

Test Report

Report No.: MTi230606006-01E1

Date of issue: 2023-06-28

Applicant: Joint Chinese Ltd

Product: Smart Health Bracelet

2208A, 2208B, 2208C, 2208D, 2208E, 2208F, 2208G, Model(s):

2208H, 2208I, 2208J

FCC ID: 2AB73-2208A

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	g
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	13
	5.1	Antenna requirement	13
6	Radi	io Spectrum Matter Test Results (RF)	13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands Band edge emissions (Radiated) Emissions in restricted frequency bands (below 1GHz) Emissions in restricted frequency bands (above 1GHz)	
Ph	otogr	aphs of the test setup	36
Ph	otogr	aphs of the EUT	37
Αp	pendi	ix A: DTS Bandwidth	39
Αp	pendi	ix B: Maximum conducted output power	42
		ix C: Maximum power spectral density	
		ix D: Band edge measurements	
		ix E: Conducted Spurious Emission	
_	=	iv F: Duty Cycle	56

Test Result Certification				
Applicant:	Joint Chinese Ltd			
Address:	Building 6, Huafeng Tech Park, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China			
Manufacturer:	Joint Chinese Ltd			
Address:	Building 6, Huafeng Tech Park, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China			
Product description				
Product name:	Smart Health Bracelet			
Trademark:	N/A			
Model name:	2208A			
Series Model:	2208B, 2208C, 2208D, 2208E, 2208F, 2208G, 2208H, 2208I, 2208J			
Standards:	FCC 47 CFR Part 15 Subpart C			
Test method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02			
Date of Test				
Date of test:	2023-06-25 to 2023-06-26			
Test result:	Pass			

Test Engineer	David. Cee
	(David)
Reviewed By	leon chen
	(Leon)
Approved By	Tom Xue
	(Tom Xue)

1 General Description

1.1 Description of the EUT

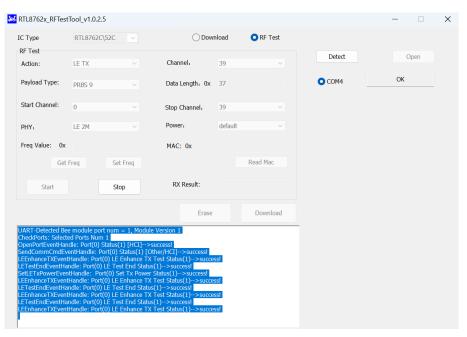
Product name:	Smart Health Bracelet
Model name:	2208A
Series Model:	2208B, 2208C, 2208D, 2208E, 2208F, 2208G, 2208H, 2208I, 2208J
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 5V90mA Battery: DC 3.7V 95mAh
Accessories:	USB-A charging cable 20cm
Hardware version:	2208AV021_1
Software version:	2208AV1.2
Test sample(s) number:	MTi230606006-01S1001
RF specification	
Bluetooth version:	V5.0
Operating frequency range:	2402MHz to 2480MHz
Channel number:	40
Modulation type:	GFSK
Antenna(s) information:	ANT type: Ceramic antenna ANT gain: 0.5dBi

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	Emission test modes
Mode1	TX mode 1Mbps(CH00, CH19, CH39)
Mode2	TX mode 2Mbps(CH00, CH19, CH39)

1.2.1 Operation channel list


Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Mode	Test Software	RTL8762x_RFTestTool_v1.0.2.5			
Mode	Channel	2402MHz	2440MHz	2480MHz	
BLE_1M	Power setting	DEF	DEF	DEF	
BLE_2M	Power setting	DEF	DEF	DEF	

The test software:

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 102 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
HUAWEI CHARGE (10W)	HW-050200C02	K95212KA103561	Huizhou BYD Electronics Co., Ltd.			
Support cable list						
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty	
Conducted emissions (AMN 150kHz~30MHz)	3.1dB	
Occupied channel bandwidth	±3 %	
RF output power, conducted	±1 dB	
Power Spectral Density, conducted	±1 dB	
Unwanted Emissions, conducted	±1 dB	
Radiated spurious emissions (1GHz~40GHz)	5.3dB	
Radiated spurious emissions (9kHz~30MHz)	4.3dB	
Radiated spurious emissions (30MHz~1GHz)	4.7dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	§ 15.247(d), 15.209, 15.205	Radiated spurious emissions	Pass
4	§ 15.247(a)(2)	DTS bandwidth	Pass
5	§ 15.247(b)(3)	Maximum conducted output power	Pass
6	§ 15.247(e)	Power Spectral Density	Pass
7	§ 15.247(d)	Conducted emission at the band edge	Pass
8	§ 15.247(d)	Conducted spurious emissions	Pass
9	1	Duty Cycle	Pass

Notes:

N/A means not applicable.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
		Conducted En	nission at AC po	wer line					
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04			
3	Artificial Mains Network	Schwarzbeck	NSLK 8127	1001	2023-05-06	2024-05-05			
		Оссир	pied Bandwidth						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	C Power Supply Agilent E3632A MY40027		MY40027695	2023-05-05	2024-05-04			
		Maximum Co	nducted Output	Power					
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04			
	Power Spectral Density								
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24				
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04				
		Emissions in non-	restricted freque	ency bands						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24				
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04				
		Band edge	emissions (Radi	ated)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-05-26	2024-05-25				
3	Amplifier	Agilent	8449B	3008A01120	2023-05-26	2024-05-25				
4	Multi-device Controller	TuoPu	TPMDC	1	1	1				
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-05-05	2024-05-04				
	Em	issions in restricted	frequency band	s (below 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-26	2024-04-25				
4	Multi-device Controller	TuoPu	TPMDC	1	1	/				
	Emissions in restricted frequency bands (above 1GHz)									
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-05-26	2024-05-25				
3	Amplifier	Agilent	8449B	3008A01120	2023-05-26	2024-05-25				

