

FCC TEST REPORT for Wintop Electronics Co., Limited

2.4GHz Wireless Optical Mouse Model No.: WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU, MP2120LPD, MP2120SNL, MP2120RDF, MP2120CMO, MP2120NBL, MP2120NPK, MP2120NOR, MP2120NGR, MP2120NPR

Prepared for	: Wintop Electronics Co., Limited	
Address	: Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL,	
	HONGKONG	

Prepared By	:	Shenzhen Anbotek Compliance Laboratory Limited
Address	:	1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,
		Nanshan District, Shenzhen, Guangdong, China
		Tel: (86) 755-26066544
		Fax: (86) 755-26014772

Report Number: R011507848IDate of Test: Jul. 29~Aug. 11, 2015Date of Report: Aug. 12, 2015

TABLE OF CONTENTS

Description

Test Report

Page

1. GENERAL INFORMATION	
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	5
2. TEST PROCEDURE	
3. RADIATION INTERFERENCE	
3.1. Requirements (15.249, 15.209):	
3.2. Test Procedure.	
3.3. Test Results	
4. BANDEDGE	
4.1. Requirements (15.249):	
4.2. Test Procedure	
4.3. Test Configuration:	
4.4. Test Results	
5. OCCUPIED BANDWIDTH.	
5.1. Requirements :	
5.2. Test SET-UP	
5.3 Test Equipment	
5.4. Test Results	
6. ANTENNA APPLICATION	
6.1. Antenna requirement	
6.2. Result	
7. PHOTOGRAPH	
7.1. Photo of Radiation Emission Test	

TEST REPORT

Applicant	:	Wintop Electronics Co., Limited
Manufacturer	:	Shenzhen Wintop Electronics Co., Limited
EUT	:	2.4GHz Wireless Optical Mouse
Model No.	:	WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU, MP2120LPD, MP2120SNL, MP2120RDF, MP2120CMO, MP2120NBL, MP2120NPK, MP2120NOR, MP2120NGR, MP2120NPR
Serial No.	:	N.A.
Trade Mark	:	N.A.
Rating	:	DC 3V, 5mA

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.207, 15.249 & 15.209

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without

written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test :	Jul. 29~Aug. 11, 2015					
Prepared by :	(Tested Engineer / Kebo Zhang)					
Reviewer :	(Project Manager / Amy Ding)					
Approved & Authorized Signer :	(Manager / Tom Chen)					

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: 2.4GHz Wireless Optical Mouse
Model Number	 WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU, MP2120LPD, MP2120SNL, MP2120RDF, MP2120CMO, MP2120NBL, MP2120NPK, MP2120NOR, MP2120NGR, MP2120NPR (Note: All samples are the same except the model number and colour, so we prepare "WM-640" for test only.)
Test Power Supply	y: DC 3V
Frequency	: 2409~2476MHz
Channel	: 2409MHz, 2417MHz, 2426MHz, 2440MHz, 2445MHz, 2455MHz, 2460MHz, 2476MHz
Antenna Specification	: PCB Antenna:-1 dBi
Applicant Address	 Wintop Electronics Co., Limited Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL, HONGKONG
Manufacturer Address	 Shenzhen Wintop Electronics Co., Limited Huaguan Industrial Park, Xinhe Road, Baolai Industrial District, Shangmugu, Pinghu Town, Longgang District, Shenzhen City, 518000, China
Factory Address	 Shenzhen Wintop Electronics Co., Limited Huaguan Industrial Park, Xinhe Road, Baolai Industrial District, Shangmugu, Pinghu Town, Longgang District, Shenzhen City, 518000, China
Date of receipt	: Jul. 29, 2015
Date of Test	: Jul. 29~Aug. 11, 2015

1.2. Auxiliary Equipment Used during Test

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A-1, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Shenzhen Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.10-2013 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.30F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.10-2013 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

3. Radiation Interference

3.1. Requirements (15.249, 15.209):

FIELD STRENGTH of Fundamental:	FIELD STRENGTH of Harmonics	S15.209 30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBµV/m @3m	54 dBµV/m @3m	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

3.2. Test Procedure

For below 1GHz, the EUT is placed on a turn table which is 0.8 meter high above the ground. For above 1GHz, the EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation. The test results are listed in Section 4.3.

