

FCC TEST REPORT for Wintop Electronics Co., Limited

2.4GHz Wireless Optical Mouse Model No.: WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU

Prepared for Address Wintop Electronics Co., Limited
Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL, HONGKONG

Prepared By Address

Shenzhen Anbotek Compliance Laboratory Limited
1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number: R011411068EDate of Test: Nov. 05~28, 2014Date of Report: Dec. 02, 2014

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AB75-WM-640 Page 2 of 32 Report No.: R011411068E

TABLE OF CONTENTS

D	•	, •
Desc	rin	tion
	up	uon

Test Report

Page

1. GENERAL INFORMATION	1
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST PROCEDURE	6
3. RADIATION INTERFERENCE.	
3.1. Requirements (15.249, 15.209):	7
3.2. Test Procedure	
3.3. Test Results	
4. BANDEDGE	
4.1. Requirements (15.249):	
4.2. Test Procedure	
4.3. Test Configuration:	
4.4. Test Results	
5. OCCUPIED BANDWIDTH	
5.1. Requirements :	
5.2. Test SET-UP	
5.3 Test Equipment	
5.4. Test Results	
6. ANTENNA APPLICATION	
6.1. Antenna requirement	
6.2. Result	
7. PHOTOGRAPH	
7.1. Photo of Radiation Emission Test	

APPENDIX I (External Photos) (4 Pages) APPENDIX II (Internal Photos) (2 Pages)

TEST REPORT

Applicant	: Wintop Electronics Co., Limited
Manufacturer	: Shenzhen Wintop Electronics Co., Limited
EUT	: 2.4GHz Wireless Optical Mouse
Model No.	: WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU
Serial No.	: N/A
Trade Mark	: N/A
Rating	: DC 3V, 8mA

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.207, 15.249 & 15.209

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without

written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test :

Reviewer

Nov. 05~28, 2014

Prepared by :

(Tested Engineer / Kebo Zhang)

tmy

(Project Manager / Amy Ding)

Approved & Authorized Signer :

(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: 2.4GHz Wireless Optical Mouse
Model Number	: WM-640, MP2120BLK, MP2120RED, MP2120WHT, MP2120BLU (Note: All samples are the same except the model number and colour, so we prepare "WM-640" for EMC test only.)
Test Power Supply	v : DC 3V
Frequency	: 2405-2472MHz
Channel Space	1MHz
No. of Channels	: 68
Antenna Specification	: Printed Antenna:1.72 dBi
Applicant Address	 Wintop Electronics Co., Limited Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL, HONGKONG
Manufacturer Address	 Shenzhen Wintop Electronics Co., Limited Huaguan Industrial Park, Xinhe Road, Baolai Industrial District, Shangmugu, Pinghu Town, Longgang District, Shenzhen City, 518000, China
Factory Address	 Shenzhen Wintop Electronics Co., Limited Huaguan Industrial Park, Xinhe Road, Baolai Industrial District, Shangmugu, Pinghu Town, Longgang District, Shenzhen City, 518000, China
Date of receipt	: Nov. 05, 2014
Date of Test	: Nov. 05~28, 2014

1.2. Auxiliary Equipment Used during Test

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A-1, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.3 dB
Conduction Uncertainty	:	Uc = 3.4dB

2. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Shenzhen Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2009 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.30F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2009 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

3. Radiation Interference

3.1. Requirements (15.249, 15.209):

FIELD STRENGTH of Fundamental:	FIELD STRENGTH of Harmonics	S15.209 30 - 88 MHz	40 dBuV/m
@3M	of Harmonics	50 - 88 MITZ	40 abu v/III
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBµV/m @3m	$54 \text{ dB}\mu\text{V/m} @3m$	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

3.2. Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber. The test results are listed in Section 4.3.

