

FCC TEST REPORT for Wintop Electronics Co., Limited

2.4G Wireless Optical Mouse Model No.: WM-693

Prepared for Address
Wintop Electronics Co., Limited
Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL, Hong Kong

Prepared By
Address: Shenzhen Anbotek Compliance Laboratory Limited: 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,
Nanshan District, Shenzhen, Guangdong, China
Tel: (86) 755-26066544
Fax: (86) 755-26014772

Report Number:R0116091047IDate of Test:Oct. 10~27, 2016Date of Report:Oct. 28, 2016

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AB75-WM-693 Page 2 of 37 Report No.: R0116091047I

TABLE OF CONTENTS

D	•	, •
Desc	rin	tion
	μ	uon

Test Report

Page

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	5
2. TEST METHODOLOGY	
2.1. Summary of Test Results	
2.2. Description of Test Modes	6
3. TEST PROCEDURE	
4. RADIATION INTERFERENCE	
4.1. Requirements (15.249, 15.209):	
4.2. Test Procedure	
4.3 Test Equipment	9
4.4. Test Results	
5. BANDEDGE	15
5.1. Requirements (15.249):	
5.2. Test Procedure	
5.3. Test Configuration:	
5.4. Test Results	16
6. OCCUPIED BANDWIDTH	
6.1. Requirements :	
6.2. Test SET-UP	
6.3 Test Equipment	
6.4. Test Results	25
7. ANTENNA APPLICATION	
7.1. Antenna requirement	
7.2. Result	
8. PHOTOGRAPH	
8.1. Photo of Radiation Emission Test	
APPENDIX II (INTERNAL PHOTOS)	

TEST REPORT

Applicant	:	Wintop Electronics Co., Limited
Manufacturer	:	Shenzhen Wintop Electronics Co., Limited
EUT	:	2.4G Wireless Optical Mouse
Model No.	:	WM-693
Serial No.	:	N.A.
Trade Mark	:	N.A.
Rating	:	DC 3V, 30mA

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.207, 15.249 & 15.209

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without

written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test :

Oct. 10~27, 2016

Junon Wen

Prepared by :

(Tested Engineer / Baron Wen)

Reviewer

(Project Manager / Dolly Mo)

Approved & Authorized Signer :

(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

: 2.4G Wireless Optical Mouse EUT

Model Number : WM-693

Test Power Supply : DC 3V

Frequency : 2405~2470MHz

No. of Channels • 8 Channels

No. of Channels	:	8 Channels									
		Channel	Frequency (MHz)	Channel	Frequency (MHz)						
		1	2405	5	2440						
		2	2413	6	2450						
		3	2422	7	2460						
		4	2430	8	2470						
Antenna Specification	:	PCB Antenna: 1.	6 dBi								
Applicant Address	 Wintop Electronics Co., Limited Unit 04 7/F, Bright Way Tower 33, Mong Kok RD KL, Hong Kong 										
Manufacturer Address	:	 Shenzhen Wintop Electronics Co., Limited 2, 3, 4/F, Building 46, Xinhe Road, Shangmugu, Pinghu Town, Longgang District, Shenzhen, China 									
Factory Address		 Shenzhen Wintop Electronics Co., Limited 2, 3, 4/F, Building 46, Xinhe Road, Shangmugu, Pinghu Town, Longgang District, Shenzhen, China 									
Date of receipt	:	Oct. 10, 2016									
Date of Test	:	Oct. 10~27, 2016	Ď								

1.2. Auxiliary Equipment Used during Test

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.249.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
§15.207 (a)	Conducted Emission	-	N/A
§15.205	Restricted Band of Operation	PASS	Complies
\$15.209 \$15.249(a)	Radiated Emission	PASS	Complies
§15.215(c)	20dB Bandwidth Test	PASS	Complies
§15.203	Antenna Requirement	PASS	Complies

Note: This product is low voltage products. It is using the battery as a power source.

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Manual control the EUT for staying in continuous transmitting mode.

Channel Low(2405MHz), Channel Middle(2430MHz) and Channel High(2470MHz) are chosen for the final testing.

Shenzhen Anbotek Compliance Laboratory Limited Tel:(86)755-26066544 Fax:(86)755-26014772 www.anbotek.com

3. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Shenzhen Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.10-2013 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.30F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.10-2013 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

4. Radiation Interference

4.1. Requirements (15.249, 15.209):

FIELD STRENGTH	FIELD STRENGTH	S15.209	40 ID 11/
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dB μ V/m @3m	$54 \text{ dB}\mu\text{V/m} @3\text{m}$	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

4.2. Test Procedure

For below 1GHz, the EUT is placed on a turn table which is 0.8 meter high above the ground. For above 1GHz, the EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation. The test results are listed in Section 4.3.