	1 est Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

Test Equipment

3.3. Test Results

PASS.

Please refer the following pages. Only the worst case (x orientation).

Below 1GHz:

lob N	0.:		011507	7848I			Polarzia	tion:			Horizontal				
Stand	ard	:	(RE)F	CC PART	°15 C _3m		Power S	ource:		DC 3V			DC 3V		
ſest i	tem	:	Radiat	tion Test			Temp.(C	C)/Hum.(%RH):	:	C)/55%RH				
Mode:			ON				Distance				3m				
Note:			30-100	0MHz											
	80.0) dBu∀/m													
											mit:	-			
										м	argin:	-			
												ſ			
							-				_				
	40	-													
				L L			-								
	1								×		while which	we that the at			
	1	1 atten					5		Maller	whomen and white	highlig.				
		hartweeter	What have been and the state		4		A min	and to be a state of the state	AL HAM						
				When when	mandenterman	which have been been been been been been been be	in physical and	multipleter		_					
	0.0			70 00				200	100	F00 600	700	1000.000			
	30	0.000 40	50 60	70 80		(MHz)		300	400	500 600	700	1000.000			
	Т	Freq.	Reading	Factor	Result	Limit	Over Limit		Height	degree					
No.		(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)		(dB)	Detector	(cm)	(deg)	Rem	lark			
1		30.0000	39.82	-16.95	22.87	40.00	-17.13	peak							
2		40.7016	31.79	-10.64	21.15	40.00	-18.85	peak							
3		59.8588	32.24	-15.38	16.86	40.00	-23.14	peak			8				
4		134.0882	35.76	-23.09	12.67	43.50	-30.83	peak							
5		200.6881	39.45	-20.85	18.60	43.50	-24.90	peak							
6	-	419.1081	39.31	-12.40	26.91	46.00	-19.09	peak		-					

Job No.: 01			01150	0115078481				Polarziation:				Vertical						
Standa	ard:		(RE)F	CC PART	15 C _3m		Power Source:				DC 3V				DC 3V			
ſest it	em:		Radia	tion Test			Temp.(C)/Hum.(%	24.3(C)/55%R			24.3(C)/55						
Aode:	:		ON				Distance:				3m							
Note:			30-100	00MHz														
	80.0	dBuV/m									-							
											mit: argin:	_						
												ſ						
									_									
	40																	
		4 X			3	2 X	1		ę	when the state	manund	All a law man shall						
	An	JANN 10 M	Way May May May	the weather that the	and and when and	Muran	W managerer 4	Malananthana	an here and	ynder Verrou i tro								
	0.0																	
	30.00	00 40	50 60	70 80		(MHz)		300	400	500 600	700	1000.000						
No.	(Freq. MHz)	Reading (dBuV/m)	(dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Rem	ark						
1		197.8928	42.01	-15.88	26.13	43.50	-17.37	peak										
2		1 <mark>66.651</mark> 4	S.	-17.66	24.87	43.50	-18.63	peak										
3	1	135.0319	42.72	-18.15	24.57	43.50	-18.93	peak										
4		39.1616	5702 39180 23 28	-11.03	25.28	40.00	-14.72	peak										
5		261.0583	34.95	- <mark>14.06</mark>	20.89	46.00	-25.11	peak										
6	2	19.1081	34.60	-11.30	23.30	46.00	-22.70	peak			_							

Above 1 GHz:

Horizonta CH Low	al (2409MH	z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2409.000	2.17	31.21	35.30	86.25	84.33	114.0	-29.67	Peak
2409.000	2.17	31.21	35.30	76.36	74.44	94.0	-19.56	AV
4818.350	2.56	34.01	34.71	45.32	47.18	74.0	-26.82	Peak
4818.350	2.56	34.01	34.71	34.28	36.14	54.0	-17.86	AV
7227.720	2.98	36.16	35.15	44.26	48.25	74.0	-25.75	Peak
7227.720	2.98	36.16	35.15	31.29	35.28	54.0	-18.72	AV
9636.000								
12045.00								
14454.00								
16863.00								