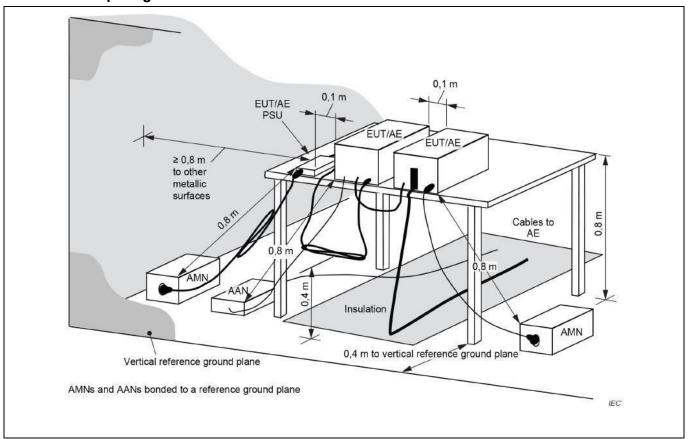
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
4	Multi-device Controller	TuoPu	TPMDC	1	/	1
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-05-05	2024-05-04

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

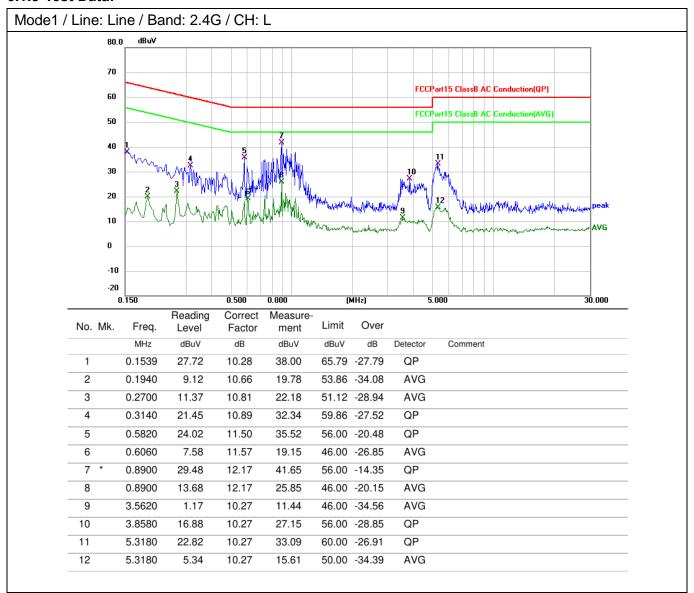
Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)						
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	46					
	5-30 60 50						
	*Decreases with the logarithm of the frequency.						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:


Operating Environment:								
Temperature: 25.1 °C			Humidity:	64 %	Atmospheric Pressure:	101 kPa		
Pre test mode:	Mode	e1, Mode2						
Final test mode: Mo		Mode	e1					

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

10

11

12

0.9900

5.2340

5.3620

30.18

22.73

5.41

12.31

10.27

10.28

42.49

33.00

15.69

Report No.: MTi230606006-01E1 Mode1 / Line: Neutral / Band: 2.4G / CH: L dBu∀ 80.0 70 FCCPart15 ClassB AC Conduction(QP) 60 FCCPart15 ClassB AC Conduction(AVG) 50 40 20 10 0 -10 -20 0.150 0.500 n snn (MHz) 5.000 30.000 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1539 27.03 10.28 37.31 65.79 -28.48 QP 2 0.1660 5.04 10.26 15.30 55.16 -39.86 AVG 3 0.1940 9.67 10.59 53.86 -33.60 AVG 20.26 4 0.2140 19.87 10.62 30.49 63.05 -32.56 QP 5 0.2740 23.35 10.76 34.11 61.00 -26.89 QP 6 0.2740 11.08 10.76 21.84 51.00 -29.16 AVG 7 0.5820 20.65 11.51 32.16 56.00 -23.84 QP 46.00 -26.74 0.6100 7.68 8 11.58 19.26 AVG 46.00 -21.87 AVG 0.8940 12.00 12.13 24.13 9

56.00 -13.51

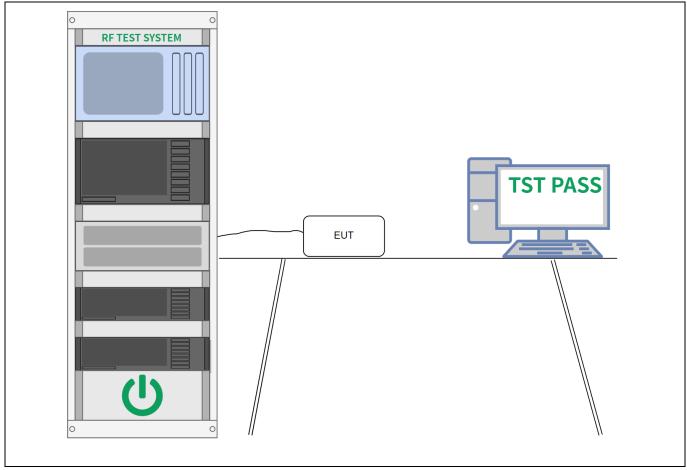
60.00 -27.00

50.00 -34.31

QP

QP

AVG


Occupied Bandwidth

Occupied Baridwidth	
Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

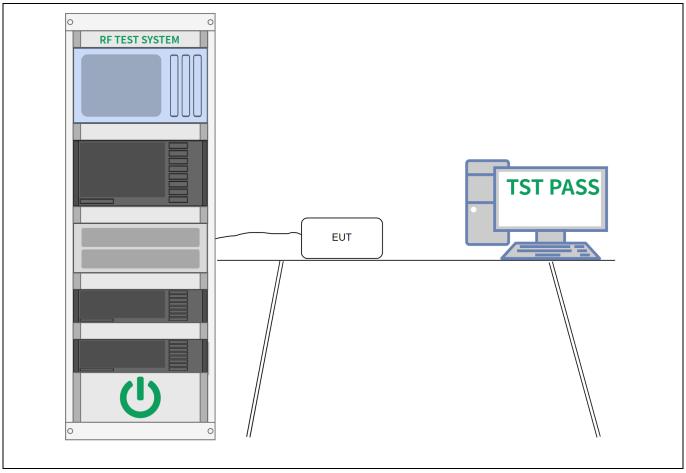
6.1.4 E.U.T. Operation:

Operating Environment:								
Temperature: 25 °C			Humidity:	60 %	Atmospheric Pressure:	101 kPa		
Pre test mode:		Mode	e1, Mode2					
Final test mode:		Mode	e1, Mode2					

6.1.5 Test Setup Diagram:

6.1.6 Test Data:

Please Refer to Appendix for Details.


