

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.: Applicant: Address of Applicant:	CQASZ20230500802E-01 Joint Chinese Ltd Building 6, HuafengTech Park, LuotianIndustrial Area, Songgang Town Baoan, Shenzhen, China
Equipment Under Test (E	UT):
Product:	smart watch
Model No.:	2203, ThaiSook Watch 1.0
Test Model No.:	2203
Brand Name:	N/A
FCC ID:	2AB73-2203
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2023-05-16
Date of Test:	2023-05-16 to 2023-05-24
Date of Issue:	2023-05-25
Test Result:	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

lewis 2h0u (Lewis Zhou) Tested By: Timo Lej' Reviewed By: (Timo Lei) Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20230500802E-01	Rev.01	Initial report	2023-05-25

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 Client Information	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	7
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	9
4.7 Test Location	
4.8 Test Facility	
4.9 DEVIATION FROM STANDARDS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	50
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Joint Chinese Ltd
Address of Applicant:	Building 6, HuafengTech Park, LuotianIndustrial Area, Songgang Town Baoan, Shenzhen, China
Manufacturer:	Joint Chinese Ltd
Address of Manufacturer:	Building 6, HuafengTech Park, LuotianIndustrial Area, Songgang Town Baoan, Shenzhen, China
Factory:	Joint Chinese Ltd
Address of Factory:	Building 6, HuafengTech Park, LuotianIndustrial Area, Songgang Town Baoan, Shenzhen, China

4.2 General Description of EUT

Product Name:	smart watch
Model No.:	2203, ThaiSook Watch 1.0
Test Model No.:	2203
Trade Mark:	N/A
Software Version:	2203-V4-1
Hardware Version:	2203V1.1
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.0
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	□ Mobile
Test Software of EUT:	RTL8762C_RFTestTool
Antenna Type:	Chip antenna
Antenna Gain:	0.5dBi
EUT Power Supply:	Li-ion battery: DC 3.7V 280mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

Operation F	requency each o	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:						
Mode:	\boxtimes Special software is used.	Special software is used.				
	☐ Through engineering command int	Through engineering command into the engineering mode.				
	engineering command: *#*#3646633	#*#*				
EUT Power level:	Class2 (Power level is built-in set par selected)	ameters and cannot be changed and				
Use test software to set the	lowest frequency, the middle frequency an	nd the highest frequency keep				
transmitting of the EUT.		1				
Mode	Channel	Frequency(MHz)				
	СН0	2402				
GFSK	CH19	2440				
	СН39	2480				
Run Software:						
	O Download RF Test					

ction	LE Enhance TX		Channel	39 🗸	Detect	Open
ayload Type	PRBS 9	~	Data Length	20	∠ COM1	FAIL
					Сом5	FAIL
tart Channel	0	~	Stop Channel	39 🗸	Сом2	ОК
ΗY	LE 1M	~	Modulation Index	Stable Modulation	COM14	FAIL
Get Freq Value	SetFr	eq Value			COM15	FAIL
Start	Sto	p		Result	COM16	FAIL
			Erase	Download	СОМ17	FAIL
	entHandle: Port(2) tHandle: Port(2) LE			^	✓ СОМ18	FAIL
ETestEndEven	entHandle: Port(2) tHandle: Port(2) LE entHandle: Port(2)	Test End St	atus(1) [HCI]			
ETestEndEven EEnhanceTXEv	tHandle: Port(2) LE entHandle: Port(2) tHandle: Port(2) LE	Test End St LE Enhance	atus(1) [HCI]			

4.4 Test Environment

Operating Environment	:
Temperature:	24.5°C
Humidity:	59% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	1	1	1	CQA
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	/

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10⁻ ⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU26	CQA-038	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU40	CQA-075	2022/09/09	2023/09/08
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2022/09/09	2023/09/08
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2022/09/09	2023/09/08
Preamplifier	EMCI	EMC184055SE	CQA-089	2022/09/09	2023/09/08
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2022/09/09	2023/09/08
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2022/09/09	2023/09/08
RF _cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2022/09/09	2023/09/08
Antenna Connector	CQA	RFC-01	CQA-080	2022/09/09	2023/09/08
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2022/09/09	2023/09/08
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2022/09/09	2023/09/08
Power meter	R&S	NRVD	CQA-029	2022/09/09	2023/09/08
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2022/09/09	2023/09/08
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
LISN	R&S	ENV216	CQA-003	2022/09/09	2023/09/08
Coaxial cable	CQA	N/A	CQA-C009	2022/09/09	2023/09/08
DC power	KEYSIGHT	E3631A	CQA-028	2022/09/09	2023/09/08

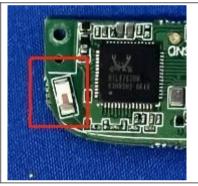
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

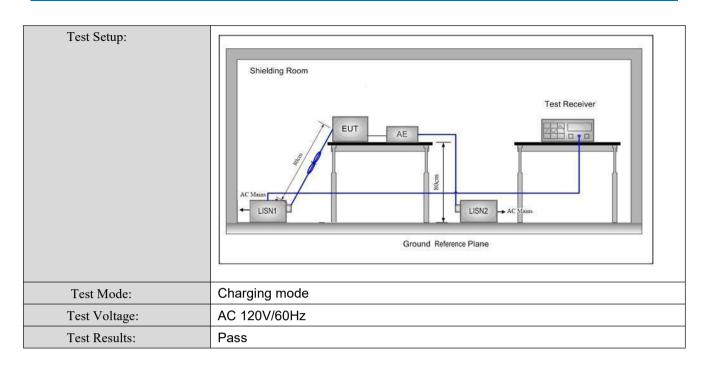
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

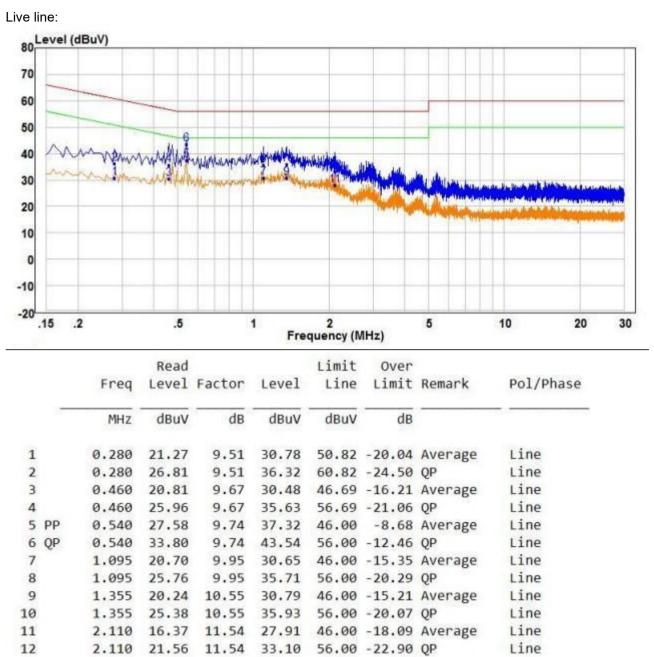
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna.

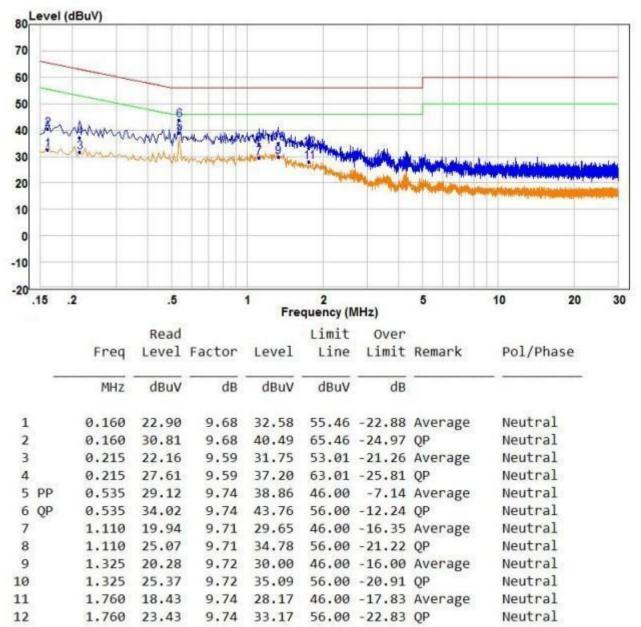

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment

This is either permanently attachment or a unique coupling that satisfies the requirement.