4.3 Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2016	1 Year

4.4. Test Results

PASS.

Please refer the following pages. Only the worst case (x orientation).

Below 1GHz:

lob N	No.: 01160				9116091047I P						Polarization:					Horizontal					
Stand	ard: (RE)FCC P					AR	T1	5 C _3m			Power S	Power Source:				DC 3	V				
Fest item: Radiation 7				ſest					Temp.(C	Temp.(C)/Hum.(%RH):				24.3(C)/55%RH							
Mode:				ON						Distance	Distance:					3m					
Note:						30-1	1000)MH	[z												
	80.0		Bu∀/m																		
	80.1		Bu¥/m																mit:	_	
																		Ma	argin:		
									-								_				
																				d	
									-												
	40																				
												3		5X		6	_			Manand	
			i K	2							1	MA	4	Mary Anton Mar	We when when	M.			and and the second	with comments	
		\vee	M John Marche	м. fr	Went				-	-	an hall when the first of	- W.	17 MI	YW 400 M		- Wing	whene		_		
					بالد. ر	Nutur	Walter	hne.	Market	h MA	MNN										
							_	4134											_		
	0.0																				
	30). 000	4	0	5	0	60	70	80			(MHz	:)		300	400	500	600	700	1000.00	00
		Fr	eq.		Re	eadir	na	Fa	ctor	•	Result	Limi	t	Over Limit		Height	deg	ree			
No.		(M	IHz)		(dE	BuV/I	m)	(dE	3/m)		(dBuV/m)	(dBu\	//	(dB)	Delector	(cm)		eg)	Ren	nark	
1	\perp		34.39			9.68			4.61		25.07	40.0	_	-14.93	peak						
2	\perp		3.50			2.98			1.74		21.24	40.0	_	-18.76	peak						
3			5.35			2.76			3.41		29.35	43.5		-14.15	peak						
4	_		3.20			7.27			2.33	_	24.94	43.5	_	-18.56	peak						
5 6			64.74 04.85			0.02			8.80 2.97		31.22 28.00	46.0 46.0		-14.78	peak						
						0.97	7 !							-18.00	peak						

ob No	No.: 011				09104	7I			Polarizat	ion:		Vertical					
				RE)FCC PART15 C _3m					ource:		DC 3	V					
				Radi	Radiation Test)/Hum.(%		24.3(C)/55%RH					
lode:				ON	ON					Distance:					3m		
ote:				30-10	000MI	łz											
													_	_			
	80.0	dB	uV/m						1			Li	mit:				
													argin:	_			
	40																
						ſ											
		(phi	2					3 X	4		5	×	wanter and	l Marriel Burgh			
		¥	"belodnetnetnet	Monan and	William	In	WAY WARNA WARNA	Mar working and	Wind work of the	Nobell In Briden Marke	CAy when when the	horden de de la composition de					
	0.0					"-) 	v										
		.000	40	50 G	0 70	80		(MHz)		300	400	500 600	700	1000.000			
No.		Fre (MI	eq. Hz)	Readin (dBuV/n	<u> </u>	actor 3/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Rem	ark			
1	\top		0.0000	45.45	· ·	6.95	28.50	40.00	-11.50	peak							
2		3	5.7490	39.86	-1	3.70	26.16	40.00	-13.84	peak							
3			3.8295	41.15		8.43	22.72	43.50	-20.78	peak							
1			4.4898	37.46		6.44	21.02	43.50	-22.48	peak							
5			5.9385	35.02		2.35	22.67	46.00	-23.33	peak							
6	1	60	1.4265	34.07		9.23	24.84	46.00	-21.16	peak							

Above 1 GHz:

Horizont CH Low	al (2405MH	z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V\!/\!m$	$dB\mu V/m$	dB	
2405.000	2.17	31.21	35.30	86.93	85.01	114.0	-28.99	Peak
2405.000	2.17	31.21	35.30	80.15	78.23	94.0	-15.77	AV
4810.180	2.56	34.01	34.71	46.97	48.83	74.0	-25.17	Peak
4810.180	2.56	34.01	34.71	35.21	37.07	54.0	-16.93	AV
7215.260	2.98	36.16	35.15	41.36	45.35	74.0	-28.65	Peak
7215.260	2.98	36.16	35.15	28.18	32.17	54.0	-21.83	AV
9620.000								
12025.00								
14430.00								
16835.00								

Vertical	
CH Low (2405MHz)	

CILOW	(24031/11/2	L)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2405.000	2.17	31.21	35.30	90.14	88.22	114.0	-25.78	Peak
2405.000	2.17	31.21	35.30	79.05	77.13	94.0	-16.87	AV
4810.180	2.56	34.01	34.71	45.69	47.55	74.0	-26.45	Peak
4810.180	2.56	34.01	34.71	35.27	37.13	54.0	-16.87	AV
7215.260	2.98	36.16	35.15	39.42	43.41	74.0	-30.59	Peak
7215.260	2.98	36.16	35.15	36.26	40.25	54.0	-13.75	AV
9620.000								
12025.00								
14430.00								
16835.00								

. .