Vertical	
CHLOW	(2409 MHz)

CITLOW	(24091011)	L)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
2409.000	2.17	31.21	35.30	88.42	86.50	114.0	-27.50	Peak
2409.000	2.17	31.21	35.30	79.53	77.61	94.0	-16.39	AV
4818.190	2.56	34.01	34.71	46.39	48.25	74.0	-25.75	Peak
4818.190	2.56	34.01	34.71	34.21	36.07	54.0	-17.93	AV
7227.540	2.98	36.16	35.15	40.98	44.97	74.0	-29.03	Peak
7227.540	2.98	36.16	35.15	34.12	38.11	54.0	-15.89	AV
9636.000								
12045.00)						
14454.00								
16863.00								

Horizont CH Midd	al lle (2440N	/IHz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2440.000	2.19	31.22	34.60	89.58	88.39	114.0	-25.61	Peak
2440.000	2.19	31.22	34.60	80.31	79.12	94.0	-14.88	AV
4880.240	2.57	35.00	34.58	44.36	47.35	74.0	-26.65	Peak
4880.240	2.57	35.00	34.58	35.49	38.48	54.0	-15.52	AV
7320.630	3.00	36.17	35.14	44.12	48.15	74.0	-25.85	Peak
7320.630	3.00	36.17	35.14	37.03	41.06	54.0	-12.94	AV
9760.000								
12200.00						-		
14640.00							-	
17080.00				() -	

Vertical								
CH Midd	lle (24401	MHz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
2440.000	2.19	31.22	34.60	91.25	90.06	114.0	-23.94	Peak
2440.000	2.19	31.22	34.60	81.58	80.39	94.0	-13.61	AV
4880.310	2.57	35.00	34.58	46.96	49.95	74.0	-24.05	Peak
4880.310	2.57	35.00	34.58	40.11	43.10	54.0	-10.90	AV
7320.470	3.00	36.17	35.14	44.25	48.28	74.0	-25.72	Peak
7320.470	3.00	36.17	35.14	37.13	41.16	54.0	-12.84	AV
9760.000								
12200.00								
14640.00)						
17080.00								

Horizont								
CH High	(2476MH	,	_				-	
Frequency	Cable	Ant	Preamp	Read	Level	Limit	Over	Remark
1 0	Loss	Factor	Factor	Level			Limit	Iteman
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
2476.000	2.20	31.65	36.00	90.45	88.30	114.0	-25.70	Peak
2476.000	2.20	31.65	36.00	82.01	79.86	94.0	-14.14	AV
4952.450	2.58	35.06	34.79	44.58	47.43	74.0	-26.57	Peak
4952.450	2.58	35.06	34.79	38.09	40.94	54.0	-13.06	AV
7428.120	3.02	36.19	34.90	47.25	51.56	74.0	-22.44	Peak
7428.120	3.02	36.20	35.20	38.62	42.64	54.0	-11.36	AV
9904.000								
12380.00								
14856.00								
17332.00) -4	

Vertical CH High (2	476MHz)							
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2476.000	2.20	31.65	36.00	93.25	91.10	114.0	-22.90	Peak
2476.000	2.20	31.65	36.00	84.16	82.01	94.0	-11.99	AV
4952.450	2.58	35.06	34.79	47.52	50.37	74.0	-23.63	Peak
4952.450	2.58	35.06	34.79	37.33	40.18	54.0	-13.82	AV
7428.120	3.02	36.19	34.90	45.24	49.55	74.0	-24.45	Peak
7428.120	3.02	36.20	35.20	39.51	43.53	54.0	-10.47	AV
9904.000								
12380.00								
14856.00)						
17332.00								