	Test Equipment					
Item	Equipment	Manufacturer	Model No. Serial No.		Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

T (1	r · /
Lest	Equipment

3.3. Test Results

PASS. Please refer the following pages. **Data:**

Below 1GHz:

Job No.: Standard: Test item:								Polarziation: Power Source:					Horizontal					
													DC 3V	V				
				Radiation Test					Temp.(C	C) /Hum. (%RH):	:		24.3(C)/55%RH				
/lode:	:				ON						Distance	:				3m		
lote:					30-10	000	MHz											
	80.0	D dB	uV/m													-		
															Lim		-	
															ма	igin:		
													_					
																	6	
	40						+-+											
																	6	
		المر	1 X 2 X								3 X			i dalaman	للعمانهما	5 In madel	White	
		and the	. Makat	had a de la participa de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción d	Мацион	"Why	Roberto	um	Arth Marring Police		white the second warder	on marked where the	Genergenerge					
								- w	The strike light	hallow	-							
	0.0 30		40				70 80			(MHz)		300	400	500 6	500	700	1000.000	
								-		(,								
No.		Fre (Mł			≀eadin BuV/n		Fact (dB/r		Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degre (deg		Rema	ırk	
1		36	6.000	7	40.01		-13.	50	26.51	40.00	-13.49	peak						
2			1.859		31.48		-11.(09	20.39	40.00	-19.61	peak						
3		199	9.985	6	42.42		-20.8	87	21.55	43.50	-21.95	peak						
4		375	5.938	5	40.68		-13.3	35	27.33	46.00	-18.67	peak						
5		70 <i>°</i>	1.761	0	34.95		-8.4	4	26.51	46.00	-19.49	peak						
6		893	3.856	7	35.41		-4.8	6	30.55	46.00	-15.45	peak						

lob No	0.:	011411)68E			Polarziat	ion:		Vertical		
Standa	ard:	(RE)FC	CC PART	15 C _3m	Power So	ource:		DC 3V			
Гest it	em:	Radiati	ion Test			Temp.(C)/Hum.(%	%RH):		24.3(C)/55%RH
Mode:	:	ON				Distance:				3m	
Note:		30-1000)MHz								
	80.0 dBuV/m										
										mit: argin:	
											 [
	40										
								6			
				4				×		مسمسيريل	at Aldrew
	- And	Hora and hora where have	3	N. M. M.		Real Property and	1	howar	hourstand	Avana .	
		. Maril	Monthener	and a M	hymanic particul	white where a second seco	W-0-1				
	0.0										
	30.000 40	50 60	70 80		(MHz)		300	400	500 600	700	1000.000
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Rema	rk
1	36.1272	41.58	-13.40	28. <mark>1</mark> 8	40.00	-11.82	peak				
2	42.0066	34.82	-11.15	23.67	40.00	-16.33	peak				
3	66.4989	39.60	-18.12	21.48	40.00	-18.52	peak				
4	120.2766	42.45	-16.37	26.08	43.50	-17.42	peak				
5	199.9856	37.30	-15.87	21.43	43.50	-22.07	peak				
6	375.9385	42.94	-12.35	30.59	46.00	-15.41	peak				

Above 1 GHz:

Horizonta CH Low	al (2405MH	z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V\!/m$	$dB\mu V/m$	dB	
2405.000	2.17	31.21	35.30	87.35	85.43	114.0	-28.57	Peak
2405.000	2.17	31.21	35.30	79.80	77.88	94.0	-16.12	AV
4810.250	2.56	34.01	34.71	49.53	51.39	74.0	-22.61	Peak
4810.250	2.56	34.01	34.71	31.01	32.87	54.0	-21.13	AV
7215.560	2.98	36.16	35.15	38.95	42.94	74.0	-31.06	Peak
7215.560	2.98	36.16	35.15	23.44	27.43	54.0	-26.57	AV
9620.000								
12025.00								
14430.00								
16835.00								

Vertical CH Low	(2405MH	[z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2405.000	2.17	31.21	35.30	90.13	88.21	114.0	-25.79	Peak
2405.000	2.17	31.21	35.30	82.09	80.17	94.0	-13.83	AV
4810.250	2.56	34.01	34.71	43.69	45.55	74.0	-28.45	Peak
4810.250	2.56	34.01	34.71	30.53	32.39	54.0	-21.61	AV
7215.560	2.98	36.16	35.15	39.84	43.83	74.0	-30.17	Peak
7215.560	2.98	36.16	35.15	34.27	38.26	54.0	-15.74	AV
9620.000								
12025.00								
14430.00								
16835.00								