Horizont								
CH Midd	lle (2430N	/Hz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2430.000	2.19	31.22	34.60	90.15	88.96	114.0	-25.04	Peak
2430.000	2.19	31.22	34.60	84.26	83.07	94.0	-10.93	AV
4860.120	2.57	35.00	34.58	42.98	45.97	74.0	-28.03	Peak
4860.120	2.57	35.00	34.58	36.56	39.55	54.0	-14.45	AV
7290.240	3.00	36.17	35.14	40.84	44.87	74.0	-29.13	Peak
7290.240	3.00	36.17	35.14	38.65	42.68	54.0	-11.32	AV
9720.000								
12150.00							<u> </u>	
14580.00							-	
17010.00								

Vertical								
CH Midd	lle (2430N	MHz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
2430.000	2.19	31.22	34.60	91.23	90.04	114.0	-23.96	Peak
2430.000	2.19	31.22	34.60	82.21	81.02	94.0	-12.98	AV
4860.120	2.57	35.00	34.58	47.39	50.38	74.0	-23.62	Peak
4860.120	2.57	35.00	34.58	42.57	45.56	54.0	-8.44	AV
7290.240	3.00	36.17	35.14	42.64	46.67	74.0	-27.33	Peak
7290.240	3.00	36.17	35.14	37.59	41.62	54.0	-12.38	AV
9720.000								
12150.00								
14580.00)						
17010.00								

Vertical

Horizonta	al							
CH High	(2470ME	Iz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	$dB\mu V/m$	$dB\mu V/m$	dB	
2470.000	2.20	31.65	36.00	94.89	92.74	114.0	-21.26	Peak
2470.000	2.20	31.65	36.00	84.13	81.98	94.0	-12.02	AV
4940.360	2.58	35.06	34.79	43.54	46.39	74.0	-27.61	Peak
4940.360	2.58	35.06	34.79	39.46	42.31	54.0	-11.69	AV
7410.520	3.02	36.19	34.90	48.38	52.69	74.0	-21.31	Peak
7410.520	3.02	36.20	35.20	38.27	42.29	54.0	-11.71	AV
9880.000								
12350.00) (
14820.00								
17290.00								

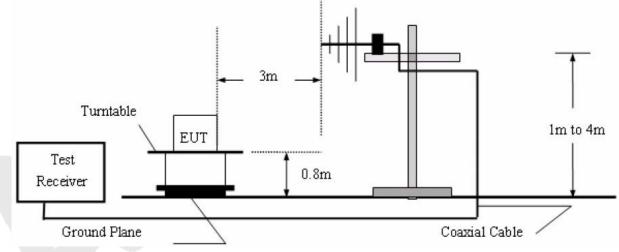
vertical								
CH High (2	470MHz)							
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBµV/m	dBµV/m	dB	
					-	•		
2470.000	2.20	31.65	36.00	94.03	91.88	114.0	-22.12	Peak
2470.000	2.20	31.65	36.00	83.51	81.36	94.0	-12.64	AV
4940.360	2.58	35.06	34.79	44.28	47.13	74.0	-26.87	Peak
4940.360	2.58	35.06	34.79	37.92	40.77	54.0	-13.23	AV
7410.520	3.02	36.19	34.90	44.17	48.48	74.0	-25.52	Peak
7410.520	3.02	36.20	35.20	42.65	46.67	54.0	-7.33	AV
9880.000			— —					
12350.00								
14820.00								
17290.00								

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

5. Bandedge

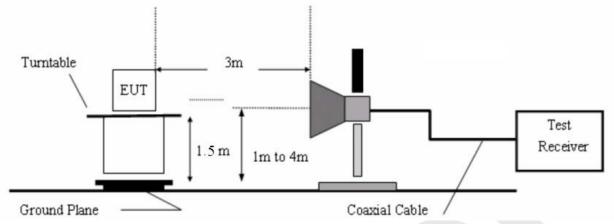
5.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.


5.2. Test Procedure

The EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test. The device is evaluated in xyz orientation.

Test Equipment Same as the equipment listed in 5.3.


5.3. Test Configuration:

30M to 1G emissions:

1G to 40G emissions:

5.4. Test Results

Pass.