6.2 Maximum Conducted Output Power

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. Test Limit: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. Test Method: Maximum peak conducted output power ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power		·
and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. Test Method: Maximum peak conducted output power	Test Requirement:	and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power
	Test Limit:	and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power
Procedure: ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power	Test Method:	Maximum peak conducted output power
	Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	25 °C		Humidity:	60 %	Atmospheric Pressure:	101 kPa			
Pre test mode:		Mode	e1, Mode2						
Final test mode:		Mode	e1, Mode2						

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Power Spectral Density

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission

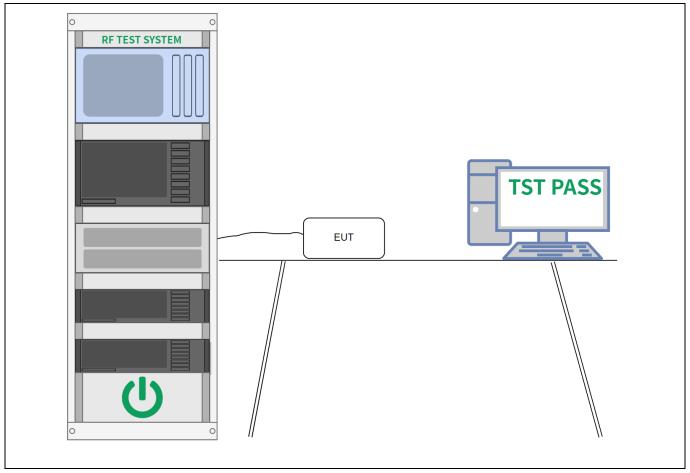
6.3.1 E.U.T. Operation:

Operating Environment:								
Temperature: 25 °C			Humidity:	60 %	Atmospheric Pressure	101 kPa		
Pre test mode:		Mode	e1, Mode2					
Final test mode: Mod			e1, Mode2					

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.


6.4 Emissions in non-restricted frequency bands

	·
Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.4.1 E.U.T. Operation:

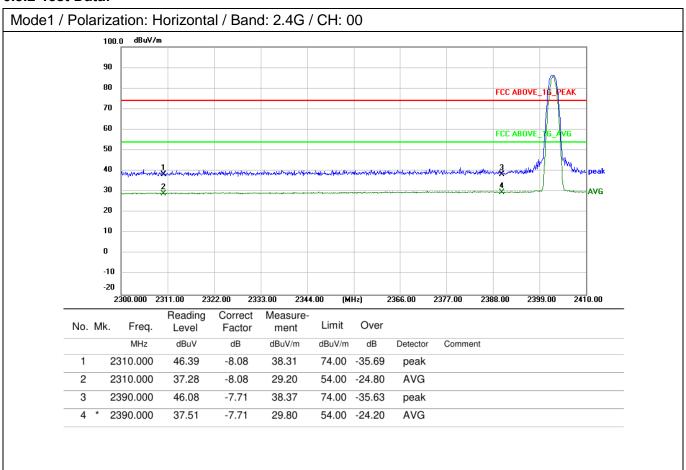
Operating Envi	ronment:					
Temperature:	25 °C		Humidity:	60 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Band edge emissions (Radiated)


Test Requirement:	*	nissions which fall in the rest comply with the radiated em 5(c)).`		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	intentional radiators op frequency bands 54-72	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g.,	all not be located in the MHz or 470-806 MHz.	
	§§ 15.231 and 15.241.			
Test Method:	Radiated emissions tes	ets		
Procedure:	ANSI C63.10-2013 sec	tion 6.10		

6.5.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	25 °C		Humidity:	50 %	Atmospheric Pressure:	25 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1			

6.5.2 Test Data:

2

3

4 *

2310.000

2390.000

2390.000

37.10

47.33

37.63

-8.08

-7.71

-7.71

29.02

39.62

29.92

Report No.: MTi230606006-01E1 Mode1 / Polarization: Vertical / Band: 2.4G / CH: 00 100.0 dBuV/m 90 80 FCC ABOVE_1G_PEAK 70 60 FCC ABOVE_16 50 40 30 AVG 20 10 0 -10 2300.000 2311.00 2410.00 2322.00 2333.00 2344.00 (MHz) 2366.00 2377.00 2388.00 2399.00 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 2310.000 46.78 -8.08 38.70 74.00 -35.30 peak

54.00 -24.98

74.00 -34.38

54.00 -24.08

AVG

peak

AVG

3

4

2500.000

2500.000

Report No.: MTi230606006-01E1 Mode1 / Polarization: Horizontal / Band: 2.4G / CH: 39 116.0 106 96 86 FCC ABOVE_1G_PEAK 76 66 FCC ABOVE 1G_AVG 56 46 36 26 16 6 2475.000 2477.50 2480.00 2482.50 2485.00 (MHz) 2490.00 2492.50 2495.00 2497.50 2500.00 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 2483.500 51.58 -7.24 44.34 74.00 -29.66 peak 2 2483.500 38.43 -7.24 31.19 54.00 -22.81 AVG