Horizonta CH Midd	al lle (2448N	/H 2)						
Frequency MHz	Cable Loss dB	Ant Factor dB/m	Preamp Factor dB	Read Level dBµV	Level dBµV/m	Limit dBµV/m	Over Limit dB	Remark
2448.000	2.19	31.22	34.60	89.56	88.37	114.0	-25.63	Peak
2448.000	2.19	31.22	34.60	84.21	83.02	94.0	-10.98	AV
4896.190	2.57	35.00	34.58	41.03	44.02	74.0	-29.98	Peak
4896.190	2.57	35.00	34.58	35.18	38.17	54.0	-15.83	AV
7344.070	3.00	36.17	35.14	38.92	42.95	74.0	-31.05	Peak
7344.070	3.00	36.17	35.14	36.38	40.41	54.0	-13.59	AV
9792.000								
12240.00						-) (
14688.00							· · · · · ·	
17136.00								

Vertical CH Midd	lle (2448N	/Hz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	$dB\mu V/m$	dB	
2448.000	2.19	31.22	34.60	92.65	91.46	114.0	-22.54	Peak
2448.000	2.19	31.22	34.60	81.50	80.31	94.0	-13.69	AV
4896.190	2.57	35.00	34.58	44.66	47.65	74.0	-26.35	Peak
4896.190	2.57	35.00	34.58	40.28	43.27	54.0	-10.73	AV
7344.070	3.00	36.17	35.14	39.09	43.12	74.0	-30.88	Peak
7344.070	3.00	36.17	35.14	40.75	44.78	54.0	-9.22	AV
9792.000								
12240.00								
14688.00								
17136.00		_						

Horizonta		T						
CH High Frequency	(2472ME Cable	iz) Ant	Preamp	Read	Level	Limit	Over	Remark
MHz	Loss dB	Factor dB/m	Factor dB	Level dBµV	dBµV/m	dBµV/m	Limit dB	Remark
	uD	dD/ III	U D	uDμv	αDμ V/III	uDμν/III	dD	
2472.000	2.20	31.65	36.00	91.25	89.10	114.0	-24.90	Peak
2472.000	2.20	31.65	36.00	80.69	78.54	94.0	-15.46	AV
4944.220	2.58	35.06	34.79	46.37	49.22	74.0	-24.78	Peak
4944.220	2.58	35.06	34.79	37.23	40.08	54.0	-13.92	AV
7416.990	3.02	36.19	34.90	43.8	48.11	74.0	-25.89	Peak
7416.990	3.02	36.20	35.20	35.74	39.76	54.0	-14.24	AV
9888.000								
12360.00) (
14832.00								
17304.00				(-)	

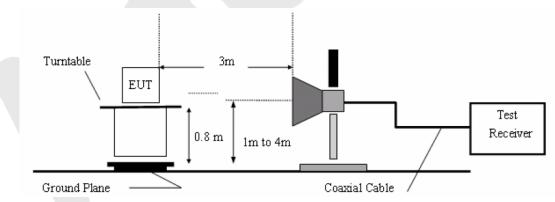
	Vertical CH High (2	472MHz))						
]	Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
	MHz	dB	dB/m	dB	dBµV	dBµV/m	$dB\mu V/m$	dB	
	2472.000	2.20	31.65	36.00	88.58	86.43	114.0	-27.57	Peak
	2472.000	2.20	31.65	36.00	84.39	82.24	94.0	-11.76	AV
	4944.220	2.58	35.06	34.79	46.84	49.69	74.0	-24.31	Peak
	4944.220	2.58	35.06	34.79	36.65	39.50	54.0	-14.50	AV
	7416.990	3.02	36.19	34.90	39.69	44.00	74.0	-30.00	Peak
	7416.990	3.02	36.20	35.20	37.39	41.41	54.0	-12.59	AV
	9888.000								
	12360.00								
	14832.00								
	17304.00								

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

4. Bandedge

4.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.