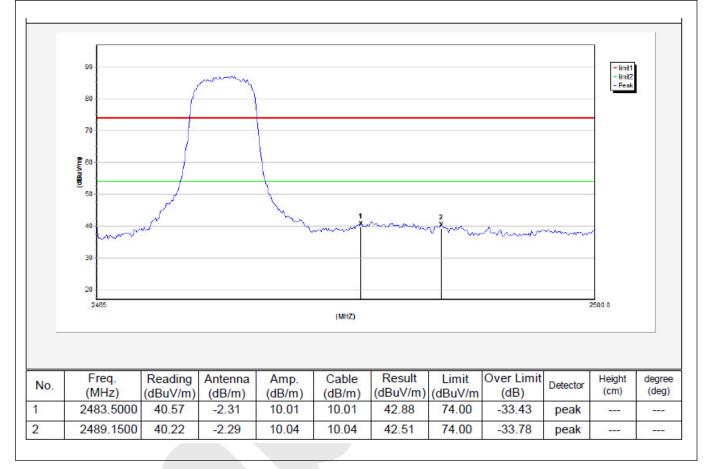
Please refer the following plot. Only the worst case (x orientation).

ob No.:			0116092	1047I		P	olarization	1:	Ho	orizontal		
tandar	d:		(RE)FC	CC PART1	5 C _3m	P	ower Sour	ce:	DC	C 3V		
est iter	n:		Radiati	on Test		1	Cemp.(C)/H	lum.(%R	H): 24.	.3(C)/5	55%RH	
lote:			PEAK			Γ	Distance:		3m	ı		
	ſ										7	
	100-										- limit1	
	90-									10.00	- limit2 - Peak	
	80-									m		
	70-									-+	-	
	(LU) 60-											
	9 ₅₀											
	40-											
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			1	2	3 L	~	
	30						~~~~~					
	20-											
	10-										_	
	23	10								-	2410.0	
						(MHZ)						
	Fre	ea.	Reading	Antenna	Amp.	Cable	Result	Limit	Over Limit		Height	degree
No.	(MI		(dBuV/m)	(dB/m)	(dB/m)	(dB/m)	(dBuV/m)	(dBuV/m		Detector	(cm)	(deg)
1	2383	3.0000	30.68	-2.53	9.51	9.51	33.21	74.00	-43.32	peak	0	
2		0.0000	30.20	-2.51	9.55	9.55	32.71	74.00	-43.80	peak	()	
3	2400	0.0000.0	33.89	-2.49	9.6	9.6	36.38	74.00	-40.11	peak	(	



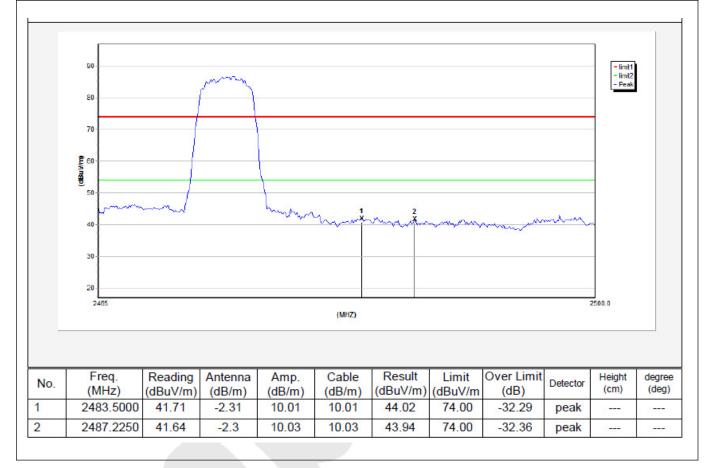
ob No.:		011609	1047I		F	Polarization	1:	V	ertical		
tandard	d:	(RE)F	CC PART	15 C _3m	P	Power Sour	·ce:	D	C 3V		
est iten	n:	Radiat	ion Test		Т	[emp.(C)/H	Ium.(%R	H): 24	4.3( C)	/55%RH	ł
ote:		PEAK			Γ	Distance:		31	m		
	100-									]	
	90-									- limit1 - limit2 - Peak	
									$\cap$		12
	80-										
	70-										
	60- Manapo 50-										
	g 50										
	40								$  \rangle$		
		m		man		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	t	2	3/ 1	~	
	30-	~									
	20-									-	
	10-										
	2310				(MHZ)					2410.0	
-											
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)
1	2381.2500		-2.53	9.5	9.5	35.19	74.00	-41.34	peak		
2	2390.0000		-2.51	9.55	9.55	34.01	74.00	-42.50	peak		
3	2400.0000	32.47	-2.49	9.6	9.6	34.96	74.00	-41.53	peak		