74.00 -33.17

54.00 -23.33

peak

AVG

-7.17

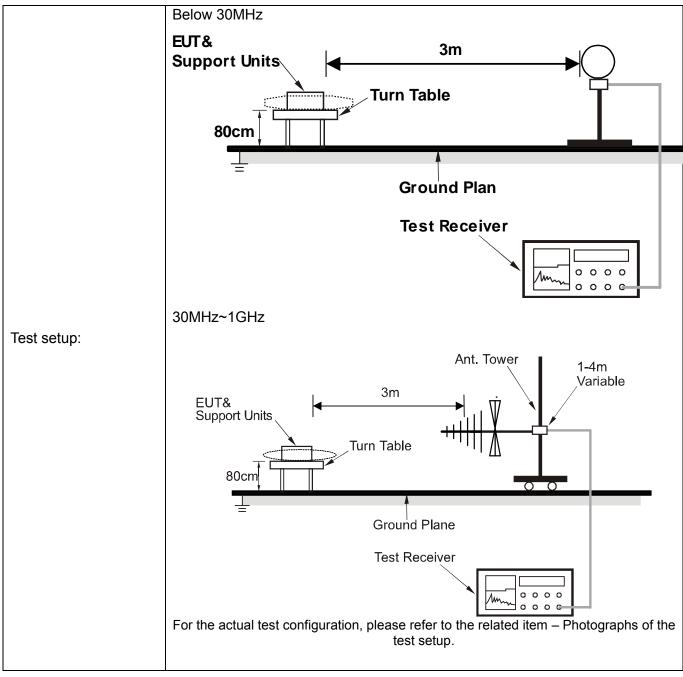
-7.17

40.83

30.67

48.00

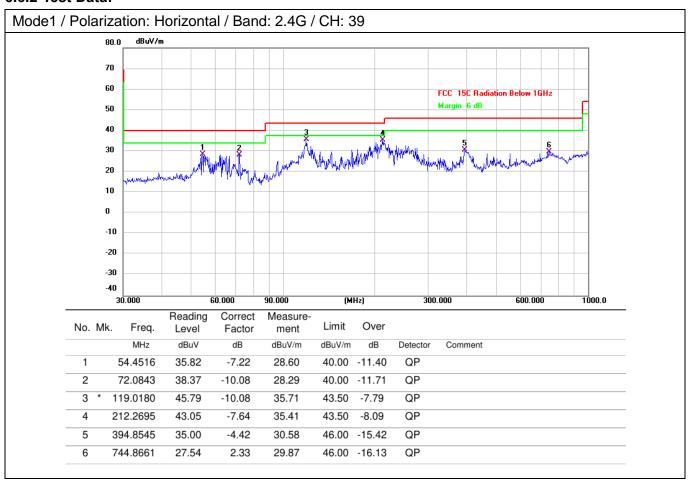
37.84


Report No.: MTi230606006-01E1 Mode1 / Polarization: Vertical / Band: 2.4G / CH: 39 116.0 dBuV/m 106 96 86 FCC ABOVE_1G_PEAK 76 66 FCC ABOVE 1G_AVG 56 46 36 26 16 6 2475.000 2477.50 2480.00 2482.50 2485.00 (MHz) 2490.00 2492.50 2495.00 2497.50 2500.00 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Comment Detector 2483.500 48.08 -7.24 40.84 74.00 -33.16 peak

6.6 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	*
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72	_	nall not be located in the MHz or 470-806 MHz.
Test Method:	Radiated emissions tes	sts	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.6.1 E.U.T. Operation:


Operating Environmen	t:			
Temperature: 25 °C	Humidity:	50 %	Atmospheric Pressure:	100 kPa
Pre test mode:	Mode1, Mode2			
Final test mode:	Mode1			

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.6.2 Test Data:

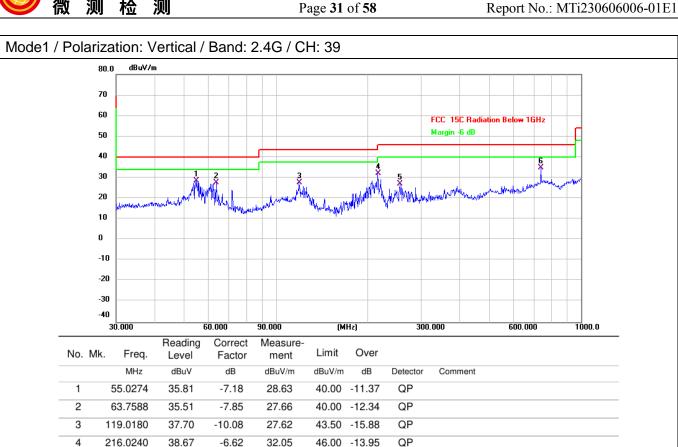
5

6

255.6231

739.6604

34.99


33.02

-7.86

1.84

27.13

34.86

46.00 -18.87

46.00 -11.14

QP

QP

6.7 Emissions in restricted frequency bands (above 1GHz)

§ 15.205(a), must also o	comply with the radiated emi	
Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	` '	30
1.705-30.0	30	30
30-88	100 **	3
88-216		3
		3
		3
sections of this part, e.g §§ 15.231 and 15.241.	l.,	permitted under other
ANSI C63.10-2013 sect	ion 6.6.4	
Above 1GHz EUT& Support Units Turn Table	Ant. Tower 3m Absorber Ground Plane Spectrum analyzer	
	§ 15.205(a), must also of 15.209(a)(see § 15.205) Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in intentional radiators ope frequency bands 54-72 However, operation with sections of this part, e.g §§ 15.231 and 15.241. Radiated emissions test ANSI C63.10-2013 sect Above 1GHz	(microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 ** 88-216 216-960 200 ** Above 960 500 ** Except as provided in paragraph (g), fundamenta intentional radiators operating under this section shaftequency bands 54-72 MHz, 76-88 MHz, 174-216 NHz, 76-88

6.7.1 E.U.T. Operation:

опт. =.от. ор	0.4					
Operating Envi	ronment:					
Temperature:	25 °C		Humidity:	50 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1			
Note: Test free	uency ar	a from	1CHz to 25	CHz the ampl	itude of enurious emission	ne which are

Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.7.2 Test Data:

/lode1	1 / Po	lariza	ation: Horizor	ntal / Band: 2.	4G / CH: 00				
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	43.79	0.74	44.53	74.00	-29.47	peak
_	2		4804.000	37.77	0.74	38.51	54.00	-15.49	AVG
	3		7206.000	40.14	6.02	46.16	74.00	-27.84	peak
_	4		7206.000	34.01	6.02	40.03	54.00	-13.97	AVG
	5		9608.000	41.38	5.88	47.26	74.00	-26.74	peak
	6	*	9608.000	34.97	5.88	40.85	54.00	-13.15	AVG