4.2. Test Procedure

Test Davingerant

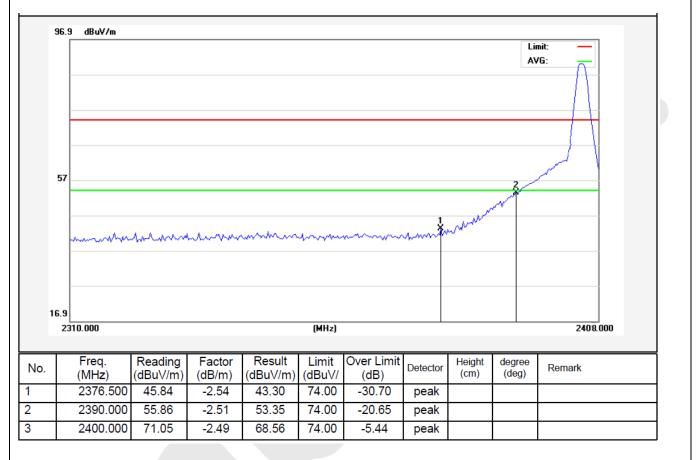
The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

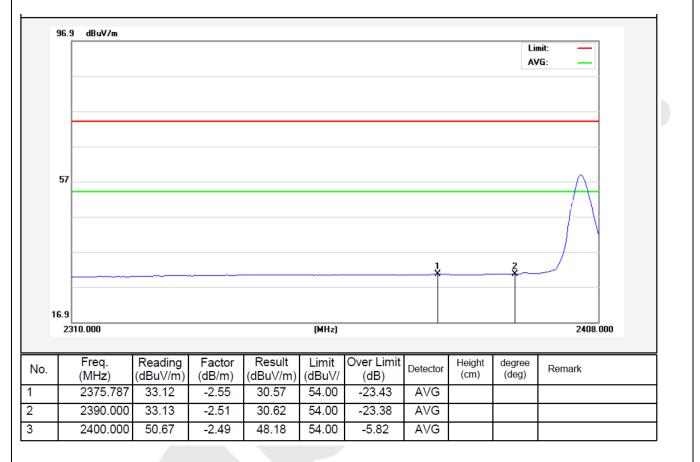
4.3. Test Configuration:

4.4. Test Results

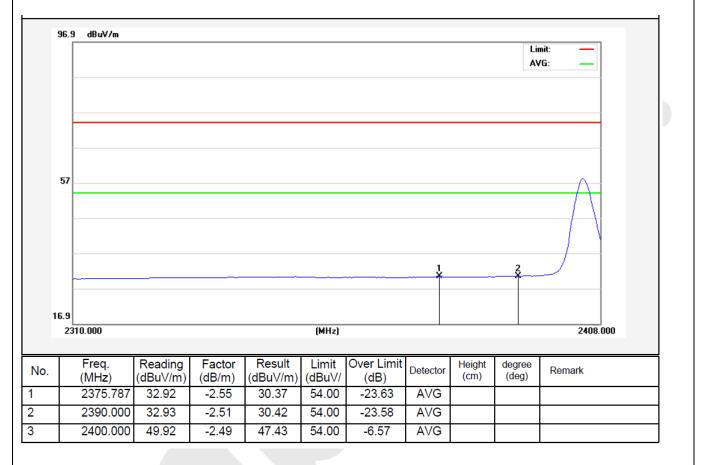
Pass.


Please refer the following plot.