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

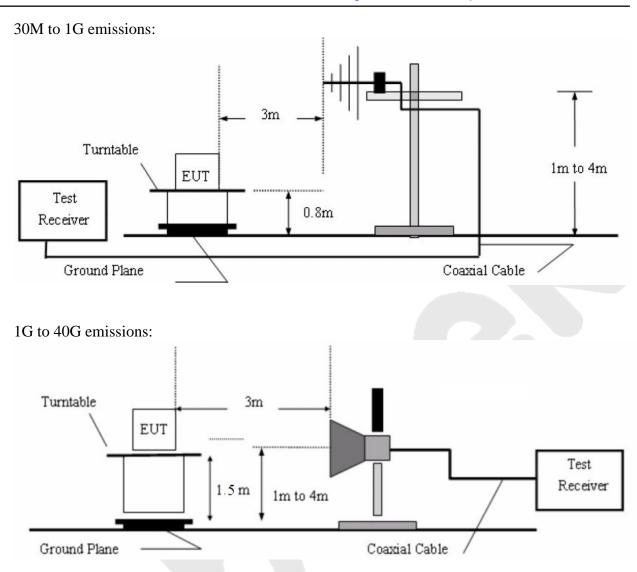
4. Bandedge

4.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

4.2. Test Procedure

The EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test. The device is evaluated in xyz orientation.


Test Equipment

	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

4.3. Test Configuration:

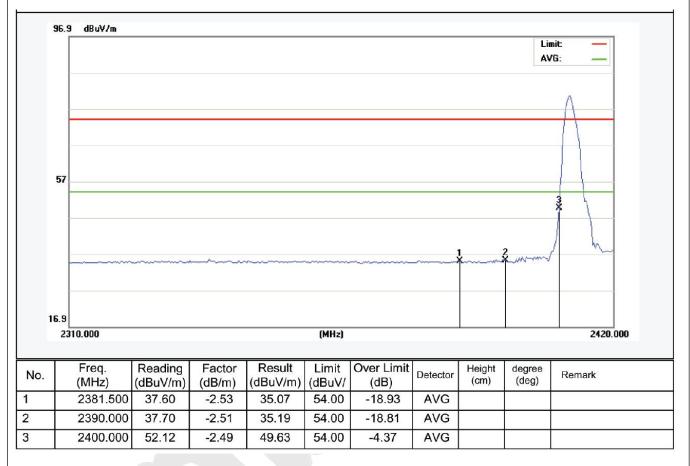
Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AB75WM640 Page 14 of 33 Report No.: R011507848I

4.4. Test Results

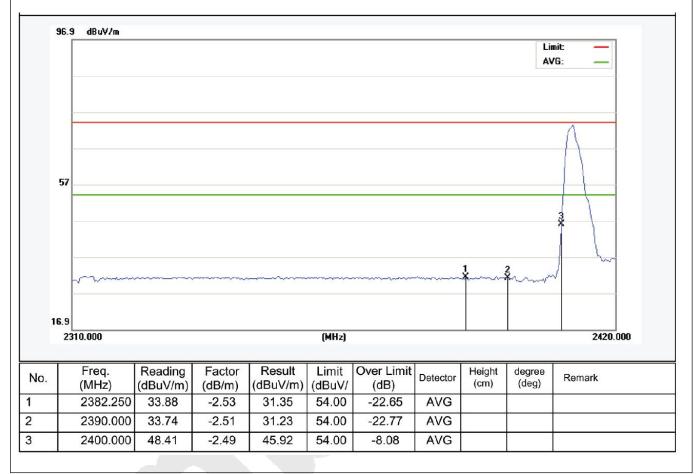
Pass.

Please refer the following plot. Only the worst case (x orientation).

