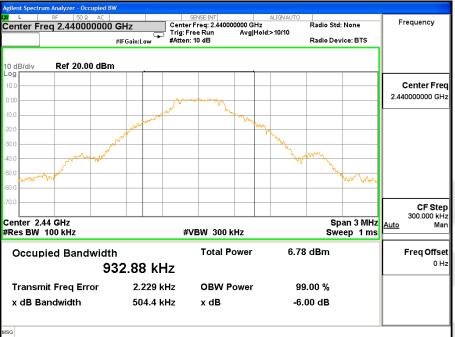
d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2015	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2015	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2015	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2015	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2015	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2016	1 Year

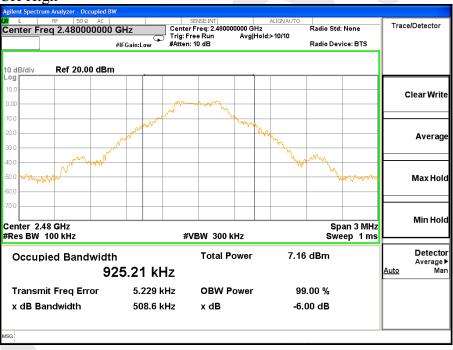
e. Test Results

Pass.

f. Test Data

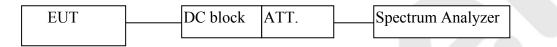

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	501.2		Pass
Mid	2440	504.4	>500	Pass
High	2480	508.6		Pass

Test Plots See the following page.


enter Freq 2.402000		SENSE:JNT Center Freq: 2.402 Trig: Free Run #Atten: 10 dB		>10/10	Radio Std: None Radio Device: BTS	Frequency
dB/div Ref 20.00	dBm					
D.0						Center Freq 2.402000000 GHz
.0	armen and and and and and and and and and an		Nor Why	<u> </u>		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WWWWWW			- Vh	when we we we wanted a second se	
.0					0	CF Step 300.000 kHz
enter 2.402 GHz Res BW 100 kHz		#VBW 300	kHz		Span 3 MHz Sweep 1 ms	<u>Auto</u> Man
Occupied Bandw	idth 928.83 kl		Power	6.60 c	IBm	Freq Offset
Transmit Freq Erro	3.273	kHz OBW	Power	99.0	0 %	
x dB Bandwidth	501.2	kHz xdB		-6.00	dB	

CH Mid

CH High


4.3. Maximum Peak output power test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following: 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).

2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

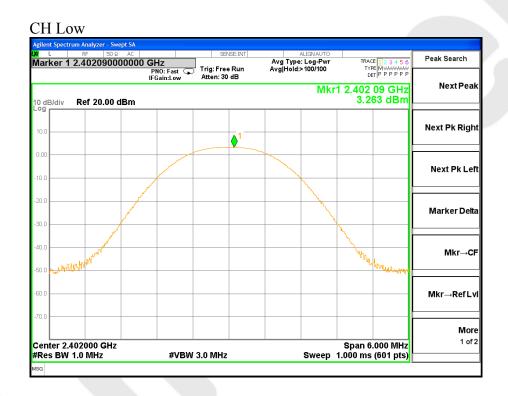
This test was according the kDB 558074 D01 DTS Meas Guidance v03r03 9.1.1:

1. This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

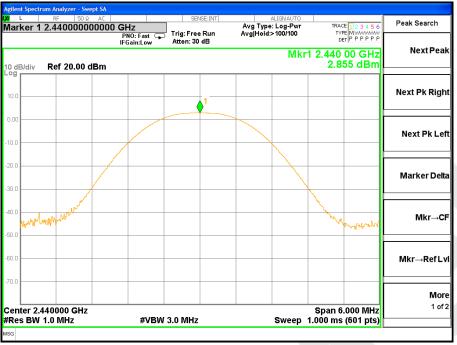
- 2. Set the RBW \geq DTS bandwidth.
- 3. Set the VBW \geq 3*RBW.
- 4. Set the span \geq 3*RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level.

d. Test Equipment

Same as the equipment listed in 4.2.


e. Test Results

Pass.


g. Test Data

Channel Frequency		Maximum transmit power Limit			Result
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2402	3.263			Pass
Mid	2440	2.855	30	1	Pass
High	2480	3.109			Pass

CH Mid

4.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method:
- 1) For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The EUT is tested in 9*6*6 Chamber.

- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

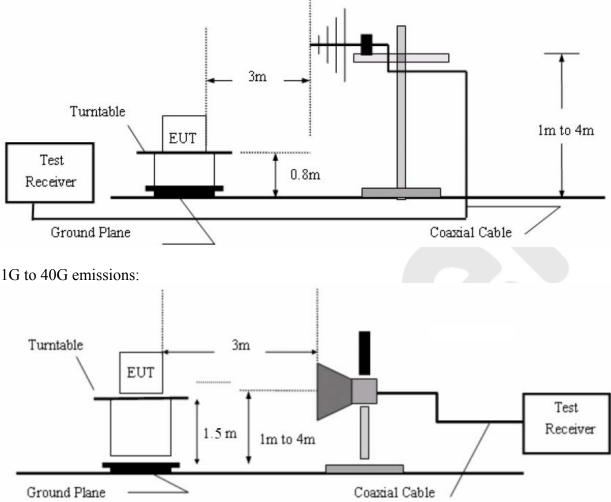
The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz. Detector: **Quasi-Peak**

For above 1GHz Peak measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz.