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	41.86	0.74	42.60	74.00	-31.40	peak
2		4804.000	35.28	0.74	36.02	54.00	-17.98	AVG
3		7206.000	39.67	6.02	45.69	74.00	-28.31	peak
4		7206.000	33.72	6.02	39.74	54.00	-14.26	AVG
5		9608.000	41.13	5.88	47.01	74.00	-26.99	peak
6	*	9608.000	34.89	5.88	40.77	54.00	-13.23	AVG

Mode1 / Polarization: Horizontal / Band: 2.4G / CH: 19 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ dB Detector 4880.000 40.68 1.04 41.72 74.00 -32.28 peak 2 4880.000 34.22 1.04 35.26 54.00 -18.74 AVG 3 40.70 74.00 -27.37 7320.000 5.93 46.63 peak 7320.000 34.35 5.93 40.28 54.00 -13.72 AVG 4 5 9760.000 41.31 6.55 47.86 74.00 -26.14 peak 6 9760.000 34.79 6.55 41.34 54.00 -12.66 AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	48.43	1.04	49.47	74.00	-24.53	peak
2		4880.000	39.47	1.04	40.51	54.00	-13.49	AVG
3		7320.000	40.69	5.93	46.62	74.00	-27.38	peak
4		7320.000	34.22	5.93	40.15	54.00	-13.85	AVG
5		9760.000	40.98	6.55	47.53	74.00	-26.47	peak
6	*	9760.000	34.26	6.55	40.81	54.00	-13.19	AVG

Mode1 / Polarization: Horizontal / Band: 2.4G / CH: 39 Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dΒ dBuV/m dBuV/m dΒ Detector 48.30 1.50 49.80 74.00 -24.20 1 4960.000 peak 2 4960.000 39.05 1.50 40.55 54.00 -13.45 AVG 3 39.65 5.61 45.26 74.00 -28.74 7440.000 peak 7440.000 33.48 5.61 39.09 54.00 -14.91 AVG 4 5 9920.000 41.30 6.10 47.40 74.00 -26.60 peak 9920.000 35.23 6.10 41.33 54.00 -12.67 AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4	4960.000	41.63	1.50	43.13	74.00	-30.87	peak
2	4	4960.000	35.55	1.50	37.05	54.00	-16.95	AVG
3		7440.000	40.73	5.61	46.34	74.00	-27.66	peak
4		7440.000	34.55	5.61	40.16	54.00	-13.84	AVG
5	,	9920.000	40.57	6.10	46.67	74.00	-27.33	peak
6	* (9920.000	34.18	6.10	40.28	54.00	-13.72	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos.