Test Requirement:	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:		Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm of	f the frequency.	
Test Procedure:	1) The mains terminal disturt room.	oance voltage test was	s conducted in a shielded
	 2) The EUT was connected to Impedance Stabilization Na- impedance. The power call connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal gr 4) The test was performed with of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the grou between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the int ANSI C63.10: 2013 on con 	etwork) which provides oles of all other units of N 2, which was bonde e way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing ar ound reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground ref and to a ground reference and reference plane. The of the LISN 1 and the quipment was at least (an emission, the relative terface cables must be	a 50Ω/50µH + 5Ω linear f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the e plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. re positions of

Measurement Data

Remark:

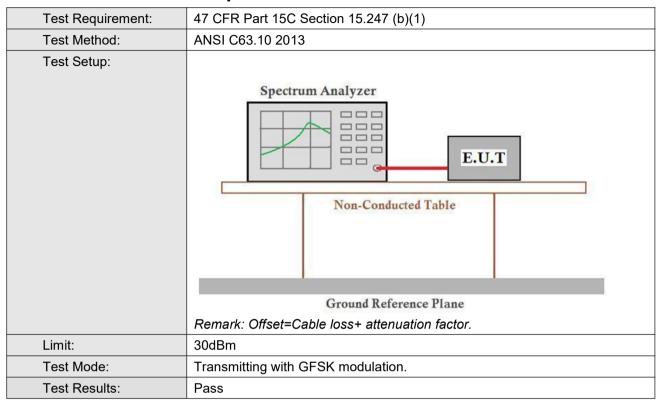

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

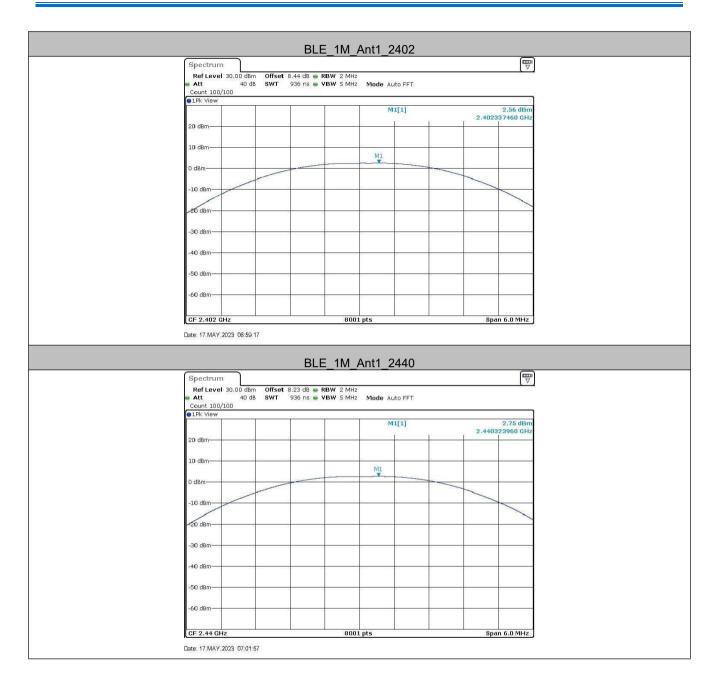
Neutral line:

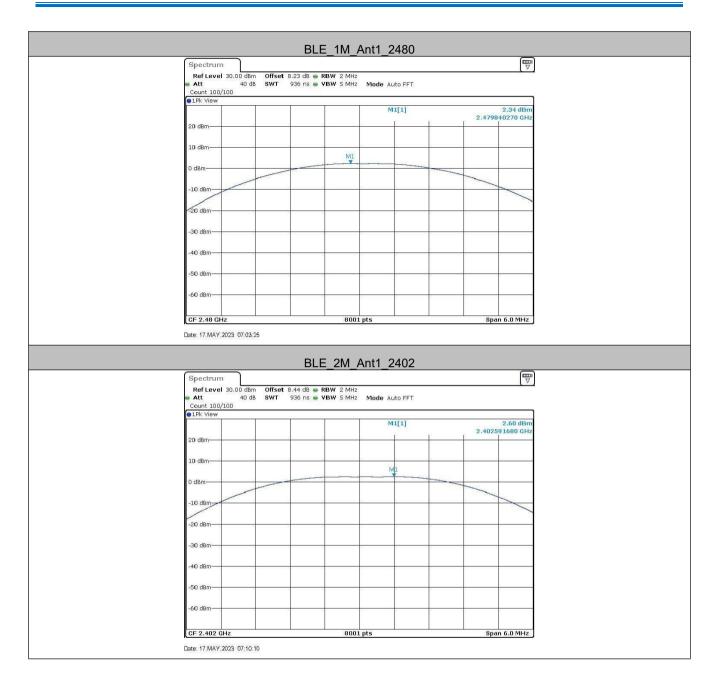
Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

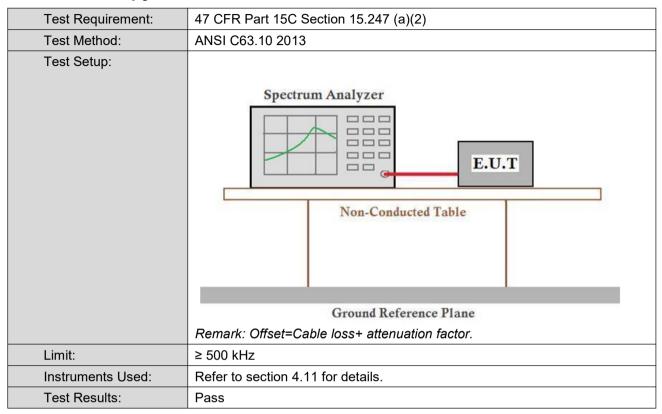
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

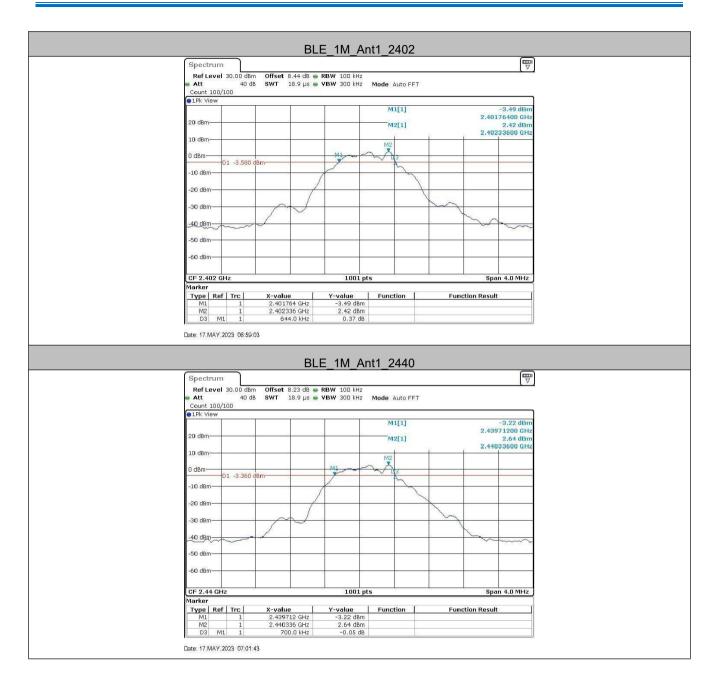
3. If the Peak value under Average limit, the Average value is not recorded in the report.


5.3 Conducted Peak Output Power


Measurement Data

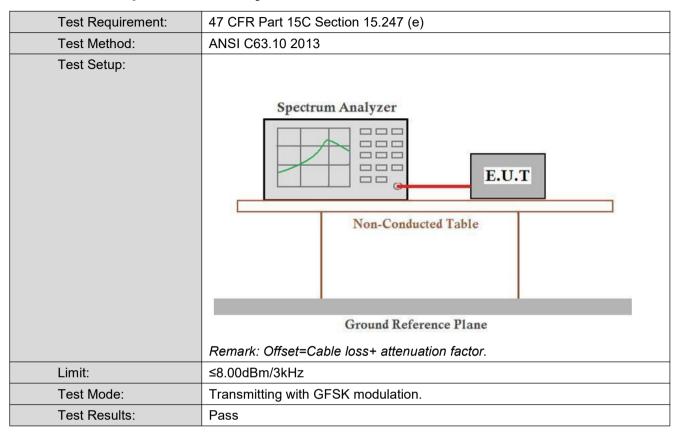
	GFSK mode (1	Mbps)	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	2.56	30.00	Pass
Middle	2.75	30.00	Pass
Highest	2.34	30.00	Pass
	GFSK mode (21	Mbps)	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	2.6	30.00	Pass
Middle	2.78	30.00	Pass
Highest	2.36	30.00	Pass



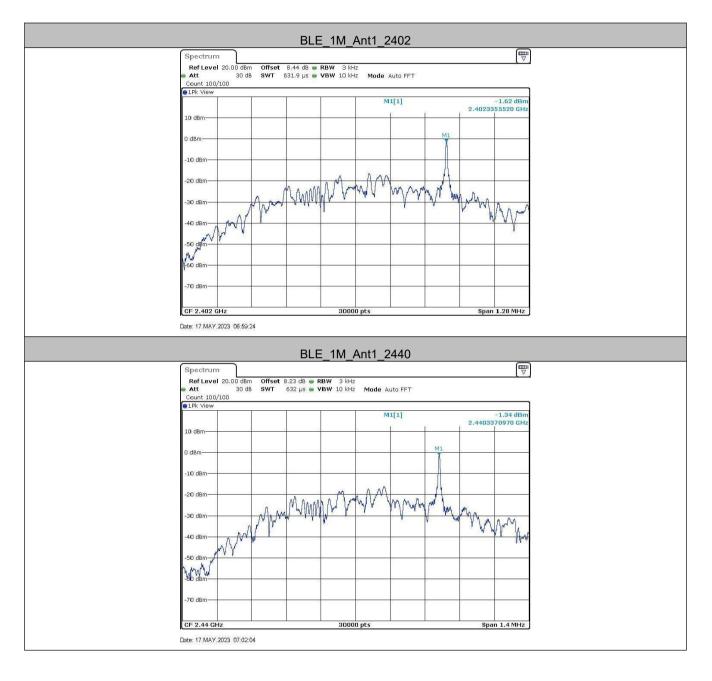

5.4 6dB Occupy Bandwidth

Measurement Data

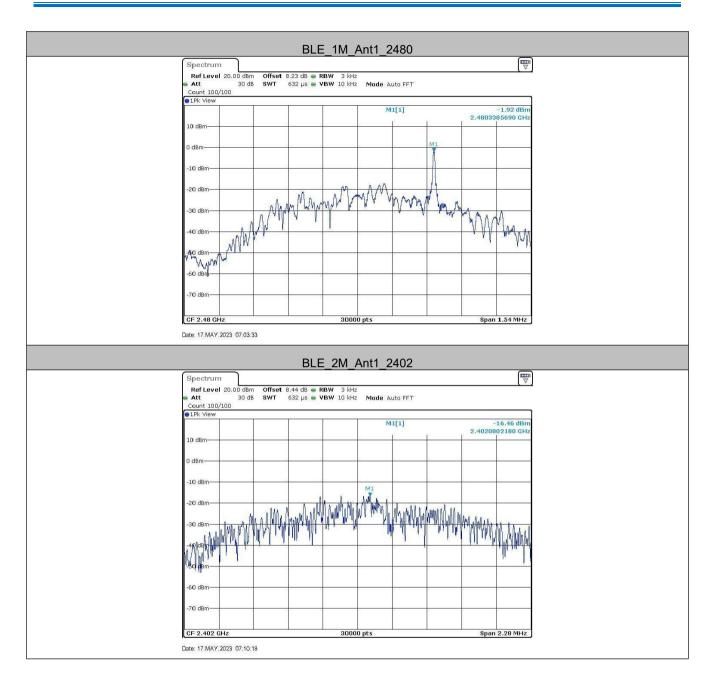
	GFSK mode (1Mbps)		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.64	≥500	Pass
Middle	0.70	≥500	Pass
Highest	0.77	≥500	Pass
	GFSK mode (2Mbps)		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	1.14	≥500	Pass
Middle	0.86	≥500	Pass
Highest	0.90	≥500	Pass