Detector: Peak

For above 1GHz average measurement:


The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

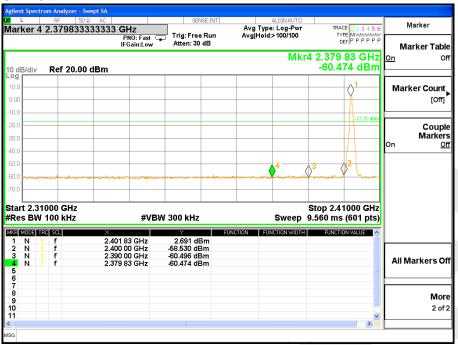
Detector: Peak

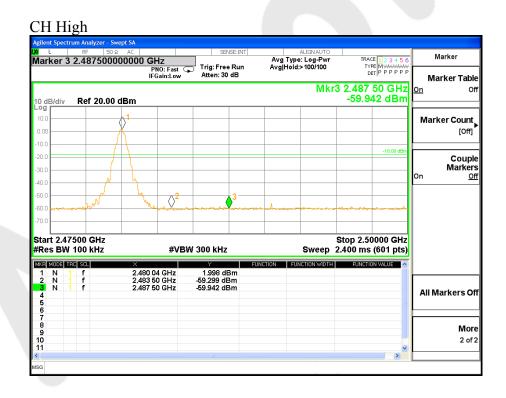
5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

c. Test Equipment

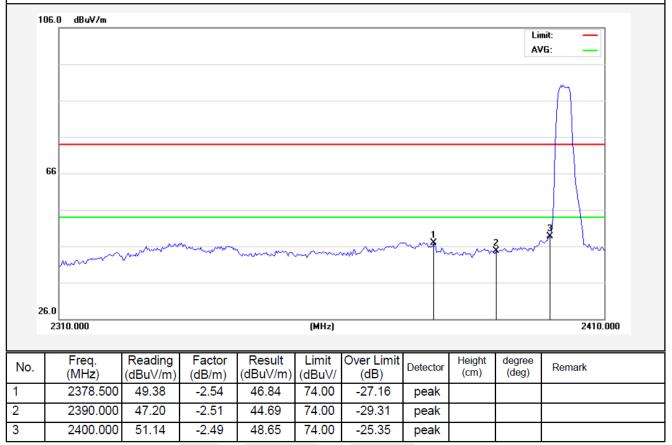
Same as the equipment listed in 4.2.

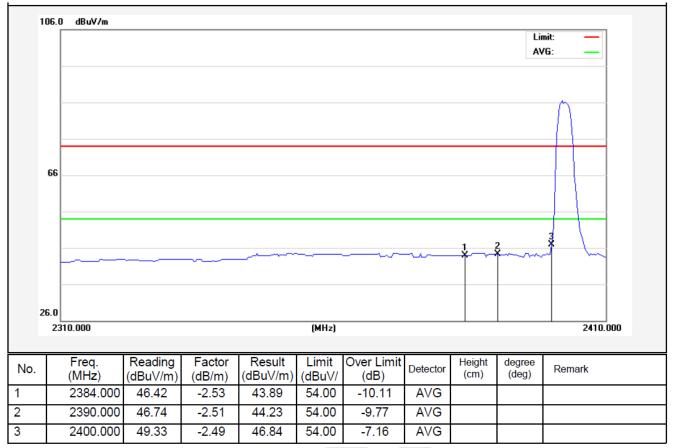
d. Test Results


Pass.

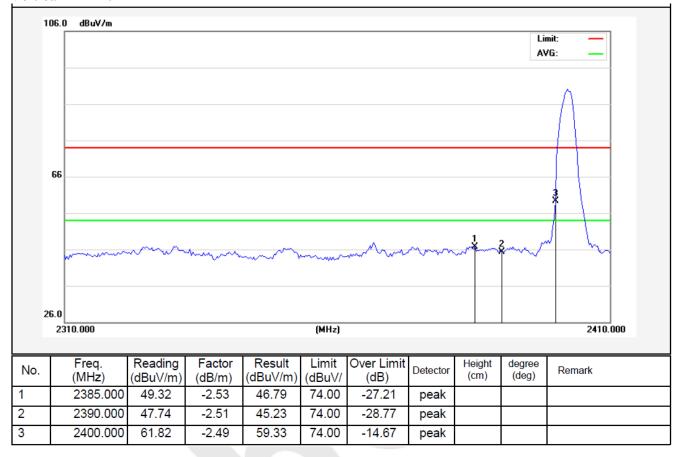

e. Test Plots

See the following page.