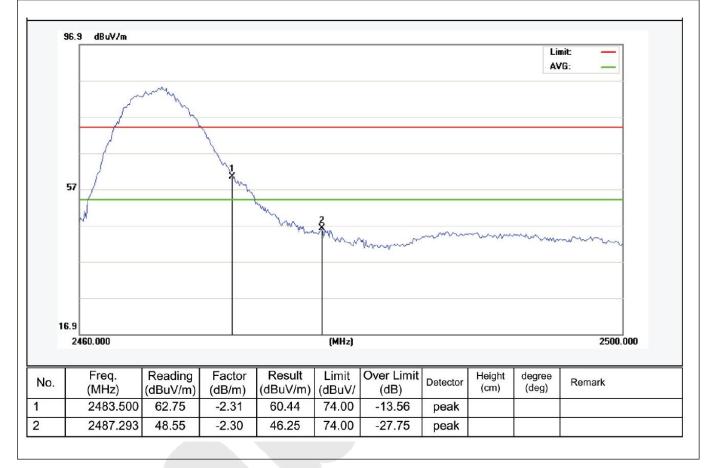
No.:	0115078481	Polarization:	Horizontal
ndard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
t item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
e:	РЕАК	Distance:	3m
96.9 dBuV/r	n		Limit: —
			AVG:
			×
57			
mm	have man man man man	montering	smi 1
and shows	where he are shown as a		
16.9			
2310.000	1	MHz)	2420.000


No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	2375.250	43.92	-2.55	41.37	74.00	-32.63	peak			
2	2390.000	45.02	-2.51	42.51	74.00	-31.49	peak			
3	2400.000	64.90	-2.49	62.41	74.00	-11.59	peak			

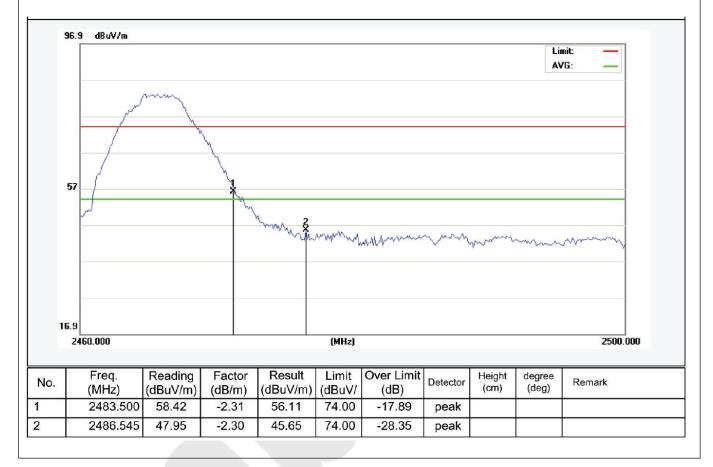
ob No.:		011507	8481			Polarizati	on:		Vert	ical		
tandard	:	(RE)FCC PART15 C _3m				Power Source:			DC 3	DC 3V		
Test item:		Radiation Test				Temp.(C)/Hum.(%RH):			24.3(24.3(C)/55%RH		
lote:		PEAK				Distance:			3m			
96.9	9 dBuV/m											
									Lin AV			
										m		
										3		
										\		
57												
57									م مر	- m		
57	manna	un annorm		v	man	m	untu	1 Av	3 March	- Charles - Char		
57	mmm	w	~~~~	y		m	untu	1 V	s Marcara			
	m	h.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www		3 Marcar			
16.9		u., m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	(MHz)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	*~~~***	3 March	2420.000		
16.9 23	310.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit	Over Limit		Height (cm)	degree (deg)	2420.000 Remark		
16.9 23 No.	Freq.	Reading (dBuV/m) 44.73	Factor (dB/m) -2.53					Height	degree			
16.9	Freq. (MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height	degree			



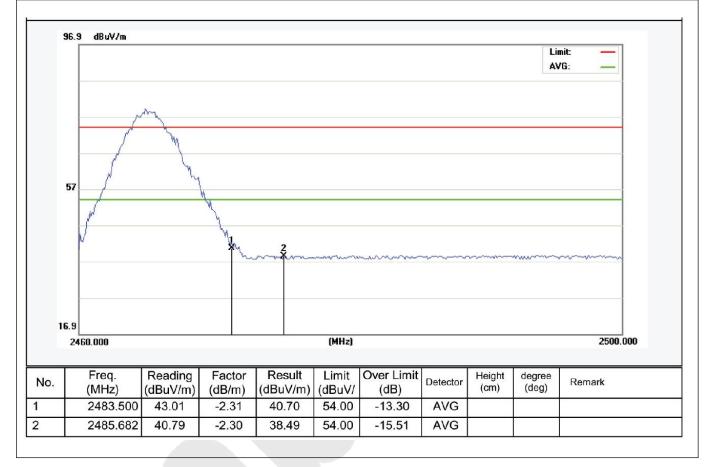
Job No.:	0115078481	Polarization:	Horizontal		
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V		
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH		
Note:	AV	Distance:	3m		



