FCC Test Report

Product Name	August Smart Door Lock
Model No.	ASL-3B
FCC ID.	2AB6UASL3B
IC	12163A-ASL3B

Applicant	August Home, Inc.
Address	657 Bryant Street, San Francisco,94107, USA

Date of Receipt	May. 11, 2017
Issued Date	Jun. 06, 2017
Report No.	1752084R-RFUSP25V00
Report Version	V0.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd..

Test Report

Issued Date: Jun. 06, 2017 Report No.: 1752084R-RFUSP25V00

DEKRA

Product Name	August Smart Door Lock
Applicant	August Home, Inc.
Address	657 Bryant Street, San Francisco,94107, USA
Manufacturer	Same as applicant
Model No.	ASL-3B
FCC ID.	2AB6UASL3B
IC	12163A-ASL3B
EUT Rated Voltage	DC 6V (Power by Battery)
EUT Test Voltage	DC 6V (Power by Battery)
Trade Name	August
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2015
	ANSI C63.4: 2014, ANSI C63.10: 2013
	KDB 558074 D01V04
Test Result	Complied

Documented By :

Leven Huang

(Senior Adm. Specialist / Leven Huang)

Tested By

:

Eason chen

(Engineer / Eason Chen)

Approved By :

(Director / Vincent Lin)

TABLE OF CONTENTS

Des	scription	Page
1.	GENERAL INFORMATION	
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Details.	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
1.7.	List of Test Equipment	0 9
2.	CONDUCTED EMISSION	
2.1.		
2.1.	Test Setup Limits	
2.2.		
	Test Procedure	
2.4.	Uncertainty	۱۱ 12
2.5.	Test Result of Conducted Emission	
3.	PEAK POWER OUTPUT	
3.1.	Test Setup	
3.2.	Limit	
3.3.	Test Procedure	
3.4.	Uncertainty	
3.5.	Test Result of Peak Power Output	
4.	RADIATED EMISSION	
4.1.	Test Setup	
4.2.	Limits	
4.3.	Test Procedure	
4.4.	Uncertainty	
4.5.	Test Result of Radiated Emission	
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Setup	
5.2.	Limits	
5.3.	Test Procedure	27
5.4.	Uncertainty	
5.5.	Test Result of RF Antenna Conducted Test	28
6.	BAND EDGE	
6.1.	Test Setup	
6.2.	Limit	
6.3.	Test Procedure	
6.4.	Uncertainty	
6.5.	Test Result of Band Edge	
-	6DB BANDWIDTH	
7. 7 1		
7.1. 7.2.	Test Setup Limits	
7.2.	Test Procedure	
7.4. 7.5.	Uncertainty	
	Test Result of 6dB Bandwidth	
8.	POWER DENSITY	
8.1.	Test Setup	
8.2.	Limits	
8.3.	Test Procedure	
8.4.	Uncertainty	
8.5.	Test Result of Power Density	
9.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	47

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	August Smart Door Lock
Trade Name	August
Model No.	ASL-3B
FCC ID.	2AB6UASL3B
IC	12163A-ASL3B
Frequency Range	2402 – 2480MHz
Channel Number	V4.2: 40CH
Type of Modulation	V4.2: GFSK(1Mbps)
Antenna Type	Printed on PCB Antenna
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	N/A	N/A	РСВ	3dBi

Note: The antenna of EUT is conforming to FCC 15.203.

Center Frequency of Each Channel: (For V4.0)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 01:	2404 MHz	Channel 02:	2406 MHz	Channel 03:	2408 MHz
Channel 04:	2410 MHz	Channel 05:	2412 MHz	Channel 06:	2414 MHz	Channel 07:	2416 MHz
Channel 08:	2418 MHz	Channel 09:	2420 MHz	Channel 10:	2422 MHz	Channel 11:	2424 MHz
Channel 12:	2426 MHz	Channel 13:	2428 MHz	Channel 14:	2430 MHz	Channel 15:	2432 MHz
Channel 16:	2434 MHz	Channel 17:	2436 MHz	Channel 18:	2438 MHz	Channel 19:	2440 MHz
Channel 20:	2442 MHz	Channel 21:	2444 MHz	Channel 22:	2446 MHz	Channel 23:	2448 MHz
Channel 24:	2450 MHz	Channel 25:	2452 MHz	Channel 26:	2454 MHz	Channel 27:	2456 MHz
Channel 28:	2458 MHz	Channel 29:	2460 MHz	Channel 30:	2462 MHz	Channel 31:	2464 MHz
Channel 32:	2466 MHz	Channel 33:	2468 MHz	Channel 34:	2470 MHz	Channel 35:	2472 MHz
Channel 36:	2474 MHz	Channel 37:	2476 MHz	Channel 38:	2478 MHz	Channel 39:	2480 MHz

Note:

- 1. The EUT is a August Smart Door Lock with a V4.0 transceiver, this report for Bluetooth V4.0.
- 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode Mode 1: Transmit - BLE (GFSK)

1.2. Operational Description

The EUT is a August Smart Door Lock with built-in 2.4GHz Bluetooth V4.0 transceiver. The number of the channels is 40 in Bluetooth V4.0 mode the channel number is 40. This device provides three kinds of transmitting speed and modulation, respectively GFSK(1Mbps). The antenna is Printed on PCB Antenna and provides diversity function to improve the receiving function.