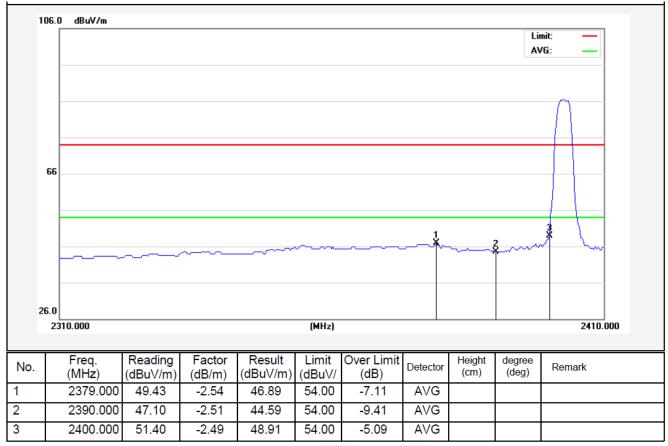

CH Low



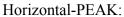
2402MHz Horizontal-PEAK:

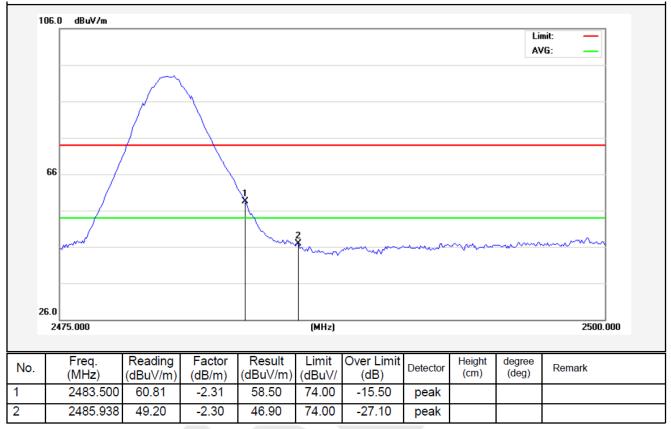


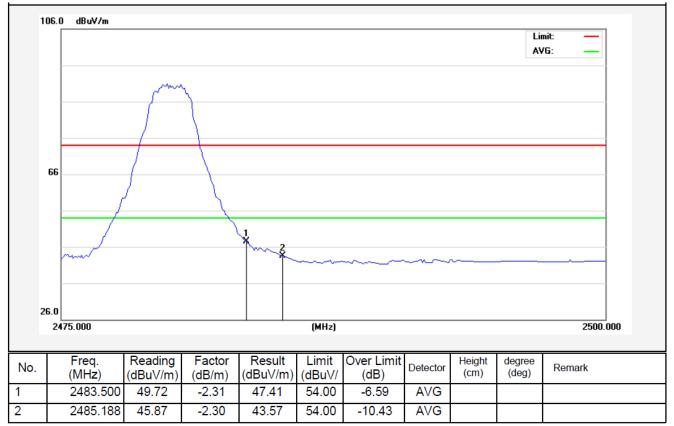
Horizontal-AV:

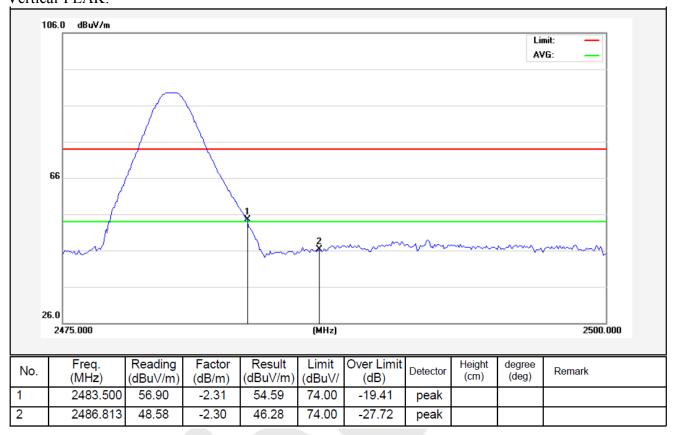


2402MHz Vertical-PEAK:

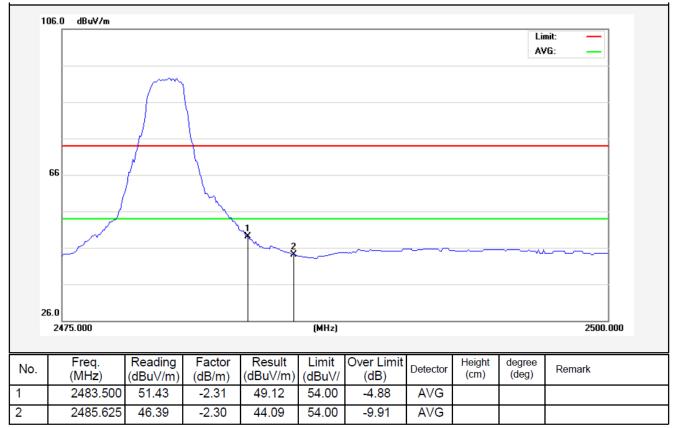



Vertical-AV:


2480MHz



Horizontal-AV:



2480MHz Vertical-PEAK:

Vertical-AV:

4.5. Peak Power Spectral Density

a. Limit

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW

3. Record the max. reading.

4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

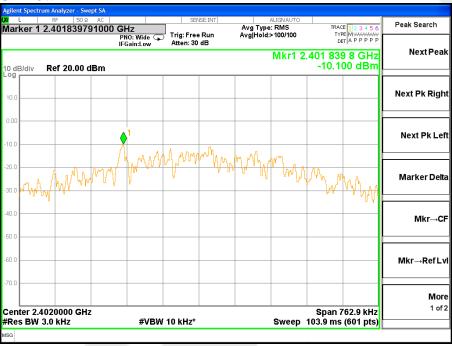
Same as the equipment listed in 4.2.

d. Test Setup See 3.1

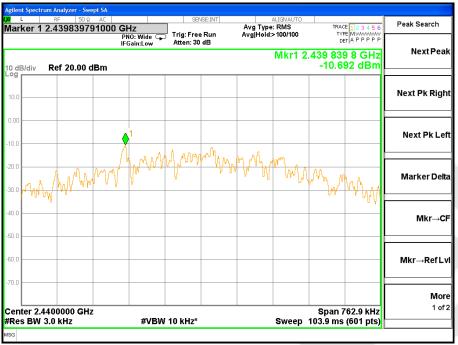
e. Test Results

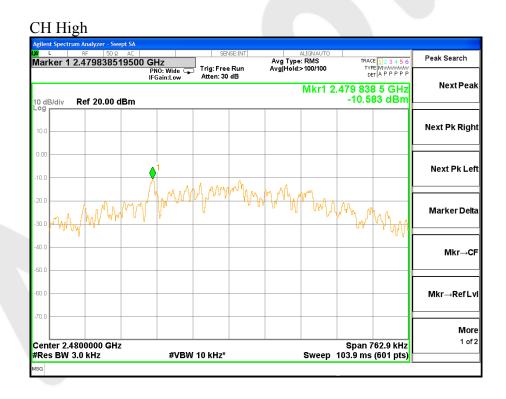
Pass

f. Test Data


Please refer to the following data.

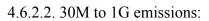
g. Test Plot See the following pages

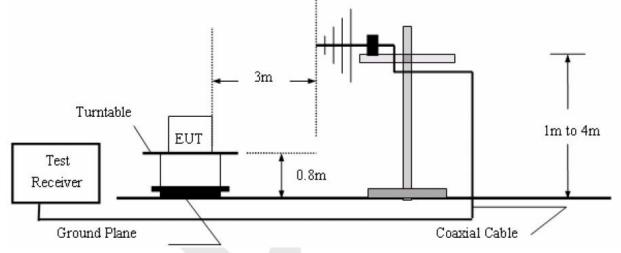

Test mode: IEEE 802.11b							
Channel	Frequency (MHz)	PPSD (dBm/3KHz)	∑PPSD (dBm/3KHz)	Limit (dBm)	Result		
Low	2402	-10.100	-	8.00	Pass		
Mid	2440	-10.692	-	8.00	Pass		
High	2480	-10.583	-	8.00	Pass		

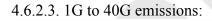

CH Low

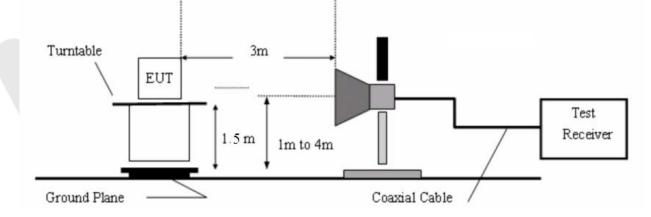
CH Mid

4.6. Radiated Emissions


4.6.1.1. Test Limits (< 30 MHZ)						
Frequency	Field Strengt	th Measur	ement Distance			
(MHz)	(microvolts/me	ter) (meter)				
0.009-0.490	2400/F(kHz)) 300				
0.490-1.705	24000/F(kH	z) 30				
1.705-30.0	30	30				
4.6.1.2. Test Limi	its (≥ 30 MHZ)					
FIELD STRENG	TH FIEL	D STRENGTH	S15.209			
of Fundamental:	of Ha	rmonics	30 - 88 MHz	40 dBuV/m		
@3M						
902-928 MHZ			88 - 216 MHz	43.5		
2.4-2.4835 GHz			216 - 960 MHz	46		
94 dBµV/m @3m	1 54 dH	3μV/m @3m	ABOVE 960 MI	Hz 54dBuV/m		
. 0						


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC011830	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006W	15I00041SN04 6	Jun 30, 2015	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2015	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2015	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2015	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2015	1 Year
13	TEMP&HUMI PROGRAMMABL E CHAMBER	Bell Group	BE-THK-15 0M8	SE-0137	Mar 16, 2016	1 Year



- Turntable EUT 0.8 m Ground Plane
- 4.6.2. Test Configuration: 4.6.2.1. 9k to 30MHz emissions:

4.6.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

PASS.