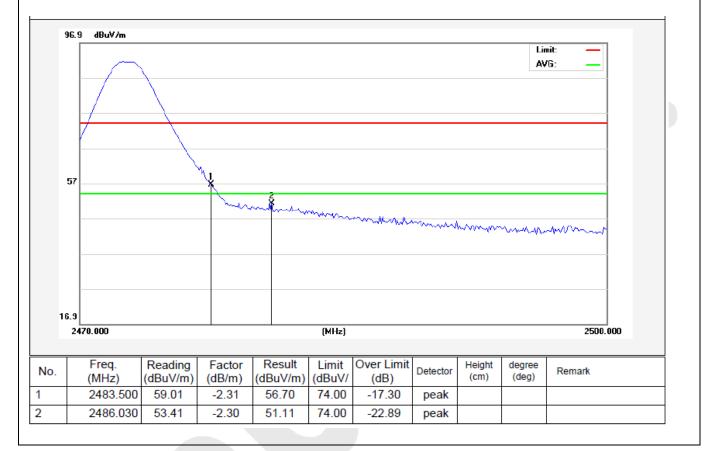
ob No.:		01141106	68E			Polarizatio	on:		Horiz	ontal
tandard	l:	(RE)FC	C PART1	5 C _3m		Power Sou	rce:		DC 3V	V
est item	1:	Radiatio	on Test			Temp.(C)/	Hum.(%	RH):	24.3(C)/55%RH
ote:		PEAK				Distance:			3m	
96.	.9 dBuV/m									
30.										mit: /G:
57									3	
57			humm	en e	w~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	-	3	
16.9		www.	Multi			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h		3	2409.000
16.9	310.000				(MHz)		-h-wh-h-		3	2408.000
16.9 2		Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	(MHz) Limit	Over Limit (dB)	Detector	Height (cm)	egree (deg)	2408.000 Remark
16.9 2 No.	Freq. (MHz) 2381.488	Reading (dBuV/m) 50.54	Factor (dB/m) -2.53	Result (dBuV/m) 48.01	(MHz) Limit (dBuV/ 74.00	Over Limit (dB) -25.99	Detector peak			
16.9	310.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	(MHz) Limit (dBuV/	Over Limit (dB)	Delector			



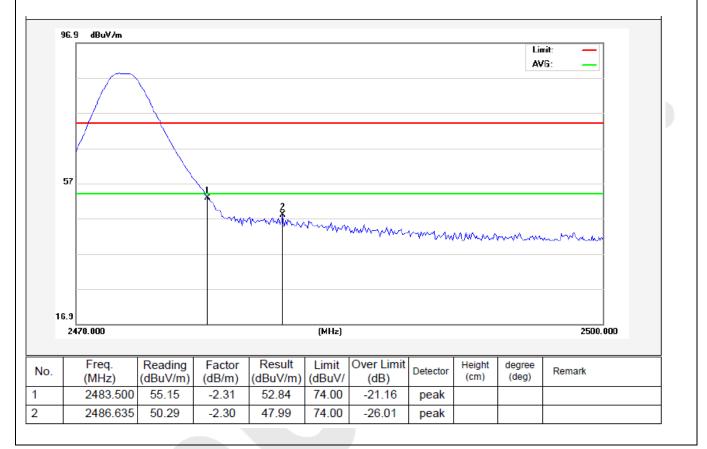
Job No.:	011411068E	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	PEAK	Distance:	3m



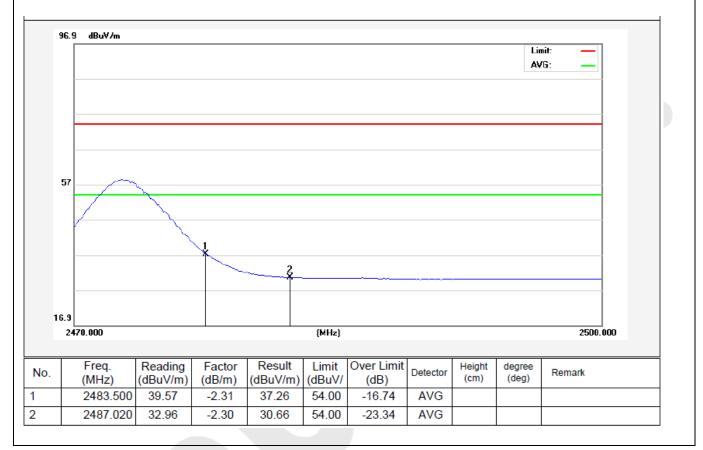
Job No.:	011411068E	Polarization:	Horizontal
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	AV	Distance:	3m



Job No.:	011411068E	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	AV	Distance:	3m



Job No.:	011411068E	Polarization:	Horizontal
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	PEAK	Distance:	3m



Job No.:	011411068E	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	PEAK	Distance:	3m



Job No.:	011411068E	Polarization:	Horizontal
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	AV	Distance:	3m

Job No.:	011411068E	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3(C)/55%RH
Note:	AV	Distance:	3m