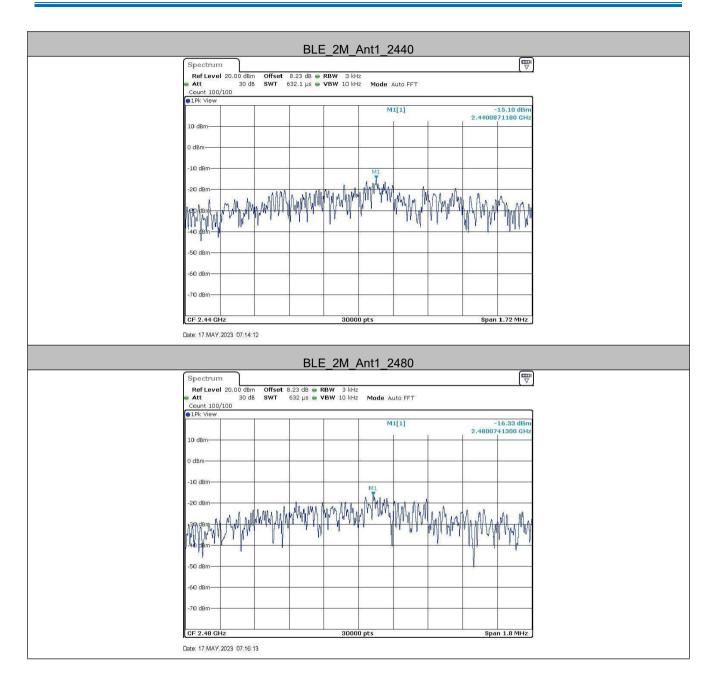


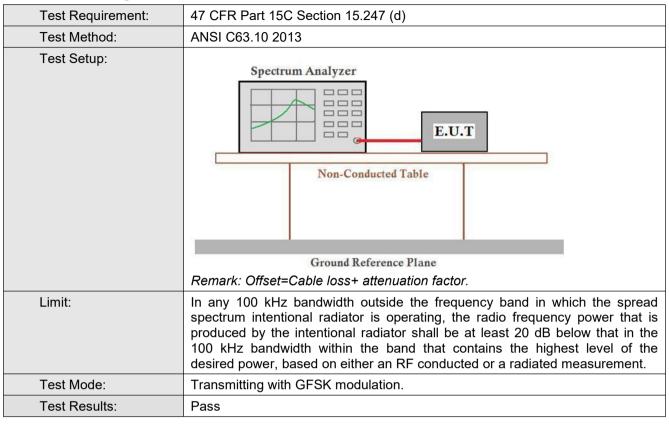
5.5 Power Spectral Density



Measurement Data


	GFSK mode (1Mbps)		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-1.62	≤8.00	Pass
Middle	-1.34	≤8.00	Pass
Highest	-1.92	≤8.00	Pass
	GFSK mode (2Mbps)		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-16.46	≤8.00	Pass
Middle	-15.1	≤8.00	Pass
Highest	-16.33	≤8.00	Pass

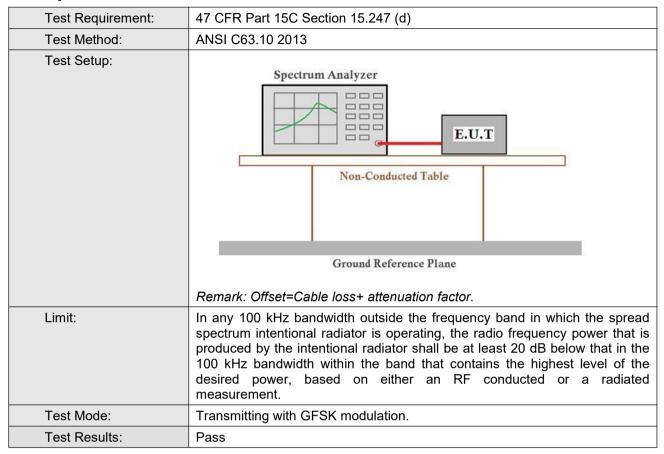

Test plot as follows:



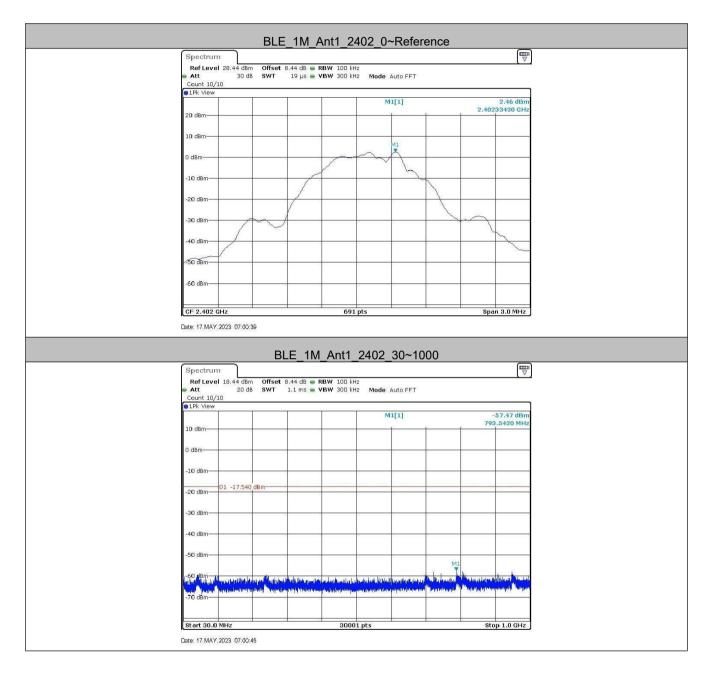
5.6 Band-edge for RF Conducted Emissions

TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	2.51	-50.63	≤-17.49	PASS
BLE_1M	High	2480	2.19	-49.13	≤-17.81	PASS
	Low	2402	2.33	-34.27	≤-17.67	PASS
BLE_2M	High	2480	2.04	-49.56	≤-17.96	PASS

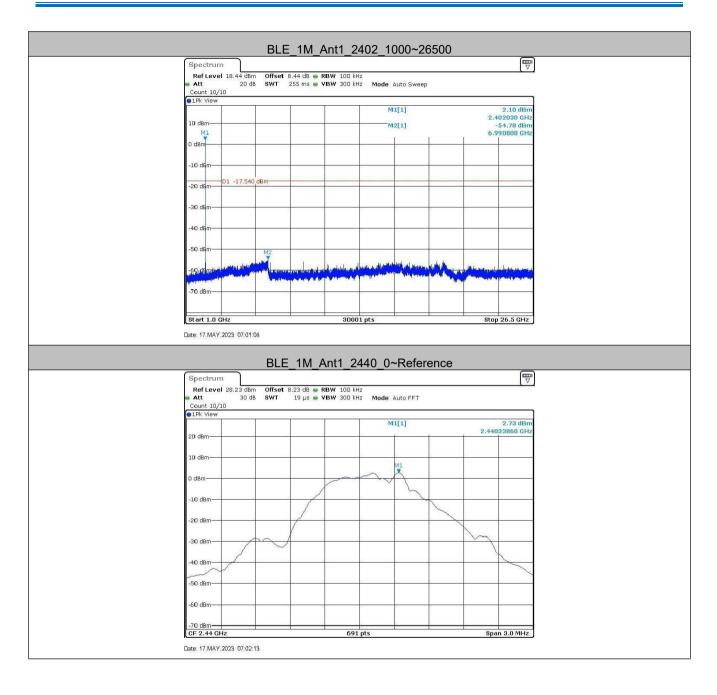
Test plot as follows:

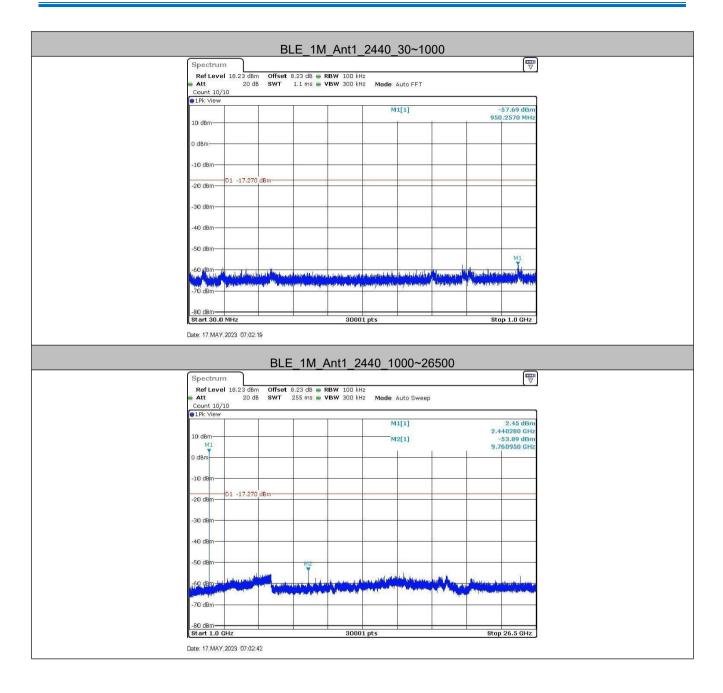


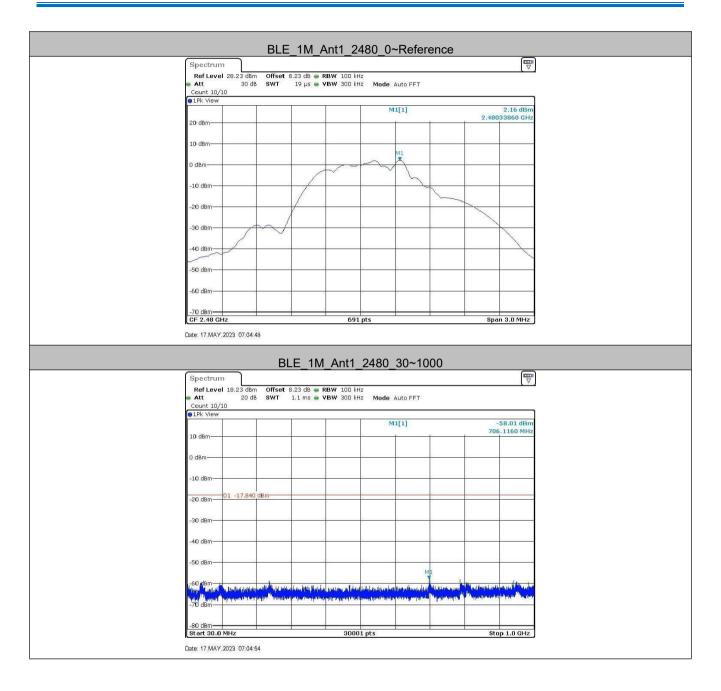
Bleedownin V Part Level 20.00 dBm Offset 0.4+ dB RBW 100 kHz Node Auto FFT 2.00 dBm 2.00 dBm 10 dBm 2.00 dBm 1.2,400 dBm 10 dBm 1.2,720 dBm 1.2,400 dBm 10 dBm 1.2,400 dBm 1.2,400 dBm 10 dBm 1.2,400 dBm 1.2,400 dBm 10 dBm 1.2,400 dBm 1.2,400 dBm 10 dBm 1.2,230 dHz 921 pts Stort 2.3,5 GHz 921 pts Stop 2.405 GHz 11 2.2,400 GHz 2.33 dBm 1.2,390 GHz 12 2.30 GHz 2.390 GHz 2.390 GHz 12 2.30 GHz 2.390 GHz 2.390 GHz 12 2.30 GHz 2.390 GHz 2.390 GHz 12 2.40 GHz 2.391 GHz 2.390 GHz 12 2.40 GHZ 2.390 GHz 2.392 GHz 12 2.40 GHz 2.39	Spectru								₽
Att 30 db SWT 75.8 µs ¥ EW 300 kHz Mode Auto FFT Court 300/200 EFK View 10 dbm 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402095 014 2.402005 014 2.402005 014 2.402005 014 2.402005 014 2.402005 014 4.40 4.40 4.41 2.402005 014 4.41	10000		m Offset	8.44 dB 👄	RBW 100 kHz				[∀
B_FK View MI[1] 2.33 dBm 10 dBm M2[1] 2.400000 GHz 0 dBm M2[1] 2.400000 GHz 10 dBm 2.400000 GHz 2.400000 GHz -10 dBm -20 dBm -21 J.7.670 dBm -23 dBm -30 dBm -20 dBm -21 J.7.670 dBm -23 dBm -30 dBm -20 dBm -21 J.7.670 dBm -23 dBm -40 dBm -20 dBm -23 dBm -23 dBm -50 dBm -23 dBm -23 dBm -23 dBm -70 dBm -23 dBm -23 dBm -23 dBm Marker -77 dBm -77 dBm -77 dBm -77 dBm Marker -77 dBm -23 dBm -23 dBm -23 dBm Marker -77 dBm -23 dBm -23 dBm -23 dBm Marker -77 dBm -77 dBm -74 dBm -74 dBm <th></th> <th></th> <th>B SWT</th> <th>75.8 µs 👄</th> <th>VBW 300 kHz</th> <th>Mode Auto FF</th> <th>т</th> <th></th> <th></th>			B SWT	75.8 µs 👄	VBW 300 kHz	Mode Auto FF	т		
10 dBm 2.402003 GHz 0 dBm 2.400000 GHz 10 dBm 2.400000 GHz 20 dBm 2.400000 GHz 20 dBm 2.400000 GHz 30 dBm 40 dBm 40 dBm 43 40 dBm 44 40 dBm 44 40 dBm 44 40 dBm 44 41 2.402095 GHz 2.39 GHz -32.95 dBm M4 1 1 2.4 GHz 2.39 GHz -34.27 dBm M4 1 2.39 GHz -34.27 dBm M4 1 1 2.4 GHz 2.39 GHz -34.27 GBm 10 dBm 1 <tr< td=""><td>●1Pk Vie</td><td>H</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	●1Pk Vie	H	1						
10 dBm M2[1] -2.93,40m 0 dBm 2.400000 GHz 2.400000 GHz -20 dBm 01 -17.670 dBm -20 dBm -30 dBm -20 dBm -20 dBm -40 dBm -20 dBm -20 dBm -70 dBm -20 dBm -20 dBm Marker -20 dBm -20 dBm Odbm Offset 8.22 dB @B RBW 10 dBm <t< td=""><td>14</td><td></td><td></td><td></td><td></td><td>M1[1]</td><td></td><td></td><td></td></t<>	14					M1[1]			
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -70	10 dBm-					M2[1]		-29.8	#dBm
BLE 20 dBm M3 -30 dBm -40 dBm -40 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm	0 dBm	-	2	-	8 8			2.10000	Th Th
30 dBm 30 dBm -40 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm -70 dBm -40 dBm -70 dBm -40 dBm -70 dBm -40 dBm M1 1 2.402095 GHz -23.33 dBm M2 1 2.402095 GHz -23.94 dBm M3 1 2.39 GHz -29.94 dBm M4 1 2.3999783 GHz -34.27 dBm Date: 17.MAY 2023 07.10.28 EBEE_2M_Ant1_High_2480 EW Spectrum Effectevel 20.00 dBm Offset 8.23 dB @ RBW 100 Hz Made Auto FFT Count 300/300 EV -48.94 gB @ VBW 300 Hz Made Auto FFT 0 dBm -17.960 dBm M3 M4 -3.03 dBm -10 dBm -17.960 dBm M3 M4 -3.03 dBm -20 dBm -17.960 dBm M3 M4 -3.03 dBm -30 dBm -17.960 dBm -17.960 dBm -17.96	-10 dBm-		3	-					4
-40 dBm -51 49 dBm	-20 dBm-	D1 -17.67	0 dBm				_		\rightarrow
-40 dBm -51.93 dBm -50 dBm -51.93 dBm -51.93 dBm -50 dBm -51.93 dBm -51.93 dBm -50 dBm -51.93 dBm -50 dBm -51.93 dBm -51.93 dBm -50 dBm -51.93 dBm -51.93 dBm	20 d8m							113	1.
^{M3} ^{M4} ^{M3} ^{M3} ^{M4}					8	- 21	8	N	1
Start 2.35 GHz Stop 2.405 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402095 GHz 2.33 dBm Function Function Result M3 1 2.39 GHz -29.84 dBm Function Function Result M3 1 2.39 GHz -32.95 GHz Function Function Result M4 1 2.3999783 GHz -34.27 dBm Function Result Function Result M4 1 2.3999783 GHz -34.27 dBm Function Result Function Result Date: 17.MAY 2023 07.10.28 BLE 2M Ant1 High 24800 Function FT Function Contact Result Function GHZ Count 300/300 File M11 2.440130 GHz Function FT Function GHZ Count 300/300 M1 M11 2.44030 GHz Function FT Function GHZ Count 300/300 M1 M11 2.44030 GHz Function FT Function GHZ O dBm M1 M12 M14 M2(11	-40 dBm-		-		22		and and a second second		1
-60 dBm -70 dBm -71 dBm <	-50 dBm-	moulowand	Murr one	Murran	nationalisation	Munhuman	MB	mann	
Start 2.35 GHz 691 pts Stop 2.405 GHz Marker Function Function Result M1 1 2.402095 GHz 2.33 dBm M2 1 2.406 GHz 2.9.40 dBm M3 1 2.39 GHz -52.95 dBm M4 1 2.3999783 GHz -34.27 dBm Date: 17.MAY.2023 07:10:28 BLE_2M Ant1_High_2480 Spectrum Colspan="2">Colspan="2"									
Start 2.35 GHz 691 pts Stop 2.405 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.402095 GHz 2.33 dBm Function Result Function Result M2 1 2.4042 2.9.408 m Function Result Function Result M3 1 2.39 GHz -52.95 dBm Function Result Function Result M4 1 2.3999783 GHz -34.27 dBm Function Result Function Result Date: 17.MAY.2023 07:10:28 BLE 200 Ant1 High 2480 Function Result Function Result Function Result Ref Level 20:00 dBm Offset 8:23 dB RBW 100 HHz Mode Auto FFT Function Contact Result Function Contact Result Function Result Function Contact Result Function Result	-70 dBm-								
Marker Type Ref Tro 2-value Y-value Function Function Result M3 1 2.402095 GHz 2.33 dBm	-/0 0011-								
Type Ref Trc X-value Y-value Function Function Result M1 1 2:402095 GHz 2:33 dBm		35 GHz	3	1	691 pts	s	2	Stop 2.40	5 GHz