The EUT was tested on (Charging, BT Mode) modes, only the worst data of (Charging) is attached in the following pages. Only the worst case (x orientation).

The test results of above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Job No.:		01160324	451		Pol	arization:		Hor	Horizontal			
stand	ard:	(RE)FC	C PART15	C _3m	Pov	ver Source:	:	AC	AC 120V, 60Hz for adapte			
Fest item:		Radiatio	n Test		Ten	np.(C)/Hun	n.(%RH	24.3	24.3(C)/52%RH			
fest N	Iode:	Chargin	g		Dist	tance:		3m				
	80.0 dBu∀/m											
	80.0 aBuy/m									Limit: —		
									<u> </u>	Margin: —		
	40											
										4 56		
							3			A CONTRACTOR OF THE OWNER		
	+ Human Atom		2			A. 14	I	understation and	Mary Mary Mary	401440		
	Mr. Marine M	the adarander made	Mular	upulthern forth	War water when	monthemandul	MALAAM					
			Many water									
	0.0 30.000 40	50 60	70 80		(MHz)		300	400	500 600	0 700 1000.000		
	00.000 10	00 00	10 00		(000	100	000 000	100.000		
No.	Freq.	Reading	Factor	Result	Limit	Over Limit	Detector	Height	degree	Remark		
	(MHz)	(dBuV/m)	· · · ·	(dBuV/m)		(dB)		(cm)	(deg)	Komunk		
	33.9174	37.02	-14.86	22.16	40.00	-17.84	peak					
	70 5000	2016	-19.74	18.41	40.00	-21.59	peak					
2	70.5836	38.15	44.07	05.45			h nook		1	1		
2 3	340.7817	39.42	-14.27	25.15	46.00	-20.85	peak					
2 3 4	340.7817 842.1296	39.42 35.24	-5.77	29.47	46.00	-16.53	peak					
1 2 3 4 5 6	340.7817	39.42										

ob No.:		01160324	45I		P	olarization	1:	Verti	Vertical		
tanda	ard:	(RE)FC	C PART1	5 C _3m	P	ower Sour	ce:	AC 12	AC 120V, 60Hz for adapte		
est ite	em:	Radiatio	on Test		Т	emp.(C)/H	lum.(%R	24.3(C) /52%RH		
est M	Iode:	Chargin	g		Ľ)istance:		3m			
	00.0 10 1/1										
	80.0 dBu∀/m								Lir	nit: —	
									Ma	argin: —	
	40									<u> </u>	
	1		[Fe	
	24MA3					_	4			5E W	
	May of the State	an where the second second	WH Lahrmed	phandhuunaath	happlikka	ANIA MARANA MARANA	Mirad	lendefolderen, f. A.	alan baharan ba	while the second se	
	My M	Markan Markan Markan Markan M	444 Julian	phanithing do ^{nth}	haddhada	ANN	MULUM	lesteret and so the	asenneka ereken		
	0.0		1. Alert	phierethine, perfe	Maphillista	an a					
	0.0 40	50 60	WHU Jum	phanetheres and	(MHz)	AN THE AND	300		0.000 600		
	30.000 40	50 60 Reading	70 80 Factor	Result	Limit	Over Limit	300	400 Height	500 600 degree		
No.	30.000 40 Freq. (MHz)	50 60 Reading (dBuV/m)	70 80 Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	300 Detector	400	500 600	700 1000.000	
No.	30.000 40 Freq. (MHz) 38.4808	50 60 Reading (dBuV/m) 44.70	70 80 Factor (dB/m) -11.56	Result (dBuV/m) 33.14	Limit (dBuV/ 40.00	Over Limit (dB) -6.86	300 Detector peak	400 Height	500 600 degree	700 1000.000	
No.	30.000 40 Freq. (MHz) 38.4808 42.6000	50 60 Reading (dBuV/m) 44.70 38.44	70 80 Factor (dB/m) -11.56 -11.39	Result (dBuV/m) 33.14 27.05	Limit (dBuV/ 40.00 40.00	Over Limit (dB) -6.86 -12.95	300 Detector peak peak	400 Height	500 600 degree	700 1000.000	
No.	30.000 40 Freq. (MHz) 38.4808 42.6000 204.9550	50 60 Reading (dBuV/m) 44.70 38.44 39.07	70 80 Factor (dB/m) -11.56 -11.39 -15.68	Result (dBuV/m) 33.14 27.05 23.39	Limit (dBuV/ 40.00 40.00 43.50	Over Limit (dB) -6.86 -12.95 -20.11	300 Detector peak peak peak	400 Height	500 600 degree	700 1000.000	
No. 1 2 3 4 5	30.000 40 Freq. (MHz) 38.4808 42.6000	50 60 Reading (dBuV/m) 44.70 38.44	70 80 Factor (dB/m) -11.56 -11.39	Result (dBuV/m) 33.14 27.05	Limit (dBuV/ 40.00 40.00	Over Limit (dB) -6.86 -12.95	300 Detector peak peak	400 Height	500 600 degree	700 1000.000	