ob No.	.:		0116091	047I		Р	olarization	:	Но	rizontal		
tandaı	rd:		(RE)FC	C PART1	5 C _3m	Р	ower Sour	ce:	DC	2 3V		
est ite	m:		Radiati	on Test		Т	emp.(C)/H	um.(%RI	H): 24.	3( C)/5	55%RH	
ote:			AV			D	istance:		3m			
		[									7	
	10	0									- linit1	
	9	D									- limit2 - Peak	
	8	0-								-1	_	
	7											
		2										
	(Windb)	0-										
	5	0 -										
	4	0-								11		
	3	• <u> </u>						1 X	2 Xurran	¥∕ /	~	
	2	0-										
	1											
		2310				(MHZ)					2410.0	
No.		req. MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)
1		85.0000	· · · · · · · · · · · · · · · · · · ·	-2.53	9.52	9.52	33.10	54.00	-23.43	AVG		
2	23	90.0000	30.60	-2.51	9.55	9.55	33.11	54.00	-23.40	AVG		10000
3	24	00.0000	32.27	-2.49	9.6	9.6	34.76	54.00	-21.73	AVG		



ob No			0116091				Polarizatior			ertical		
tanda				C PART15	5 C _3m		Power Sour			C 3V		_
est ite	em:		Radiatio	n Test		1	Temp.(C)/H	lum.(%R	H): 24	4.3( C)	/55%RH	í
ote:			AV			Ľ	Distance:		31	m		
	100-										- linit1	
	90-										- limit2 - Peak	
	80-	_								0		'
	70-											
	(W/Angp) 50										-	
	9 50-											
	40-									3/4		
	30-			6-10						×/		
	20-											
	10-											
	2	310				(MHZ)					2410.0	
80												
No.		eq. Hz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)
1		5.5000	32.58	-2.52	9.52	9.52	35.10	54.00	-21.42	AVG	()	10000
2		0.0000	33.06	-2.51	9.55	9.55	35.57	54.00	-20.94	AVG		
3	240	0.0000	35.71	-2.49	9.6	9.6	38.20	54.00	-18.29	AVG		




Job No.:	0116091047I	Polarization:	Horizontal
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3( C)/55%RH
Note:	РЕАК	Distance:	3m





Job No.:	0116091047I	Polarization:	Vertical
Standard:	(RE)FCC PART15 C _3m	Power Source:	DC 3V
Test item:	Radiation Test	Temp.(C)/Hum.(%RH):	24.3( C)/55%RH
Note:	РЕАК	Distance:	3m





ob No.	.:	0116091	047I		Р	olarization		Но	rizontal		
tandaı	rd:	(RE)FC	C PART1	5 C _3m	Р	ower Sour	ce:	DC	C 3V		
est ite	m:	Radiatio	on Test		Т	emp.(C)/H	um.(%R	H): 24.	3( C)/5	5%RH	
lote:		AV			D	istance:		3m	l		
	90 -									- linit1	
	80		Lun							- limit2 - Peak	
	70-									-	
	(10,60 -		]	\						-	
	50			L.							
	40	A		h	man the	2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	30-										
	20-				(MHZ)				10	2500.0	
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Over Limit (dB)	Detector	Height (cm)	degree (deg)
l)	2483.5000	34.88	-2.31	10.01	10.01	37.19	54.00	-19.12	AVG		1000
2	2486.4375	35.78	-2.3	10.02	10.02	38.08	54.00	-18.22	AVG		11



ob No.	:	01160910	047I		Р	olarization	ı:	V	ertical			
tandar	d:	(RE)FCC PART15 C _3m Radiation Test AV			Р	Power Source: Temp.(C)/Hum.(%RH):			DC 3V			
est iteı	m:				Т				24.3( C)/55%RH			
ote:					D	Distance:				3m		
	90 -									- linit1 - linit2		
	80 -		m							- Peak		
	70											
	Ē 60-											
	60- 10- 10- 50-											
	40			mon	1	2 X						
	(											
	30 -											
	20- 2485									2500.0		
					(MHZ)							
No.	Freq. (MHz)	Reading (dBuV/m)	Antenna (dB/m)	Amp. (dB/m)	Cable (dB/m)	Result (dBuV/m)	•		Detecto	(cm)	degree (deg)	
1	2483.5000		-2.31	10.01	10.01	42.79	54.00	-13.52	AVG			
2	2485.4750	40.20	-2.3	10.02	10.02	42.50	54.00	-13.80	AVG			