Photographs of the EUT

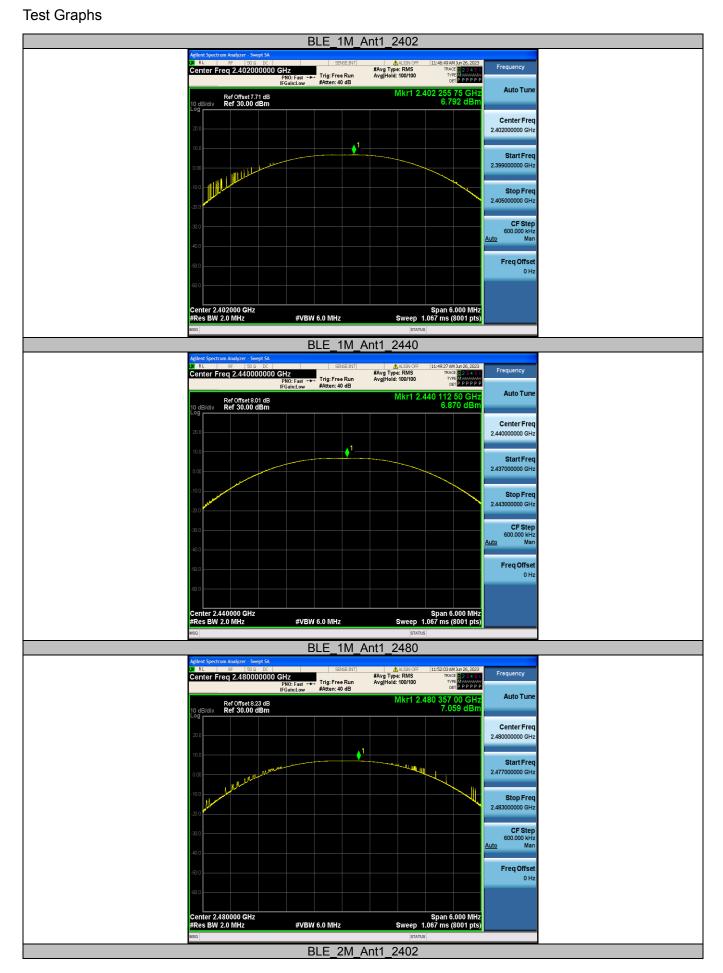
Refer to Appendix - EUT Photos

Appendix

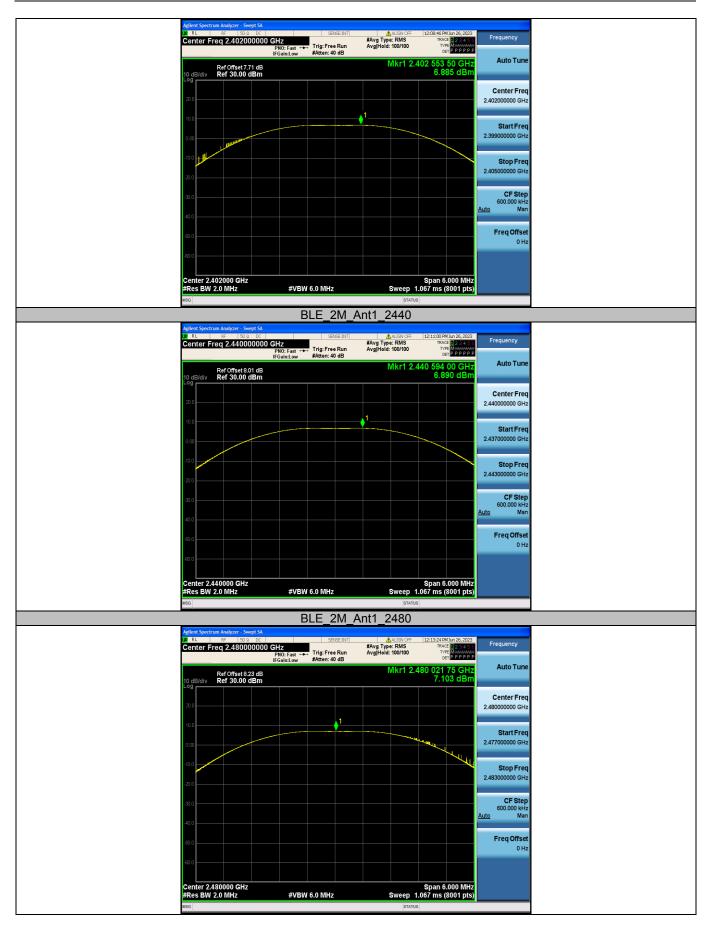
Appendix A: DTS Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
BLE_1M	Ant1	2402	0.644	0.5	PASS
		2440	0.684	0.5	PASS
		2480	0.840	0.5	PASS
BLE_2M	Ant1	2402	1.144	0.5	PASS
		2440	1.048	0.5	PASS
		2480	1.068	0.5	PASS

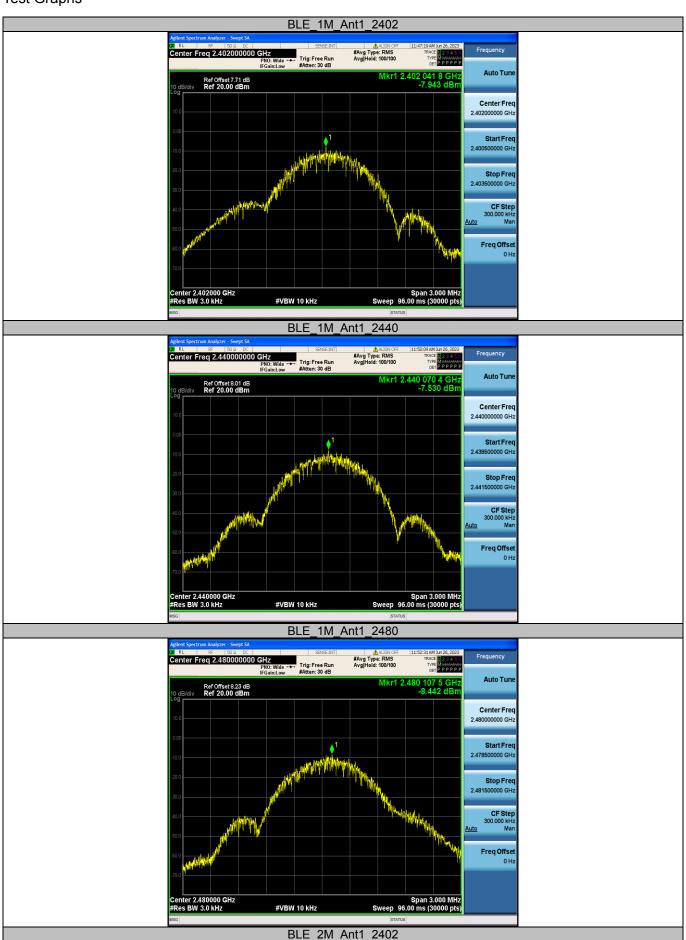


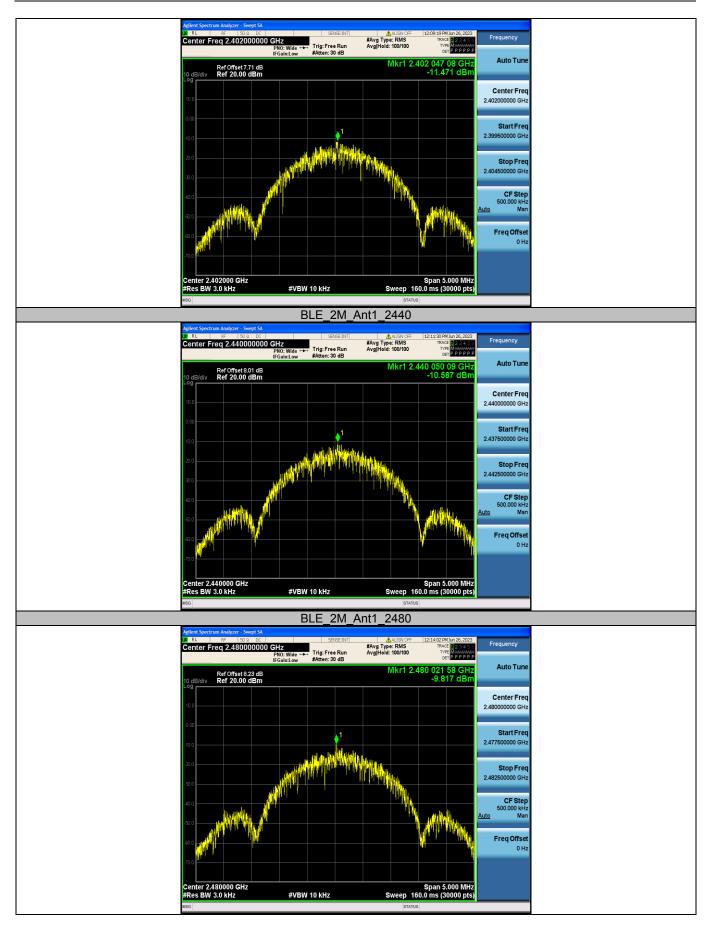
Appendix B: Maximum conducted output power


Test Result-Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
BLE_1M	Ant1	2402	6.79	≤30	PASS
		2440	6.87	≤30	PASS
		2480	7.06	≤30	PASS
BLE_2M	Ant1	2402	6.89	≤30	PASS
		2440	6.89	≤30	PASS
		2480	7.1	≤30	PASS