ob No.: tandard:		0116032	2451			Polarizati	ion:	Horizontal DC 3.7V		
		(RE)FC	C PART	15 C _3m		Power So	urce:			
est iten	n:	Radiati	on Test			Temp.(C)	/Hum.(%	24.3(0	C)/52%RH	
ote:		2402MI	Hz			Distance:			3m	
106	.0 dBuV/m									
										nit: —
									A	·u
5	6									
						1				~
	- man			Ψų.		mt.		~~~~~	man	month
						¥			· · • • • •	
6.	o									
	1000.000		2000	3000	(MHz)	5000 6	6000 7000	8000 9000		18000.000
	F	Destin	Fasta	Desult	1.1		4	11.2.12		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limi (dB)	Detector	Height (cm)	degree (deg)	Remark
1	5122.500	40.27	3.74	44.01	74.00	-29.99	peak			
2	5122.500	30.97	3.74	34.71	54.00	-19.29	AVG			

ob No.: tandard:		0116032451				Polarizatio	on:	Vertical		
		(RE)FC	C PART1	5 C _3m]	Power Sou	irce:		DC 3	.7V
est ite	em:	Radiatio	on Test		,	Temp.(C)/	Hum.(%	RH):	24.3(C)/52%RH
ote:		2402MH	[z]	Distance:			3m	
1	06.0 dBu∀/m									
										nit: — /6: —
	56									
				~~~~~		1				
		~~~~~	- multi		m	~ fm	~~~~	m	h	m
						×				
	6.0									
	1000.000		2000	3000	(MHz)	5000 6	000 7000	8000 9000		18000.000
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	5082.657	41.26	3.71	44.97	74.00	-29.03	peak			
2	5082.657	30.89	3.71	34.60	54.00	-19.40	AVG	1		

ob No.:		0116032	451]	Polarizatio	on:		Horizontal		
andaro	d:	(RE)FC	C PART1	5 C _3m]	Power Sou	rce:		DC 3.7V		
est iten	n:	Radiatio	on Test		r	Гетр.(С)/	Hum.(%	RH):	24.3(0	C)/52%RH	
ote:		2440MH	[z]	Distance:			3m		
106	.0 dBuV/m										
										nit: — /G: —	
									AV	/6:	
5	6										
				~1		1				~	
			~~~		m.	· ·····	man	mor	mm	mander	
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
6.1	o										
	1000.000		2000	3000	(MHz)	5000 6	5000 7000	8000 90001	10000	18000.000	
							- 1				
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark	
	5887.500	36.86	6.43	43.29	74.00	-30.71	peak				
2	5887.500	27.36	6.43	33.79	54.00	-20.21	AVG				

ob No.: tandard:		0116032	45 I			Polarizat	ion:	Vertical DC 3.7V 24.3(C)/52%RH		
		(RE)FC	C PART	15 C _3m		Power So	urce:			
est ite	em:	Radiati		Temp.(C))/Hum.(%	6RH):				
ote:		2440MI	Iz			Distance:		3m		
1(06.0 dBu∀/m									
									Lin	
	56									
		m				m		n mi		more and
		, 			~~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- hand			
(6.0		2000	3000	(MHz)	5000 60	00 7000	8000 9000		18000.000
					()					
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	5420.000	41.75	3.94	45.69	74.00	-28.31	peak			
2	5420.000	31.92	3.94	35.86	54.00	-18.14	AVG			

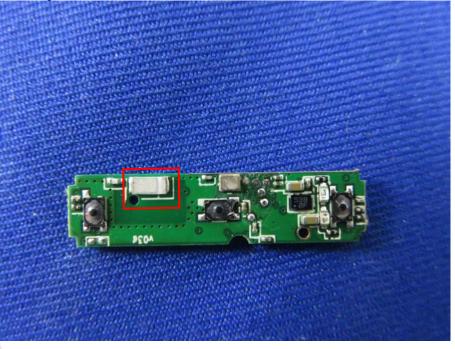
ob No.: tandard:		01160324	51]	Polarizatio	on:	Horizontal DC 3.7V			
		(RE)FCC	C PART1	5 C _3m]	Power Sou				
est item:		Radiatio	n Test		•	Гетр.(С)/	Hum.(%	RH):	24.3(0	C)/52%RH
ote:		2480MH	Z]	Distance:			3m	
106.0	dBuV/m									
										mit: <u>—</u> /G: <u>—</u>
56										
				M		1				~~
	~~~~~	k	~~~	h		-	mpm	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
						Î				
6.0										
10	00.000		2000	3000	(MHz)	5000 6	000 7000	8000 9000		18000.000
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	5122.500	41.51	3.74	45.25	74.00	-28.75	peak			
				1		1			1	



ob No.:		011603	32451		]	Polarizatio	n:	Vertical		
tandaı	rd:	(RE)F	CC PAR	Г15 С _3m	l	Power Sou	rce:	DC 3.7V		
est ite	m:	Radia	tion Test		r	Femp.(C)/I	Hum.(%]	RH):	24.3(0	C)/ <b>52%RH</b>
ote:		2480MHz				Distance:			3m	
10	)6.0 dBu∀/m									
									Lir	nit: <u>—</u> /G: <u>—</u>
	56									
			~~~~			~		hanner		~~~~~
				~~~	~~~~	2 V	~~~~~		hum	
6	5.0 1000.000		2000	3000	6411-2	5000 6	000 7000	0000 0000		18000.000
	1000.000		2000	3000	(MHz)	5000 6	000 7000	0000 3000		18000.000
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	5292.500	41.67	3.85	45.52	74.00	-28.48	peak			
2	5292.500	31.37	3.85	35.22	54.00	-18.78	AVG			