# 6. Occupied Bandwidth

#### 6.1. Requirements :

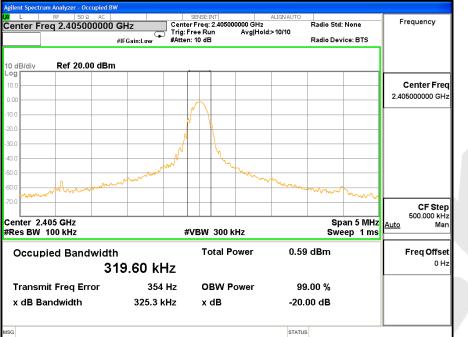
According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

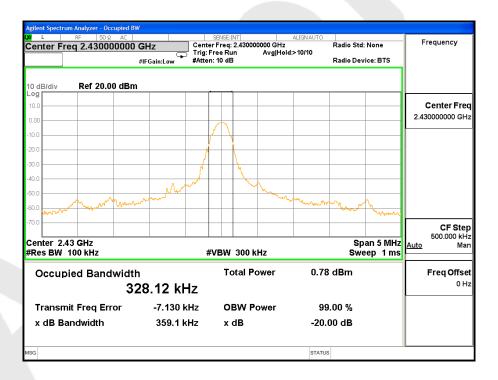
### 6.2. Test SET-UP

EUT	- Spectrum analyzer
-----	---------------------

#### 6.3 Test Equipment

Same as the equipment listed in 4.3.


#### 6.4. Test Results


Pass.

Please refer the following plot.



#### 20dB Down:



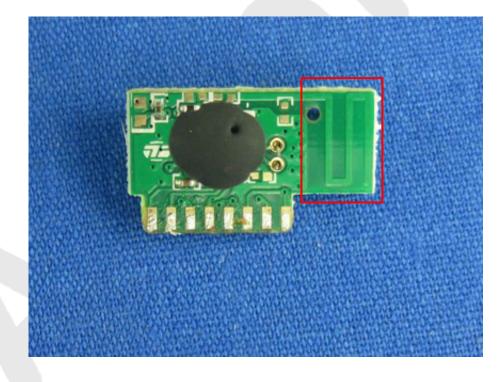




Center Freq 2.470000000 GHz			SENSE:INT ALIGNAUTO Center Freq: 2.470000000 GHz Trig: Free Run Avg Hold:>10/10				Radio Std: None		Frequency
		#IFGain:Low	#Atten: 10	)dB			Radio Dev	rice: BTS	
0 dB/div	Ref 20.00 dBr	n		_					
0.0									Center Free
.00									2.470000000 GH
0.0			1	$\mathbf{h}$					
0.0									
0.0				<u>\</u>					
0.0				- 4 M					
0.0		and and all and a start of the			and a second				
).0	montervant	And				man	mon	man a .	
0.0								- Wighter	CF Ster
enter 2.4	7 GHz						Sn	an 5 MHz	500 000 kU
Res BW 100 kHz			#VBW 300 kHz				Swe	ep 1 ms	<u>Auto</u> Iviai
Occupied Bandwidth			Total Power			1.05	1.05 dBm		Freq Offse
	3	35.79 k <mark>⊦</mark>	łz						0 H:
Transm	it Freq Error	-22.778 k	Hz	овж і	Power	99	9.00 %		
x dB Bandwidth 367.9 kl			Hz	x dB		-20.00 dB			