M1 1 2.40095 GHz 2.33 dBm M2 1 2.49 Hz -52 95 dBm M3 1 2.3999783 GHz -52 95 dBm Date: 17.MAY.2023 07.10.28 Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Cols		Ref Trc	X-valu	e	Y-value	Function	Fur	ction Result	1
M3 1 2.39 GHz -52.95 dBm M4 1 2.3999783 GHz -34.27 dBm Date: 17 MAY,2023 07.10.28 BLE_2M_Ant1_High_2480 The second of	M1	1	2.4020	095 GHz	2.33 dBm	- unocion		ottom nosuit	
Date: 17.MAY.2023 07:10:28 BLE_2M_Ant1_High_2480 Spectrum Ref Level 20.00 dBm Offset 8:23 dB ● RBW 100 kH2 Att 30 dB SWT 94.8 µs ● VBW 300 kH2 Mode Auto FFT Count 300/300 ● IPk View M1[1] 2.04 dBm 10 dBm M1 M2[1] -51.93 dBm 0 dBm 0 dBm 0 -51.93 dBm -30 dBm 12.480130 GH2 -51.93 dBm -51.93 dBm -30 dBm 12.48030 GH2 -51.93 dBm -51.93 dBm -30 dBm -17.960 dBm -10.7960 dBm -10.7960 dBm -10.7960 dBm -30 dBm -12.7960 dBm -11.7960 dBm -10.7960 dBm -10.7960 dBm -10.7960 dBm -10.7960 dBm -30 dBm -12.7960 dBm -11.7960 dBm	1912			2.4 GHZ	-29.84 dBm				
BLE_2M_Ant1_High_2480 Spectrum Ref Level 20.00 dBm Offset 8.23 dB @ RBW 100 kHz Att 30 dB SWT 94.8 µs @ VBW 300 kHz Mode Auto FFT Court 300/300 @ M1[1] 2.04 dBm 0 dBm M1[1] 2.480130 GHz 10 dBm M1 M2[1] -51.93 dBm -20 dBm 0 dBm -17.960 dBm -10 dBm -10 dBm -30 dBm -17.960 dBm -17.960 dBm -10 dBm -10 dBm -30 dBm -12.483500 GHz -10 dBm -10 dBm -10 dBm -30 dBm -12.960 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm -12.960 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm -12.960 dBm -12.950 dBm -10 dBm -10 dBm -30 dBm -12.960 dBm -13.0400000000000000000000000000000000000									
Spectrum Image: Control of Spectrum Ref Level 20,00 dBm Offset 8.23 dB RBW 100 kHz Att 30 dB SWT 94.8 µs VBW 300 kHz Mode Auto FFT Count 300/300 ●1Pk View M1[1] 2.04 dBm 10 dBm M1 M2[1] -51.93 dBm 0 dBm M1 M2[1] -51.93 dBm -10 dBm -17.960 dBm -17.960 dBm -20 dBm -30 dBm -17.960 dBm -0.94 dBm -0.94 dBm -30 dBm -17.960 dBm -0.94 dBm -0.94 dBm -50 dBm -17.960 dBm -0.94 dBm -0.94 dBm -50 dBm -17.960 dBm -0.94 dBm -0.94 dBm -70 dBm -91 pts Stop 2.55 GHz Marker -70 dBm -70 dBm -70 dBm M2 1 2.48013 GHz -51.93 dBm M3 1 2.84013 GHz -51.94 dBm									
Spectrum Image: Control of Spectrum Ref Level 20,00 dBm Offset 8.23 dB RBW 100 kHz Att 30 dB SWT 94.8 µs VBW 300 kHz Mode Auto FFT Count 300/300 ●1Pk View M1[1] 2.04 dBm 10 dBm M1 M2[1] -51.93 dBm 0 dBm M1 M2[1] -51.93 dBm -10 dBm -17.960 dBm -17.960 dBm -20 dBm -30 dBm -17.960 dBm -0.94 dBm -0.94 dBm -30 dBm -17.960 dBm -0.94 dBm -0.94 dBm -50 dBm -17.960 dBm -0.94 dBm -0.94 dBm -50 dBm -17.960 dBm -0.94 dBm -0.94 dBm -70 dBm -91 pts Stop 2.55 GHz Marker -70 dBm -70 dBm -70 dBm M2 1 2.48013 GHz -51.93 dBm M3 1 2.84013 GHz -51.94 dBm	M4	1	2,39991						
Spectrum TW Ref Level 20.00 dBm Offset 8.23 dB RBW 100 kH2 Att 30 dB SWT 94.8 µs VBW 300 kH2 Mode Auto FFT Count 300/300 ●1Pk View M1[1] 2.04 dBm 10 dBm M1[1] 2.04 dBm 0 dBm M1[1] 2.480300 GHz -10 dBm M2[1] -51.93 dBm -20 dBm 01 -17.960 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -70 dBm -70 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm	M4	1	2,39991						
Note Note Note Note Note Att 30 dB SWT 94.8 µs VBW 300 kHz Mode Auto FFT Count 300/300 ● IPk View M1[1] 2.04 dBm 10 dBm M1[1] 2.04 dBm 0 dBm M1[1] 2.04 dBm 0 dBm M1[1] 2.04 dBm -10 dBm M1[1] 2.149300 GHz -20 dBm 01 -17.960 dBm 2.149300 GHz -30 dBm M2 M3 -40 dBm M2 M3 -50 dBm M2 M3 -70 dBm M2 691 pts Start 2.47 GHz 691 pts Stop 2.55 GHz Marker M2 1 2.4935 GHz M3 1 2.04 dBm M4	M4	1	2,39991	783 GHz	-34.27 dBm	High 24	180		
Court 300/300 ● 1Pk View ● 1Pk View 10 dBm 0 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -10 dBm -20 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	M4 Date: 17.M/	AY.2023 07:10	2,39991	783 GHz	-34.27 dBm	_High_24	80		
10 dbm M1[1] 2.04 dbm 10 dbm M1 2.480300 GHz -51.93 dbm 0 dbm M2[1] -51.93 dbm 2.483500 GHz -10 dbm M2[1] 2.493500 GHz -51.93 dbm -20 dbm D1 -17.960 dbm -60 dbm -60 dbm -30 dbm M2 M3 M4 -60 dbm -60 dbm -30 dbm M2 M3 M4 -60 dbm -60 dbm -70 d	M4 Date: 17.M/ Spectru Ref Lev	Im vel 20.00 dB	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz				
10 dbm 2.400130 GHz 0 dbm M1 0 dbm 2.193 dbm 0 dbm 2.493500 GHz -10 dbm 2.493500 GHz -20 dbm D1 -17.960 dbm -20 dbm D1 -17.960 dbm -30 dbm -40 dbm -40 dbm -40 dbm -50 dbm -40 dbm -70 dbm -40 dbm	M4 Date: 17.M/ Spectru Ref Lev Att	im vel 20.00 dB 30 d	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz				
M1 M2 M3 M2 M3 M4 M3 M4<	M4 Date: 17.M/ Spectru Ref Lev Att Count 3	1 xY,2023 07:10 yel 20.00 dB 30 d	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF			
U dam -10 dbm -17.960 dbm -20 dbm -17.960 dbm -17.960 dbm -30 dbm -40 dbm -17.960 dbm -50 dbm -10 dbm -10 dbm -40 dbm -10 dbm -10 dbm -50 dbm -10 dbm -10 dbm -50 dbm -10 dbm -10 dbm -40 dbm -10 dbm -10 dbm -50 dbm -10 dbm -10 dbm -70 dbm -10 dbm <td>M4 Date: 17.M/ Spectru Ref Lev Att Count 31 OIPk View</td> <td>1 xY,2023 07:10 yel 20.00 dB 30 d</td> <td>2.39991 :28 m Offset</td> <td>BLE_2 8.23 dB •</td> <td>-34.27 dBm 2M_Ant1 RBW 100 kHz</td> <td>Mode Auto FF M1[1]</td> <td></td> <td>2.48013</td> <td>14 dBm 30 GHz</td>	M4 Date: 17.M/ Spectru Ref Lev Att Count 31 OIPk View	1 xY,2023 07:10 yel 20.00 dB 30 d	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz
-20 dBm 01 -17.960 dBm	M4 Date: 17.M/ Date: 17.M/ Ref Let Att Count 3/ 0 1Pk Vie 10 dBm-	xY,2023 07:10 wY,2023 07:10 wel 20.00 dB 30 o 50/300 #	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -70	M4 Date: 17.M/ Date: 17.M/ Ref Let Att Count 3/ 0 1Pk Vie 10 dBm-	xY,2023 07:10 wY,2023 07:10 wel 20.00 dB 30 o 50/300 #	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -70	Spectrr Ref Lee Att Count 31 @1Pk Vie 10 dBm- 0 dBm-	xY,2023 07:10 wY,2023 07:10 wel 20.00 dB 30 o 50/300 #	2.39991 :28 m Offset	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