### **5. ANTENNA APPLICATION**


#### 5.1. Antenna requirement

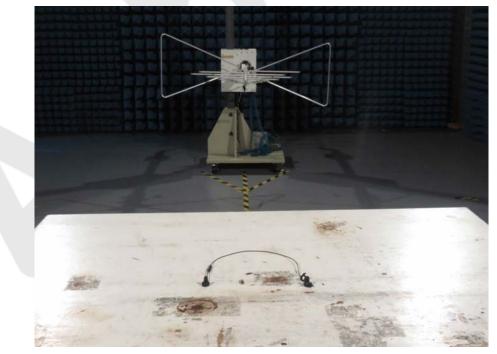
The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

### 5.2. Result

The EUT's antenna used a ceramic chip antenna which is permanently attached, The antenna's gain is 2.1dBi and meets the requirement.



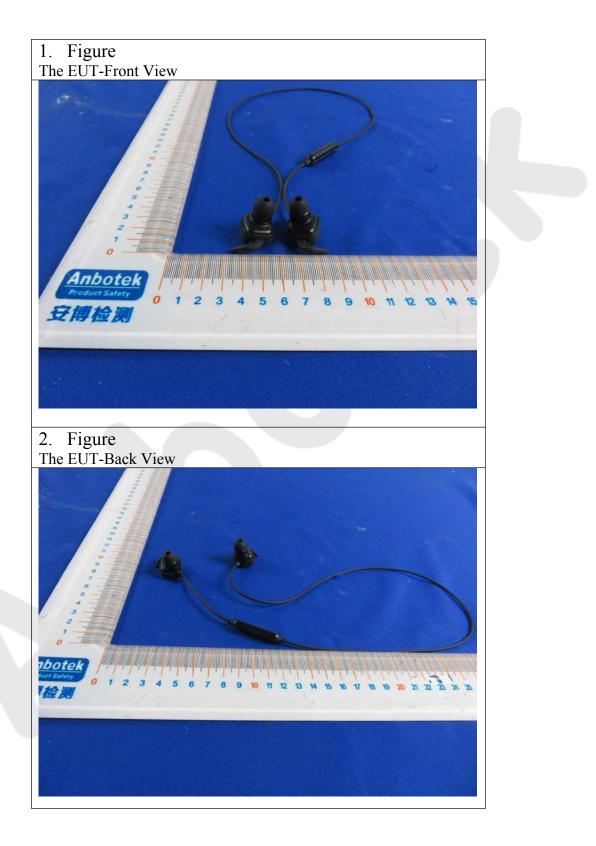