## 7. ANTENNA APPLICATION

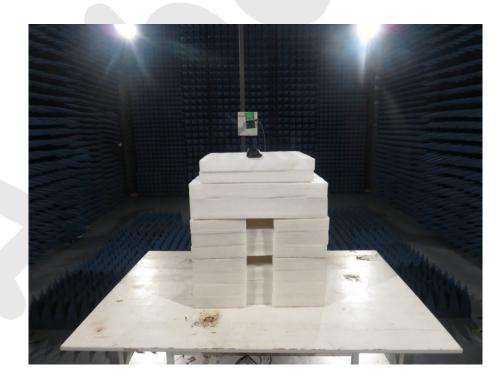

#### 7.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

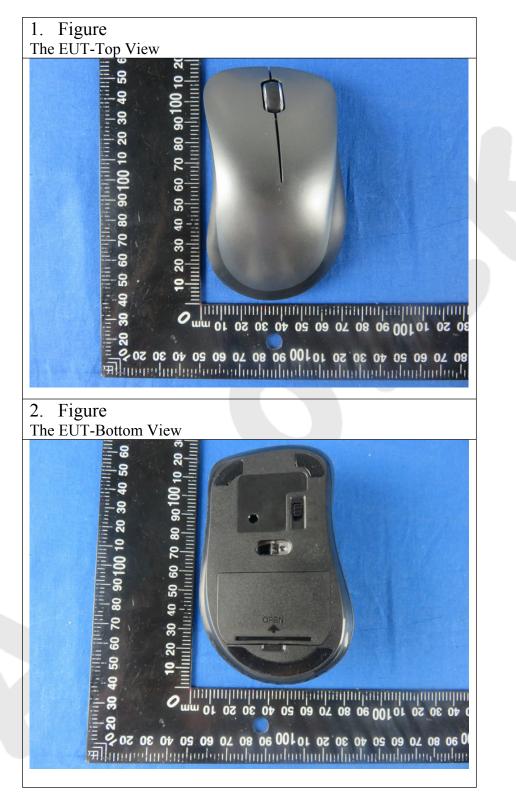

#### 7.2. Result

The EUT's antenna used a PCB antenna which is permanently attached, The antenna's gain is 1.6dBi and meets the requirement.