5. Occupied Bandwidth

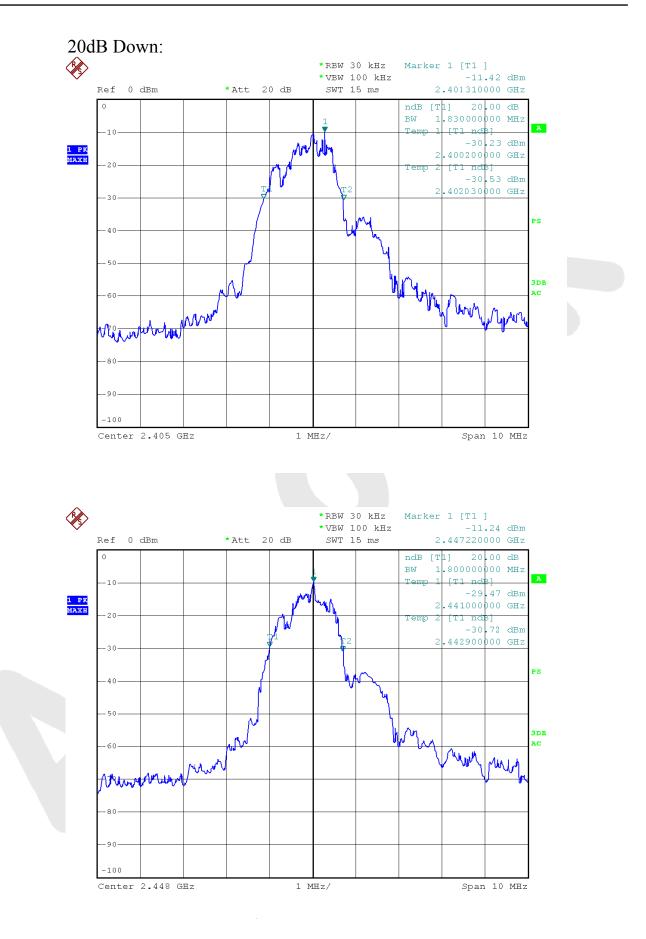
5.1. Requirements :

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

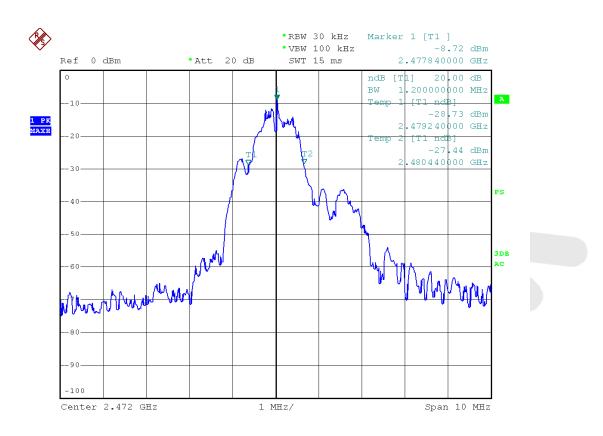
5.2. Test SET-UP

EUT S	Spectrum analyzer
-------	-------------------

Model No. Item Equipment Manufacturer Serial No. Last Cal. Cal. Interval US39390582 Aug. 08, 2014 Spectrum Analysis Agilent E4407B 1 Year 1. Instruments EMC01183 2. 980100 Preamplifier Aug. 08, 2014 1 Year corporation 0 3. **EMI Test Receiver** Rohde & Schwarz ESPI 101604 Apr. 22, 2014 1 Year **Double Ridged** Instruments 4. GTH-0118 351600 Apr. 04, 2014 1 Year Horn Antenna corporation **Bilog Broadband** VULB 5 Schwarzbeck **VULB9163** Apr. 24, 2014 1 Year Antenna 9163-289 6. Pre-amplifier SONOMA 310N 186860 Aug. 08, 2014 1 Year EMI Test Software **SHURPLE** 7. N/A N/A N/A N/A **EZ-EMC**


5.3 Test Equipment

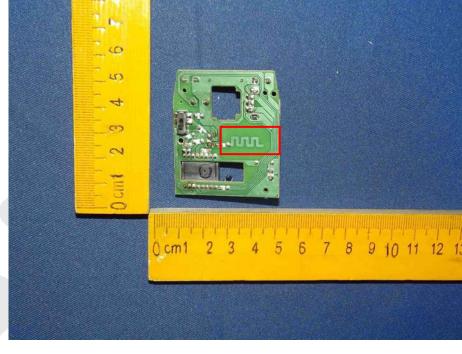
5.4. Test Results


Pass.