## 6. PHOTOGRAPH

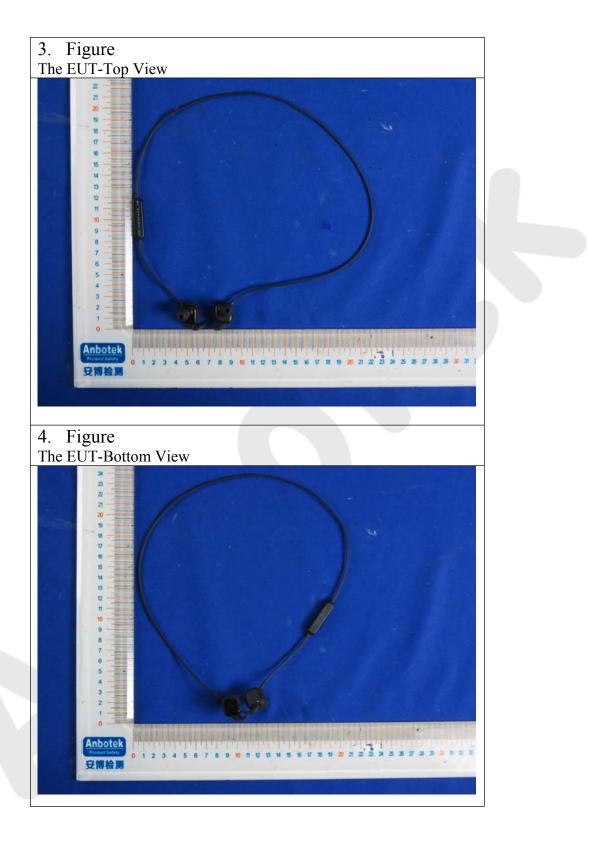
6.1 Photo of Conducted Emission Test



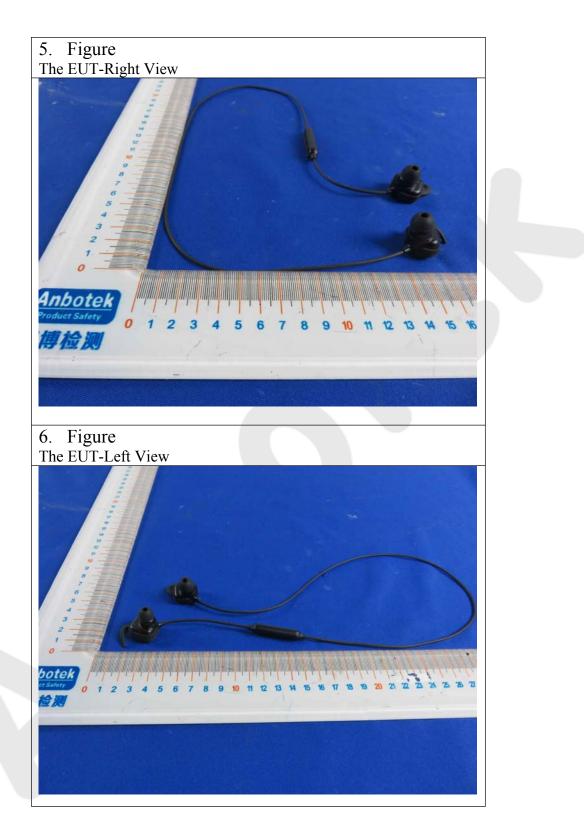
6.2 Photo of Radiation Emission Test







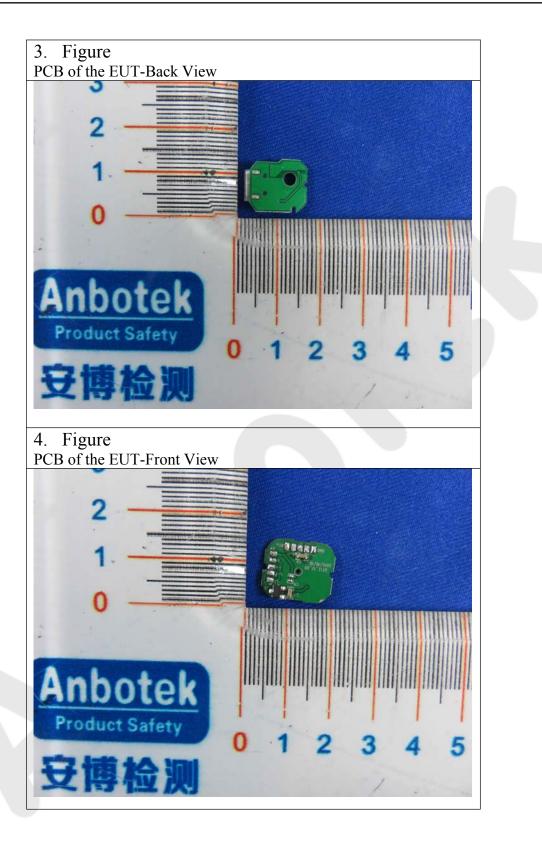


# **APPENDIX I (EXTERNAL PHOTOS)**



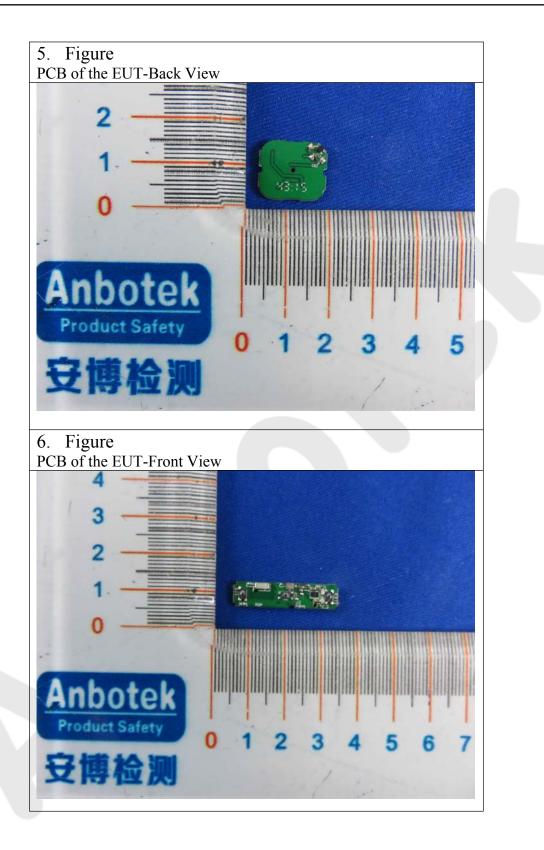












# **APPENDIX II (INTERNAL PHOTOS)**