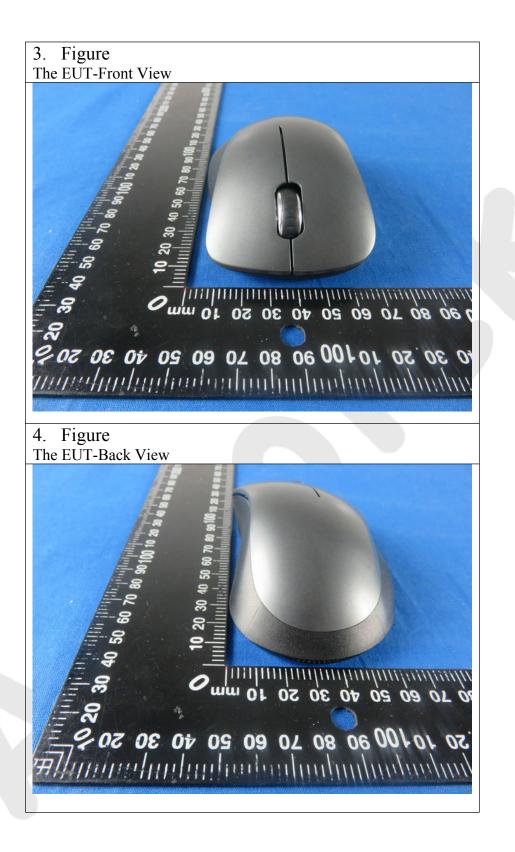




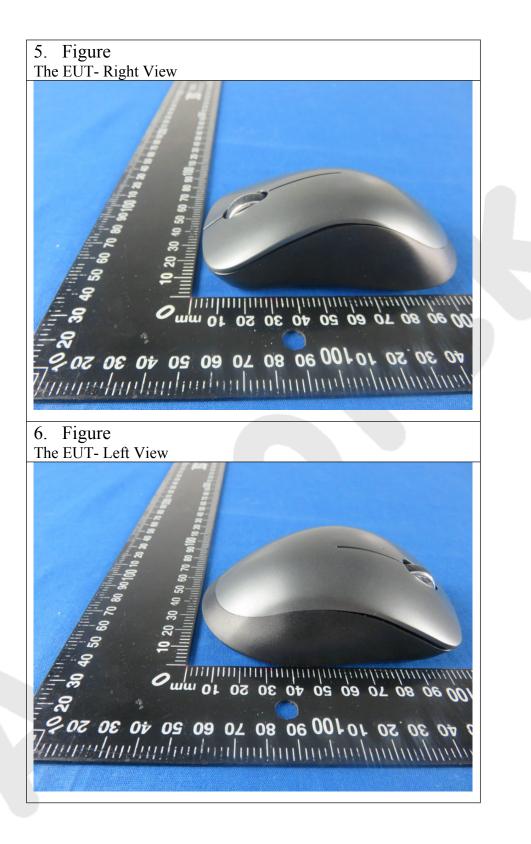

# 8. PHOTOGRAPH




8.1. Photo of Radiation Emission Test

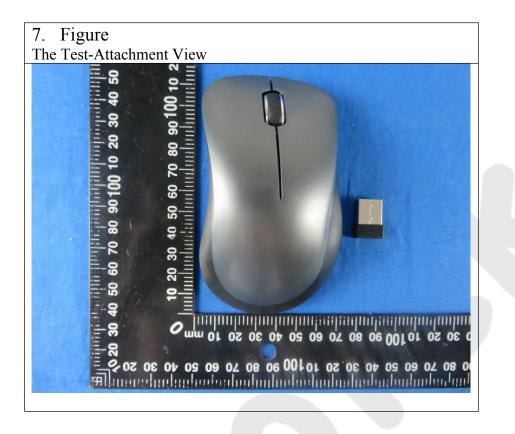






## **APPENDIX I (External Photos)**

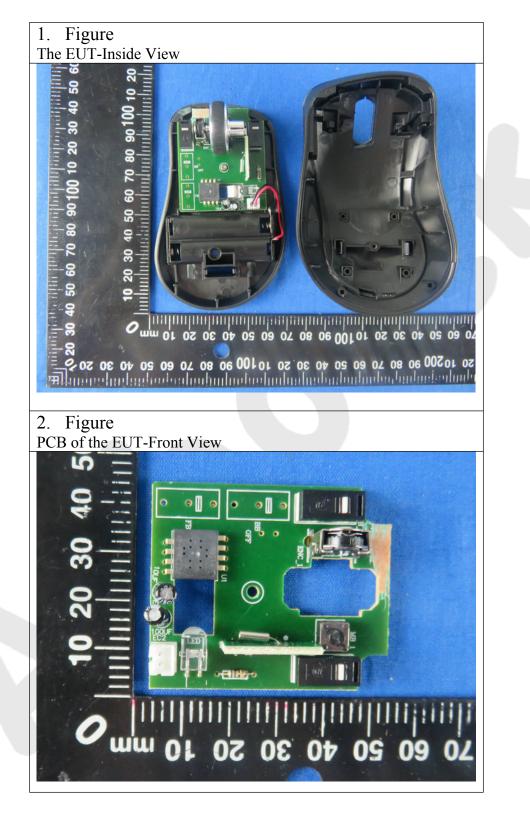




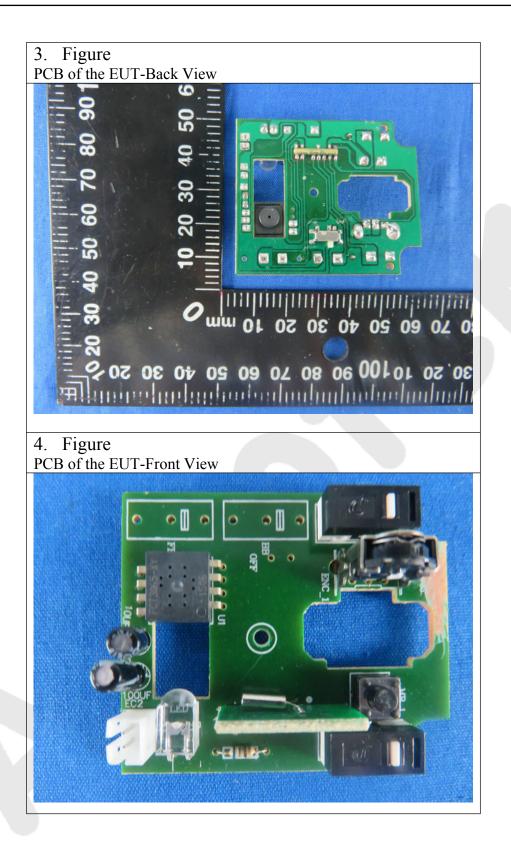




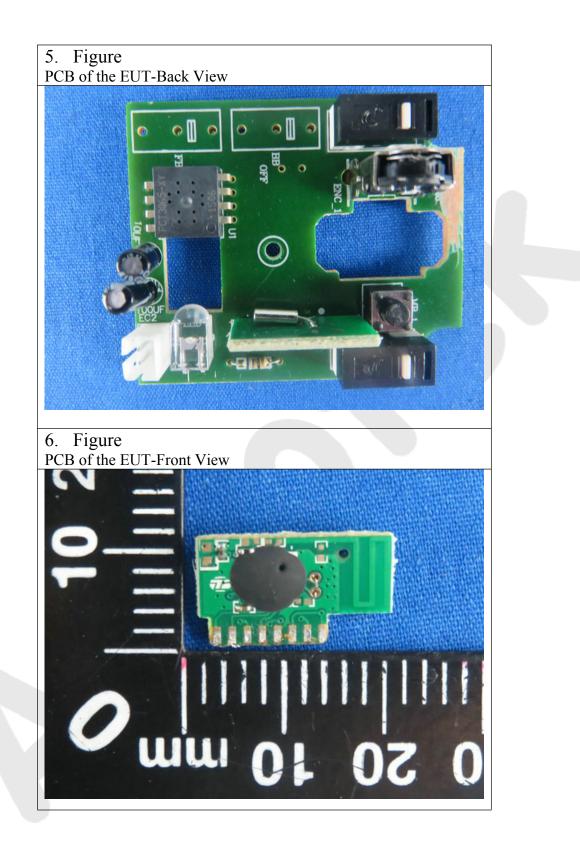








# APPENDIX II (INTERNAL PHOTOS)