Please refer the following plot.

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AB75-WM-640 Page 23 of 32 Report No.: R011411068E

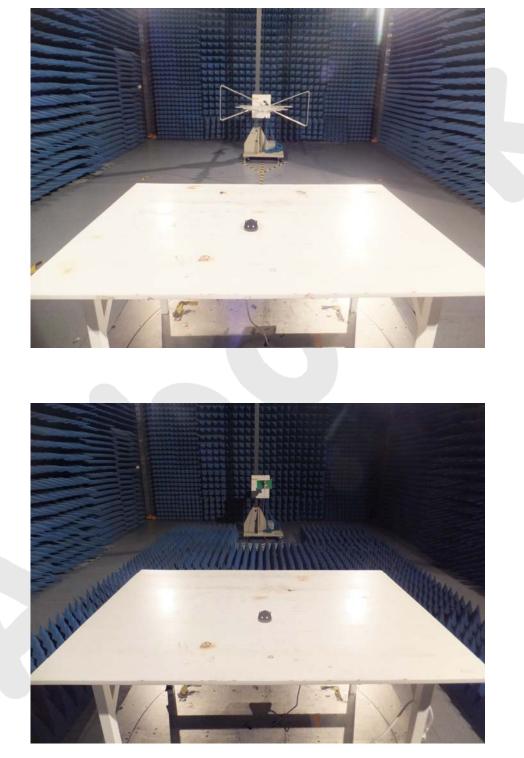
6. ANTENNA APPLICATION


6.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.2. Result


The EUT's antenna used a PCB antenna which is permanently attached, The antenna's gain is 1.72dBi and meets the requirement.

7. PHOTOGRAPH

7.1. Photo of Radiation Emission Test

APPENDIX I (External Photos)

Figure 1 The EUT-Series View

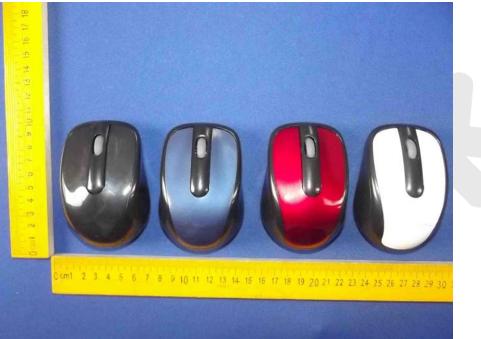


Figure 2 The EUT-Overall View

Figure 3 The EUT-Front View

Figure 4 The EUT-Back View

Figure 5 The EUT-Left View



Figure 6 The EUT-Right View

Figure 7 The EUT-Top View

Figure 8 The EUT-Bottom View

APPENDIX II (Internal Photos)

Figure 9 The EUT-Inside View

Figure 10 PCB of the EUT-Front View

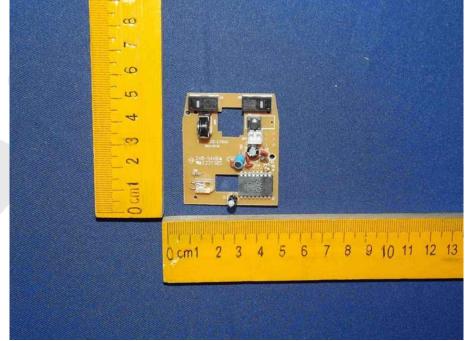
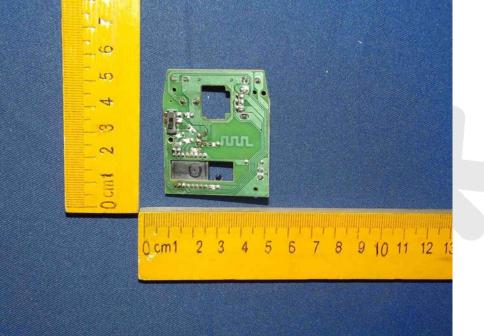



Figure 11 PCB of the EUT-Back View