1100 1000 1111 1000

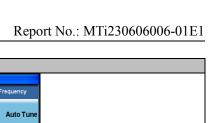


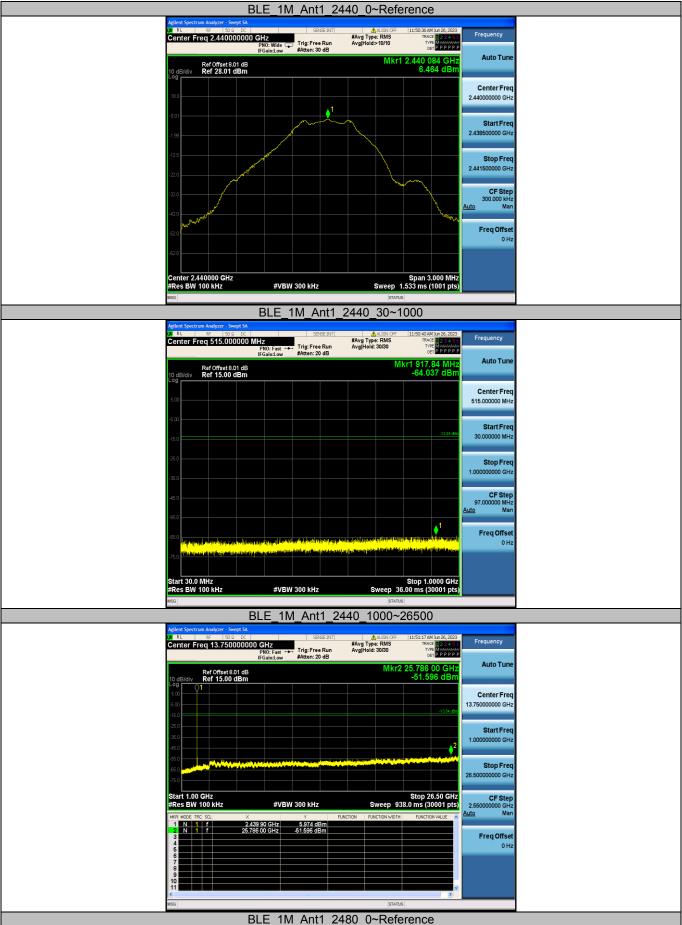

Appendix C: Maximum power spectral density

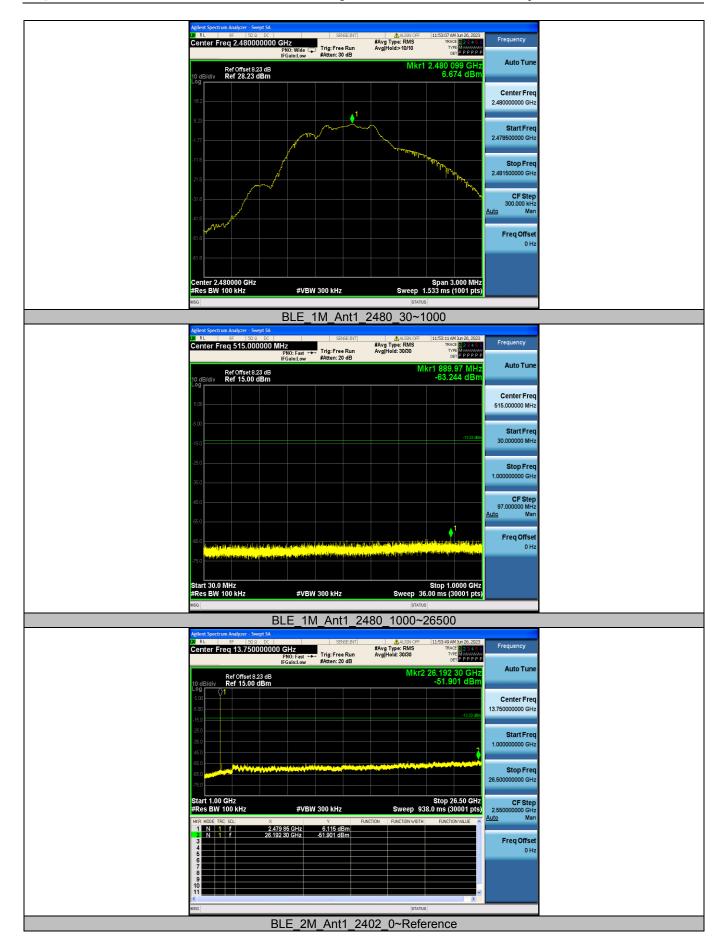
Test Result

Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-7.94	≤8.00	PASS
		2440	-7.53	≤8.00	PASS
		2480	-8.44	≤8.00	PASS
BLE_2M	Ant1	2402	-11.47	≤8.00	PASS
		2440	-10.59	≤8.00	PASS
		2480	-9.82	≤8.00	PASS