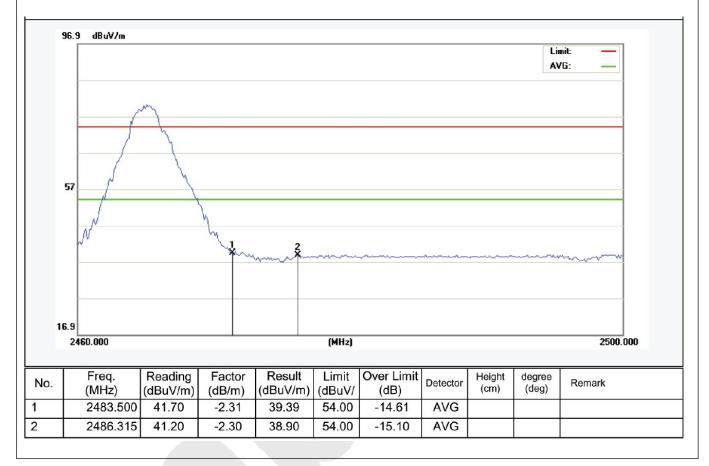
Job No.:	0115078481	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	AV	Distance:	3m



Job No.:	011507848I	Polarization:	Horizontal	
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V	
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH	
Note:	РЕАК	Distance:	3m	



Job No.:	0115078481	Polarization:	Vertical	
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V	
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH	
Note:	PEAK	Distance:	3m	



Job No.:	0115078481	Polarization:	Horizontal	
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V	
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH	
Note:	AV	Distance:	3m	

Job No.:	0115078481	Polarization:	Vertical	
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V	
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH	
Note:	AV	Distance:	3m	

5. Occupied Bandwidth

5.1. Requirements :

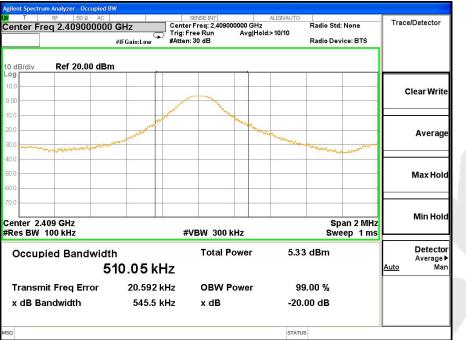
According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.2. Test SET-UP

EUT	Spectrum analyzer
-----	-------------------

5.	5:5 Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

5.3 Test Equipment


5.4. Test Results

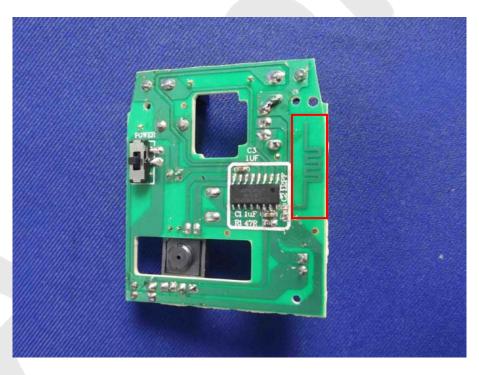
Pass.

Please refer the following plot.