40 dBm M2 M3 M4 50 dBm M2 M3 M4 50 dBm M3 M4 M4 50 dBm M3 M4 M4 -60 dBm M3 M4 M4 -70 dBm Start 2.47 GHz 691 pts Stap 2.55 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.49013 GHz 2.04 dBm M1 Extra 1 2.4905 GHz 51.93 dBm M2 1 2.4905 GHz 51.93 dBm M1 2.5 GHz 51.94 dBm M1 1	Spectri Ref Let Att Count 3 PPk Viet 10 dBm- -10 dBm-	IIII IIIII IIIIII	2.3999: 28 m Offset B SWT	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
S0.dbm M2 M3 M4 -50.dbm -60.dbm	M4 Date: 17.MJ Spectrm Ref Let Att Count 3 ID dBm- 0 dBm- -10 dBm- -20 dBm-	IIII IIIII IIIIII	2.3999: 28 m Offset B SWT	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
-50 dBm -70	M4 Date: 17.MJ Spectrm Ref Let Att Count 3 ID dBm- 0 dBm- -10 dBm- -20 dBm-	IIII IIIII IIIIII	2.3999: 28 m Offset B SWT	BLE_2 8.23 dB •	-34.27 dBm 2M_Ant1 RBW 100 kHz	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
-60 dBm -70 dBm <t< td=""><td>M4 Date: 17.MJ Spectru Ref Let Att Count 3 ● 1Pk Vie 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-</td><td>xy.2023 07.10 yel 20.00 db yol 20.00 db yel 20.00 db y</td><td>2.3999: 28 m Offset B SWT</td><td>BLE_2 8.23 dB = 94.8 μs =</td><td>-34.27 dbm</td><td>Mode Auto FF M1[1]</td><td></td><td>2.48013</td><td>14 dBm 30 GHz 13 dBm</td></t<>	M4 Date: 17.MJ Spectru Ref Let Att Count 3 ● 1Pk Vie 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	xy.2023 07.10 yel 20.00 db yol 20.00 db yel 20.00 db y	2.3999: 28 m Offset B SWT	BLE_2 8.23 dB = 94.8 μs =	-34.27 dbm	Mode Auto FF M1[1]		2.48013	14 dBm 30 GHz 13 dBm
-70 dBm 691 pt Stop 2.55 GHz Start 2.47 GHz 691 pt Stop 2.55 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.48013 GHz 2.04 dBm Minimum Minimum Minimum M2 1 2.48013 GHz -51.93 dBm Minimum Minimum Minimum	M4 Date: 17.MJ Spectru Ref Let Att Count 3 ●1Pk Vie 10 dBm- 0 dBm- -10 dBm- -30 dBm- -40 dBm-	Im Im eel 20.00 dB 30 (0 00/300 // // // // // // // // //	2.3999: 28 m Offset B SWT 0 dBm	BLE_2 8.23 dB • 94.8 µs •	-34.27 dbm	Mode Auto FF M1[1] M2[1]	T	2.4801 -51.9 2.48351	14 dBm 30 GHz 13 dBm 00 GHz
Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.48013 GHz 2.04 dBm Minimum Minim Minimum Minimum<	M4 Date: 17.MJ Spectru Ref Let Att Count 31 91Pk Viz 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	Im Im eel 20.00 dB 30 (0 00/300 // // // // // // // // //	2.3999: 28 m Offset B SWT 0 dBm	BLE_2 8.23 dB • 94.8 µs •	-34.27 dbm	Mode Auto FF M1[1] M2[1]	T	2.4801 -51.9 2.48351	14 dBm 30 GHz 13 dBm 00 GHz
Marker Type Ref Trc X-volue Y-volue Function Function Result M1 1 2.48013 GHz 2.04 dBm	M4 Date: 17.MJ Spectri Ref Let Att Count 3 0 1Pk Vie 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm-	Im Im eel 20.00 dB 30 (0 00/300 // // // // // // // // //	2.3999: 28 m Offset B SWT 0 dBm	BLE_2 8.23 dB • 94.8 µs •	-34.27 dbm	Mode Auto FF M1[1] M2[1]	T	2.4801 -51.9 2.48351	14 dBm 30 GHz 13 dBm 00 GHz
Marker Y-volue Function Function Result M1 1 2.48013 GHz 2.04 dBm Function Function Result M2 1 2.4893 GHz -51.93 dBm Function Function M3 1 2.5 GHz -51.49 dBm Function Function	M4 Date: 17.MJ Spectri Ref Let Att Count 3 0 1Pk Vie 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm-	Im Im eel 20.00 dB 30 (0 00/300 // // // // // // // // //	2.3999: 28 m Offset B SWT 0 dBm	BLE_2 8.23 dB • 94.8 µs •	-34.27 dbm	Mode Auto FF M1[1] M2[1]	T	2.4801 -51.9 2.48351	14 dBm 30 GHz 13 dBm 00 GHz
M1 1 2.49013 GHz 2.04 dBm M2 1 2.4935 GHz -51.93 dBm M3 1 2.5 GHz -51.49 dBm	M4 Date: 17.M/ Spectrr Ref Lec At Count 3 ● 1Pk Vie 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm-	M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2.3999: 28 m Offset B SWT 0 dBm	BLE_2 8.23 dB • 94.8 µs •	-34.27 dbm	Mode Auto FF	T	2.48011 -51.9 2.48351	14 dBm 30 GHz 13 dBm D0 GHz
M2 1 2.4835 GHz -51.93 dBm M3 1 2.5 GHz -51.49 dBm	M4 Date: 17.MJ Spectru Ref Le* Att Count 3) 1Pk Vie* 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -50 dBm- -50 dBm- -50 dBm- -50 dBm- -50 dBm-	Im rel 20.00 dB 30 (0 00/300 // // // // // // // // //	2.3999: 28 m Offset B SWT 0 dBm 0 dBm 0 dBm	BLE_2 8.23 dB = 94.8 µs = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-34.27 dbm	Mode Auto FF	Т 	2.48011 -51.9 2.48351 	14 dBm 30 GHz 13 dBm D0 GHz
M4 1 2.50687 GHz -49.56 dBm	M4 Date: 17.MJ Spectri Ref Le* Att Count 3 ●1Pk Vie* 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm- 50 dBm- -70 dBm-	III VE 20:00 dB 30 d 00/300 W M1 M1 M1 M1 M1 M2 VE 20:00 dB 30 d 00/300 W M1 M1 M1 M1 M2 VE 20:00 dB Control of the test of the test of the test of the test of t	2.3999: 28 m Offset B SWT 0 dBm 	BLE_2 BLE_2 8.23 dB • 94.8 µs • 113 GHz	-34.27 dBm 2M_Ant1 RBW 100 kH2 VBW 300 kH2 691 pt: 691 pt: 2.04 dBm	Mode Auto FF	Т 	2.48011 -51.9 2.48351 	14 dBm 30 GHz 13 dBm D0 GHz
	M4 Date: 17.M/ Spectrr Ref Let Count 3 ● 1Pk Vie 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm- 50 dBm- -70 dBm-	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.3999: 28 m Offset B SwT 0 dBm x-valu X-valu 2.48(2.448)	ВLE_2 В.23 dB = 94.8 µs = 94.8 µs = 113 GHz 113 GHz	-34.27 dBm 201 Ant1 202 Ant1 203 Ant1 2	Mode Auto FF	Т 	2.48011 -51.9 2.48351 	14 dBm 30 GHz 13 dBm D0 GHz