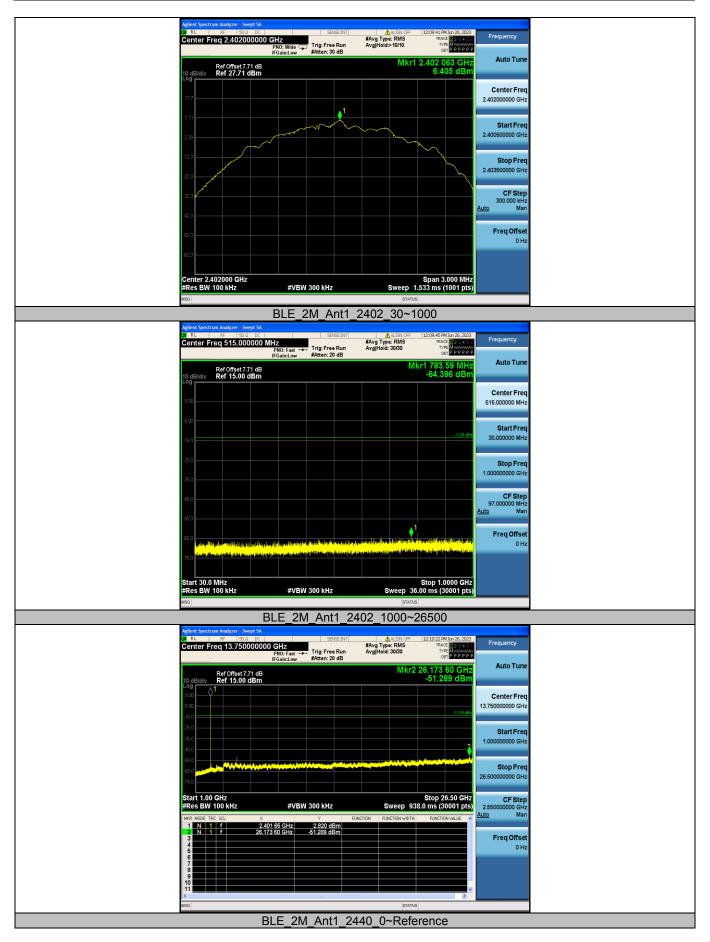
Appendix D: Band edge measurements

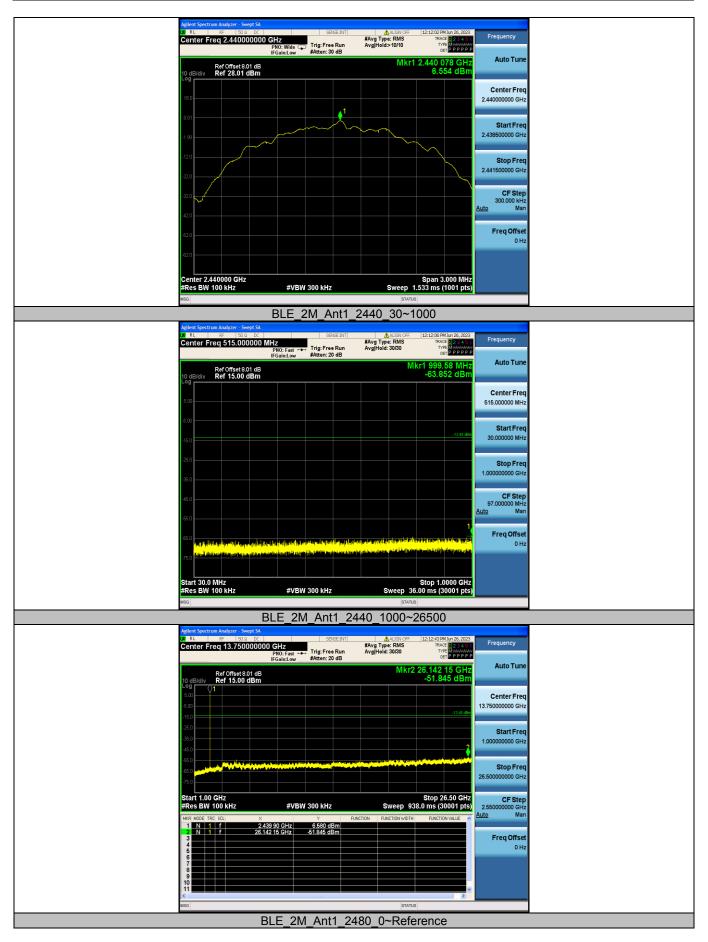


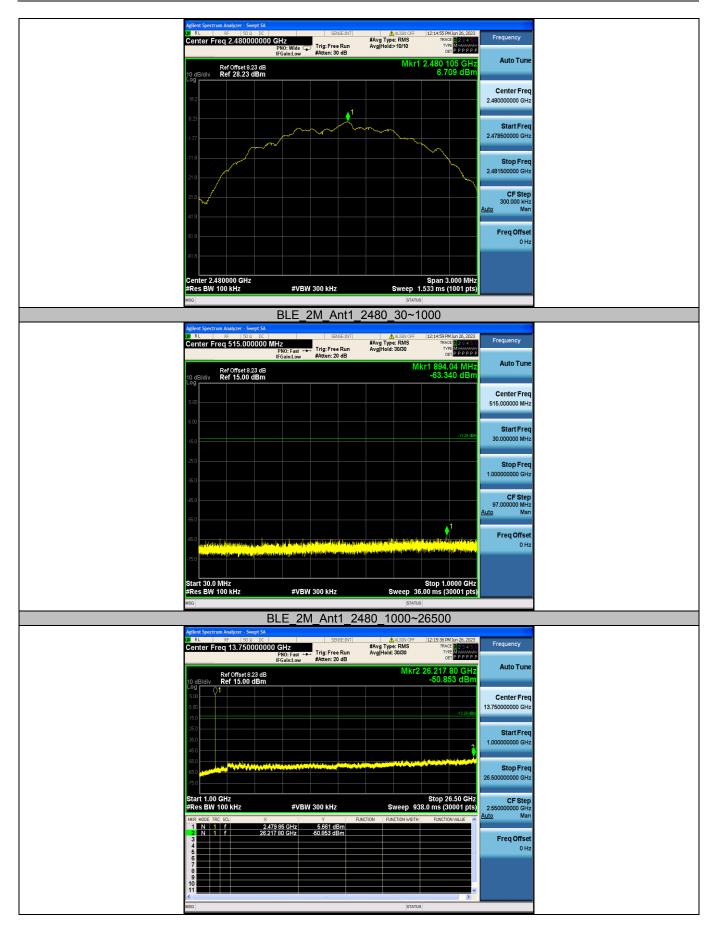




Appendix E: Conducted Spurious Emission








Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency	ON Time	Period	Duty Cycle	Duty Cycle
		[MHz]	[ms]	[ms]	[%]	Factor[dB]
BLE_1M	Ant1	2402	0.56	1.25	44.80	3.49
		2440	0.56	1.25	44.80	3.49
		2480	0.56	1.25	44.80	3.49
BLE_2M	Ant1	2402	0.30	0.62	48.39	3.15
		2440	0.30	0.62	48.39	3.15
		2480	0.30	0.62	48.39	3.15

Page **57** of **58** Report No.: MTi230606006-01E1

----End of Report----