20dB Down:

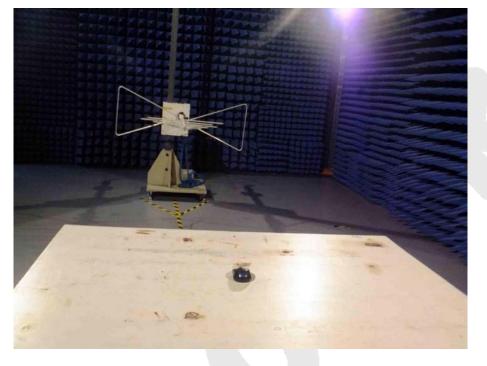
6. ANTENNA APPLICATION


6.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.2. Result


The EUT's antenna used a PCB antenna which is permanently attached, The antenna's gain is -1dBi and meets the requirement.

7. PHOTOGRAPH

7.1. Photo of Radiation Emission Test

APPENDIX I (External Photos)

Figure 1 The EUT-Series View

Figure 2 The EUT-Series View

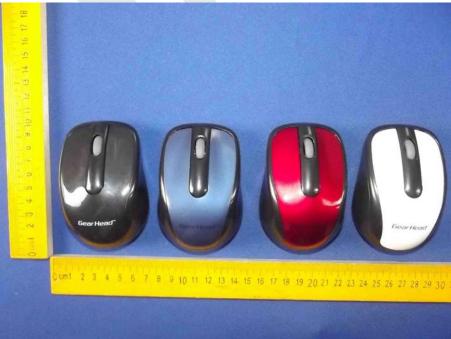


Figure 3 The EUT-Top View

Figure 4 The EUT-Bottom View

Figure 5 The EUT-Front View

Figure 6 The EU<u>T-Back View</u>

Figure 7 The EUT-Right View

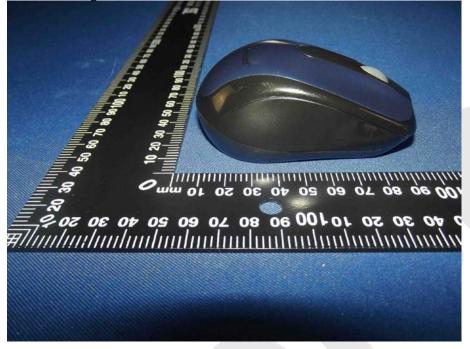
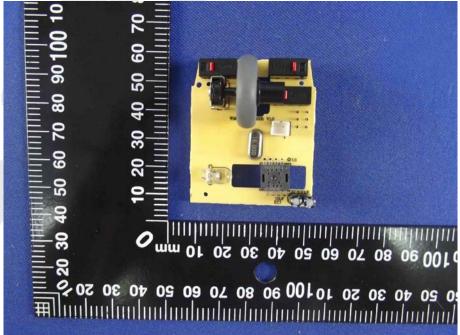


Figure 8 The EUT-Left View



APPENDIX II (Internal Photos)

Figure 9 The EUT-Inside View

Figure 10 PCB of the EUT-Front View

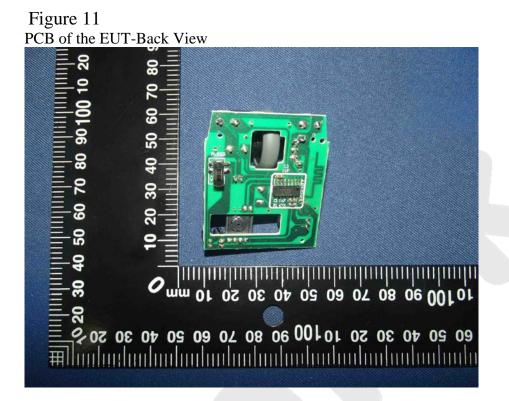
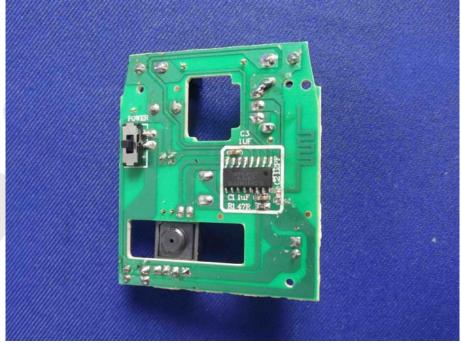



Figure 12 PCB of the EUT-Module View