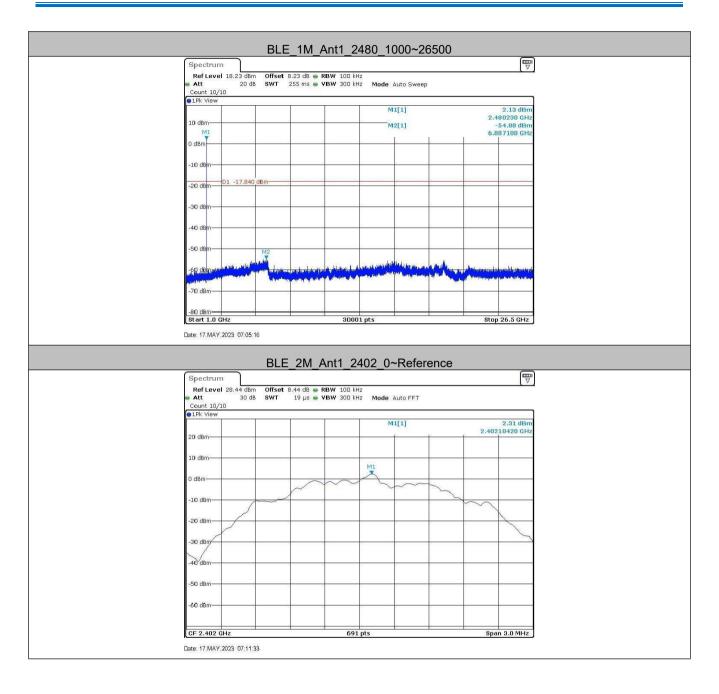


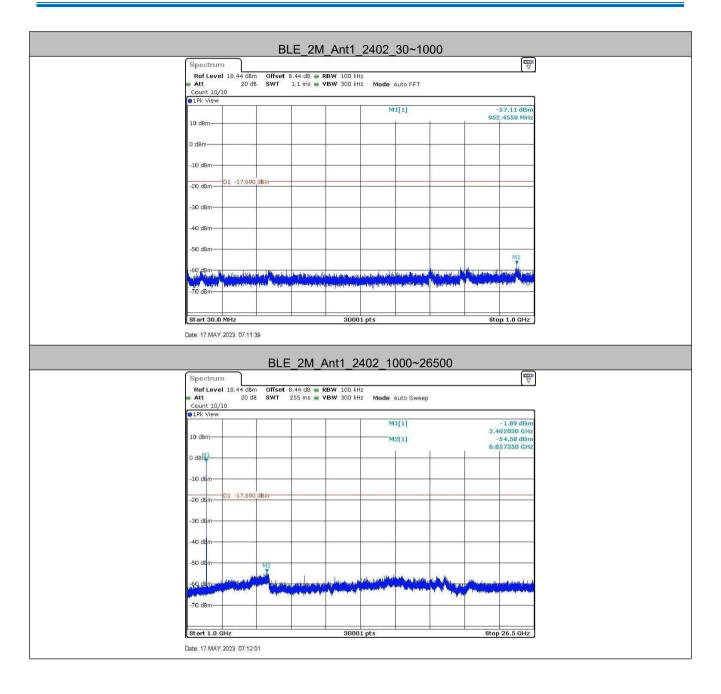
5.7 Spurious RF Conducted Emissions

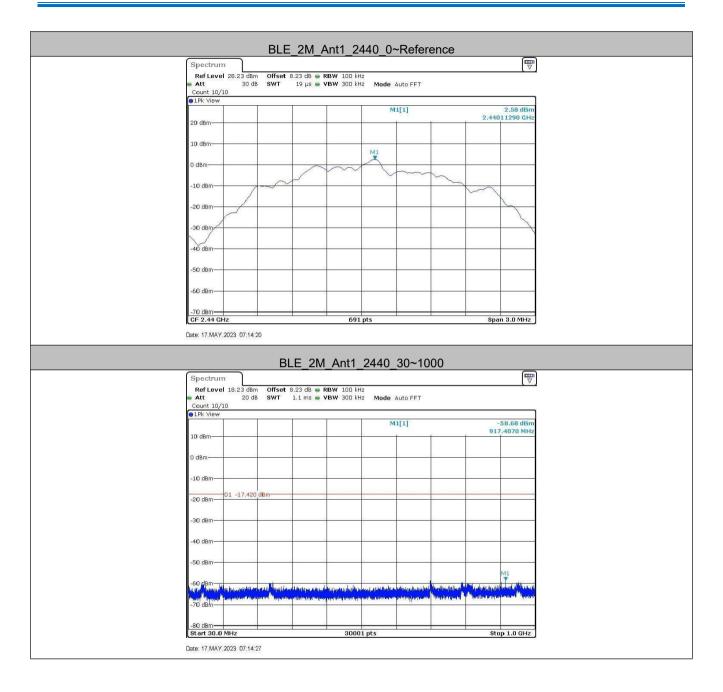


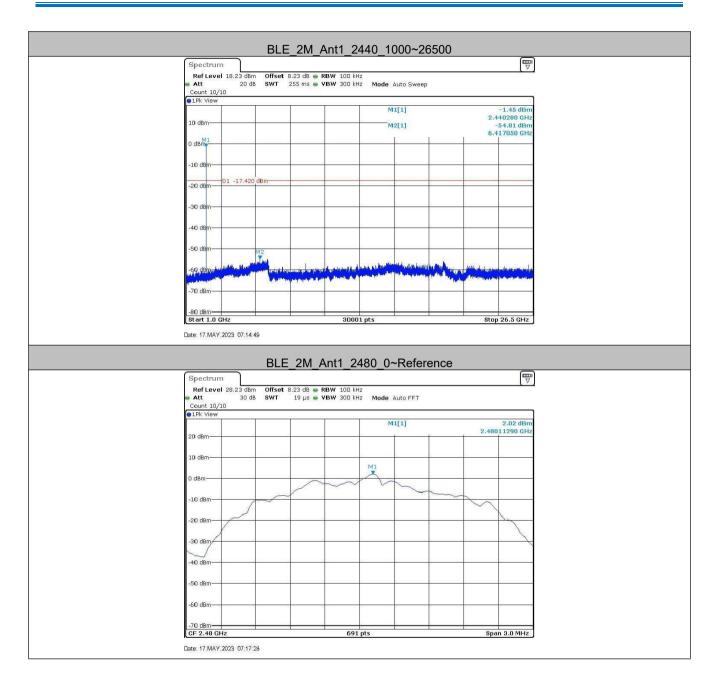

Test plot as follows:

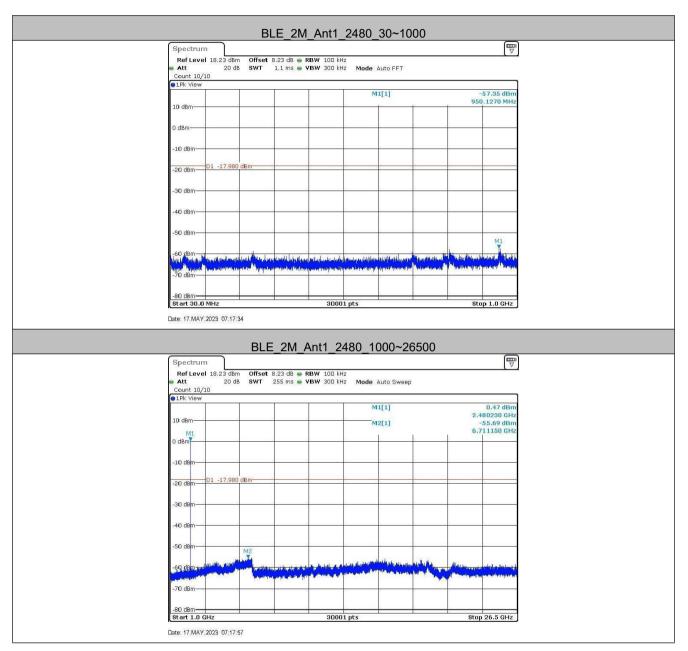








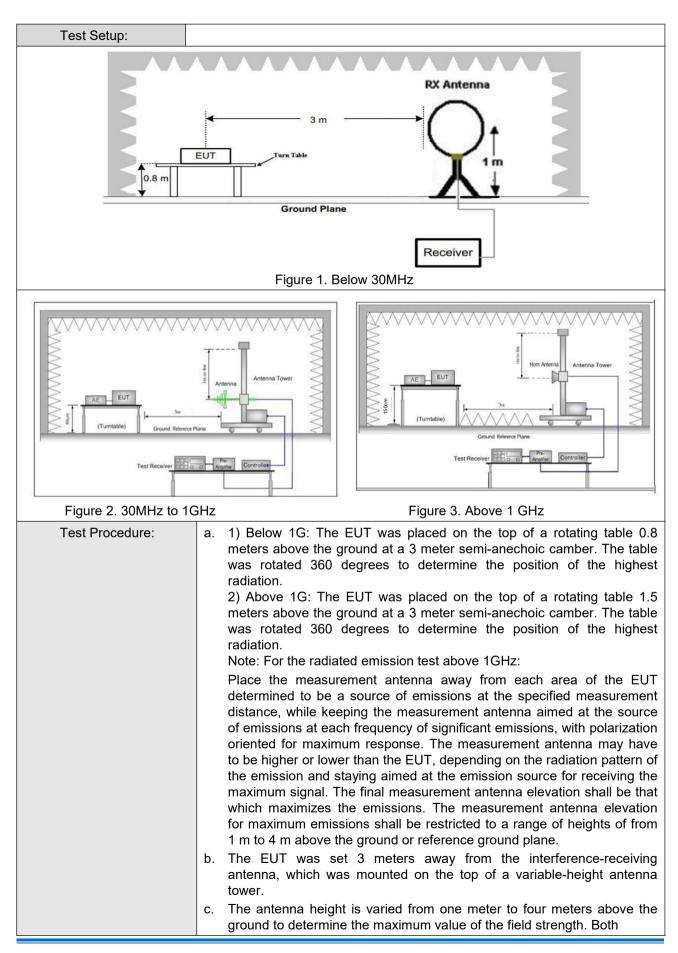




Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

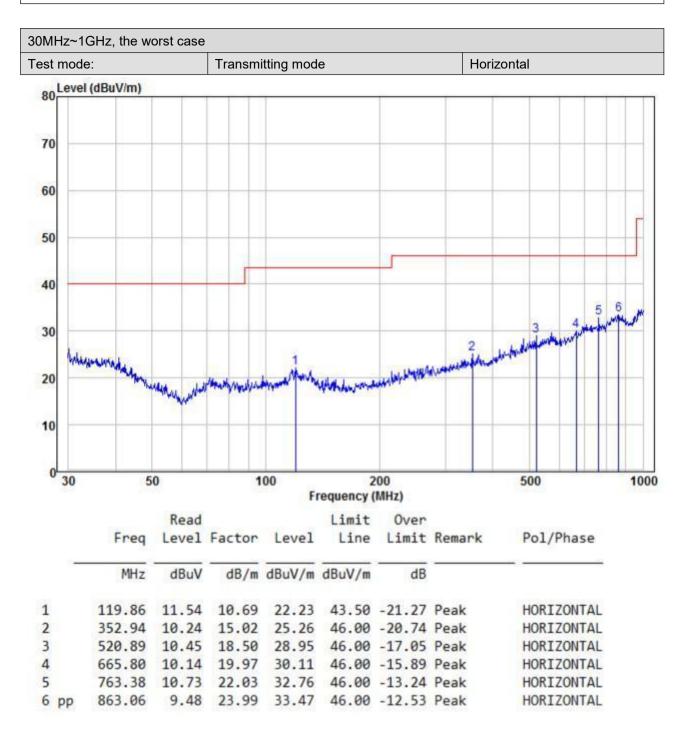
Г


Report No.: CQASZ20230500802E-01

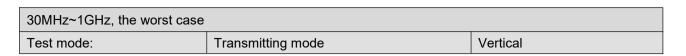
5.8 Radiated Spurious Emission & Restricted bands

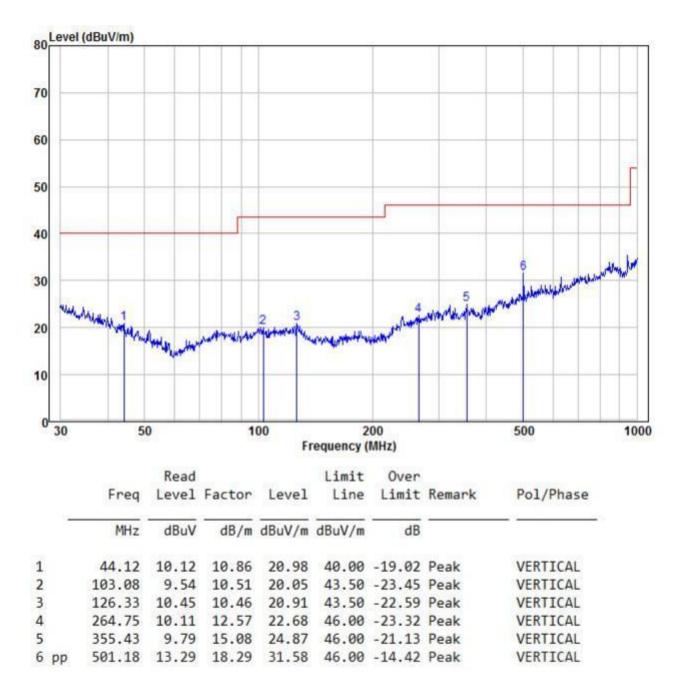
Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15	.205						
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average				
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak				
			Peak	1MHz	10Hz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (r				
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24	000/F(kHz)	-	-	30				
	1.705MHz-30MHz		30	-	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak	3				
	960MHz-1GHz		500	54.0	Quasi-peak	3				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									

Page:42 of 56



	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass




Radiated Emission below 1GHz

Shenzhen Huaxia Testing Technology Co., Ltd.

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	56.03	-9.2	46.83	74	-27.17	Peak	Н
2400	56.31	-9.39	46.92	74	-27.08	Peak	Н
4804	51.45	-4.33	47.12	74	-26.88	Peak	Н
7206	49.98	1.01	50.99	74	-23.01	Peak	Н
2390	52.43	-9.2	43.23	74	-30.77	Peak	v
2400	51.43	-9.39	42.04	74	-31.96	Peak	V
4804	54.10	-4.33	49.77	74	-24.23	Peak	V
7206	49.33	1.01	50.34	74	-23.66	Peak	V

Worse case m	Norse case mode:		GFSK(1Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.49	-4.11	48.38	74	-25.62	peak	Н
7320	48.77	1.51	50.28	74	-23.72	peak	Н
4880	52.16	-4.11	48.05	74	-25.95	peak	V
7320	49.28	1.51	50.79	74	-23.21	peak	V

Worse case m	Worse case mode:		GFSK(1Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.30	-9.29	45.01	74	-28.99	Peak	н
4960	52.71	-4.04	48.67	74	-25.33	Peak	Н
7440	48.97	1.57	50.54	74	-23.46	Peak	Н
2483.5	55.63	-9.29	46.34	74	-27.66	Peak	V
4960	49.69	-4.04	45.65	74	-28.35	Peak	V
7440	48.76	1.57	50.33	74	-23.67	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.11	-9.2	44.91	74	-29.09	Peak	Н
2400	55.67	-9.39	46.28	74	-27.72	Peak	Н
4804	52.03	-4.33	47.70	74	-26.30	Peak	Н
7206	50.53	1.01	51.54	74	-22.46	Peak	Н
2390	52.86	-9.2	43.66	74	-30.34	Peak	v
2400	52.60	-9.39	43.21	74	-30.79	Peak	V
4804	54.65	-4.33	50.32	74	-23.68	Peak	V
7206	48.38	1.01	49.39	74	-24.61	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.28	-4.11	48.17	74	-25.83	peak	Н
7320	48.80	1.51	50.31	74	-23.69	peak	Н
4880	53.05	-4.11	48.94	74	-25.06	peak	V
7320	50.88	1.51	52.39	74	-21.61	peak	V

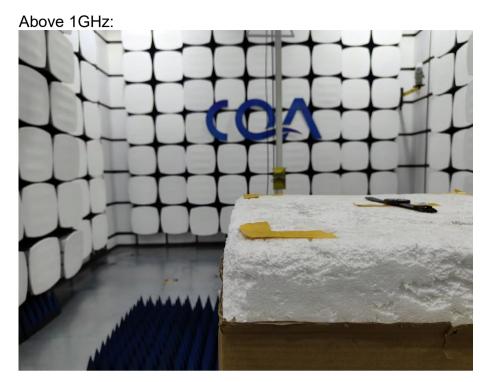
Worse case mode:		GFSK(2Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.80	-9.29	47.51	74	-26.49	Peak	н
4960	51.18	-4.04	47.14	74	-26.86	Peak	Н
7440	51.19	1.57	52.76	74	-21.24	Peak	Н
2483.5	57.12	-9.29	47.83	74	-26.17	Peak	V
4960	51.94	-4.04	47.90	74	-26.10	Peak	V
7440	48.94	1.57	50.51	74	-23.49	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

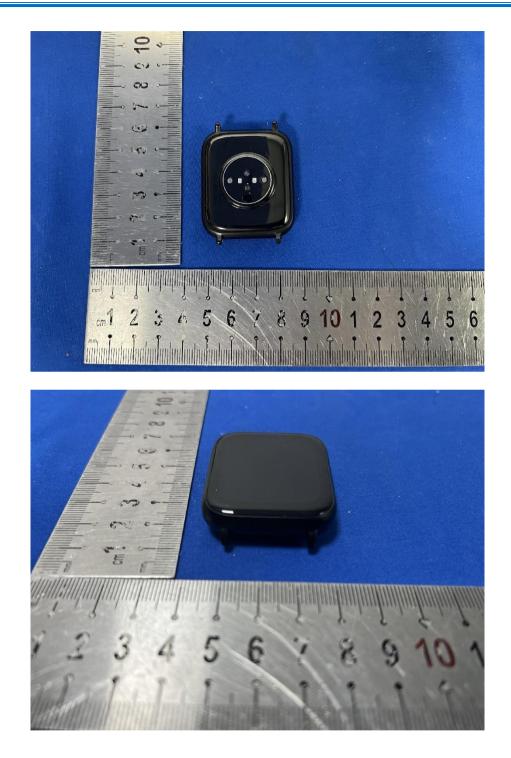
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

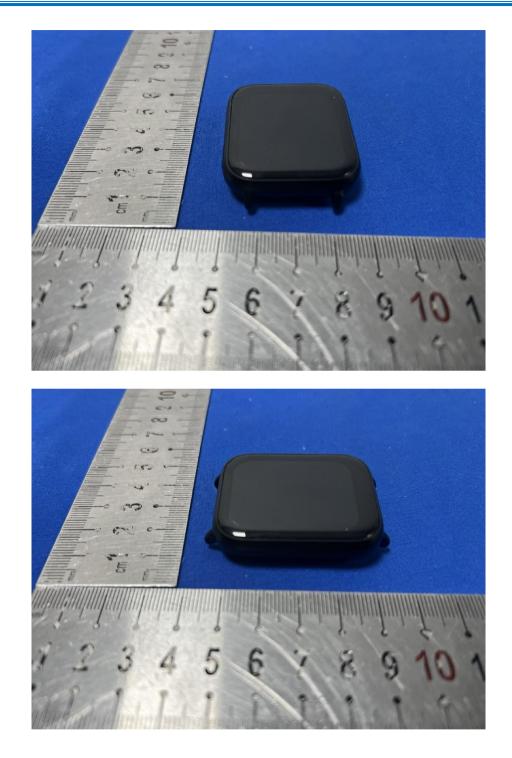

6 Photographs - EUT Test Setup

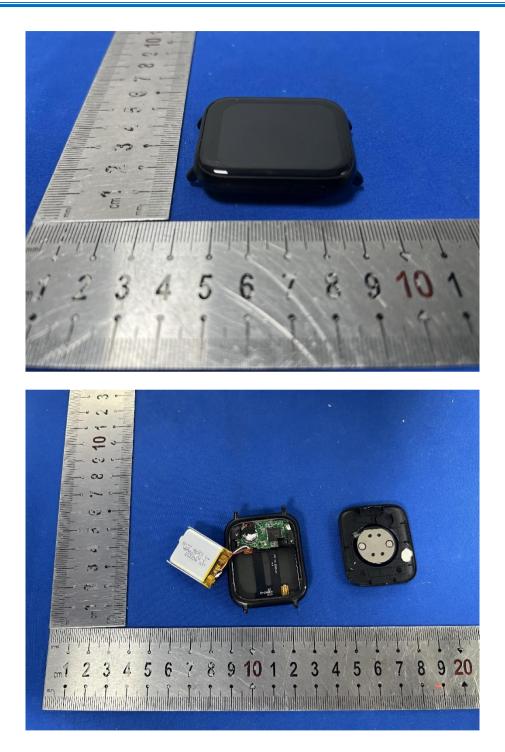
6.1 Radiated Spurious Emission

6.2 Conducted Emissions Test Setup

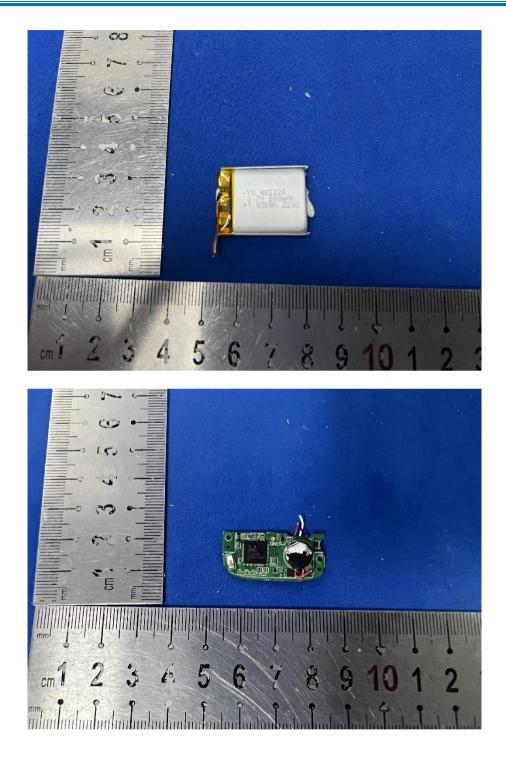


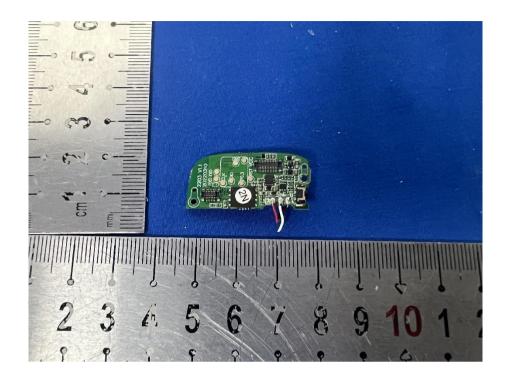
7 Photographs - EUT Constructional Details





Shenzhen Huaxia Testing Technology Co., Ltd.




Shenzhen Huaxia Testing Technology Co., Ltd.

*** END OF REPORT ***