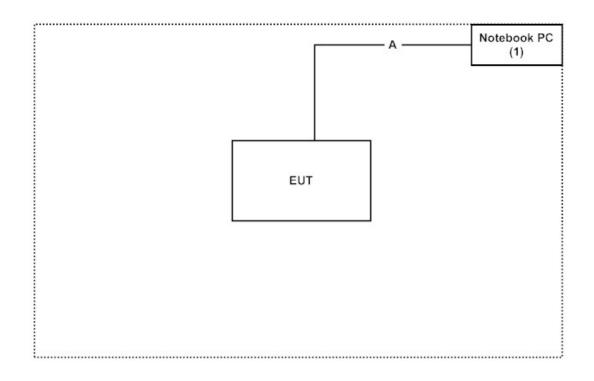
The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. The transmitter is presented with a continuous data stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its 40 channels.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The EUT is forward-compatible with the impending Bluetooth Low Energy operating mode, which provides a dramatic reduction in the power consumption of the Bluetooth radio and baseband. The primary application for this mode is to provide support for low data rate devices, such as sensors and remote controls.


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	ASUS	X206H	Х206НА	Non-Shielded, 1.8m

Sign	al Cable Type	Signal cable Description
А	USB Cable	Shielded, 2m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software on the Notebook PC.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.6. Test Facility

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	30-65
Barometric pressure (mbar)	860-1060	950-1000

Ambient conditions in the laboratory:

The related certificate for our laboratories about the test site and management system can be downloaded from DEKRA Testing and Certification Co., Ltd. Web Site:

http://www.dekra.com.tw/english/about/certificates.aspx?bval=5

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site: <u>http://www.dekra.com.tw/index_en.aspx</u>

Site Description:	Accredited by TAF Accredited Number: 3023
Site Name: Site Address:	DEKRA Testing and Certification Co., Ltd No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>info.tw@dekra.com</u>

FCC Accreditation Number: TW1014

1.7. List of Test Equipment

For Conducted measurements /CB3/SR8

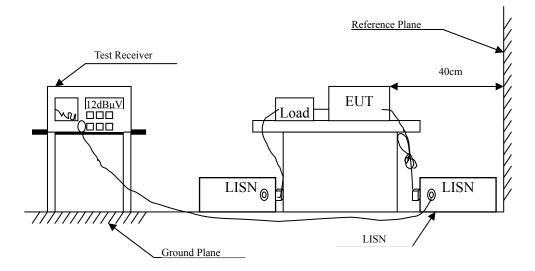
	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	Spectrum Analyzer	Agilent	N9010A	MY48030495	2016/7/22	2017/7/21
Х	Power Meter	Anritsu	ML2495A	6K00003357	2016/6/23	2017/6/22
Х	EMI Test Receiver	R&S	ESCS 30	100369	2016/10/13	2017/10/12
Х	LISN	R&S	ESH3-Z5	836679/017	2017/1/7	2018/1/6
Х	LISN	R&S	ENV216	100097	2017/1/7	2018/1/6
Х	Coaxial Cable	QTK(Arnist)	RG 400	LC018-RG	2016/6/25	2017/6/24

For Radiated measurements /Site3/CB8

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	Spectrum Analyzer	R&S	FSP40	100170	2017/1/5	2018/1/4
	Loop Antenna	Teseq	HLA6121	37133	2017/3/18	2018/3/17
Х	Bi-Log Antenna	Schaffner Chase	CBL6112B	2707	2016/9/10	2017/9/9
Х	Horn Antenna	ETS-Lindgren	3117	00135205	2017/4/6	2018/4/5
	Horn Antenna	Schwarzbeck	BBHA9170	9170430	2017/1/11	2018/1/10
Х	Pre-Amplifier	QTK	AP/0100A	CHM/0901069	2016/6/28	2017/6/27
Х	Pre-Amplifier	EMCI	EMC012630SE	980210	2017/1/27	2018/1/26
	Pre-Amplifier	NARDA WE	DBL-1840N506	013	2016/9/30	2017/9/29
Х	Filter	MicroTRON	BRM50701	019	2016/10/20	2017/10/19
	Filter	Microwave Circuits	N0257881	36681	2016/12/7	2017/12/6
Х	EMI Test Receiver	R&S	ESR26	101385	2016/9/29	2017/9/28
Х	Coaxial Cable	QTK(Arnist)	SUCOFLEX 106	L1606-015C	2016/6/25	2017/6/24
Х	EMI Test Receiver	R&S	ESCS 30	838251/001	2016/7/21	2017/7/20
Х	Coaxial Cable	QTK(Arnist)	RG 214	LC003-RG	2016/6/21	2017/6/20
Х	Coaxial signal switch	Anritsu	MP59B	6201415889	2016/6/16	2017/6/15

Note:

1. All equipments are calibrated every one year.


2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : QuieTek EMI 2.0 V2.1.113

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit									
Frequency	Limits								
MHz	QP	AV							
0.15 - 0.50	66-56	56-46							
0.50-5.0	56	46							
5.0 - 30	60	50							

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

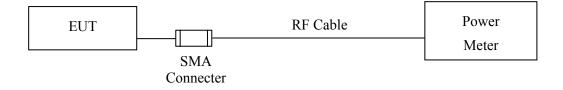
Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.

2.4. Uncertainty

± 2.26 dB



2.5. Test Result of Conducted Emission

Note : The EUT was powered by battery, so this test is not applicable.

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

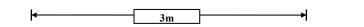
Tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.3 PKPM1 Peak power meter method.

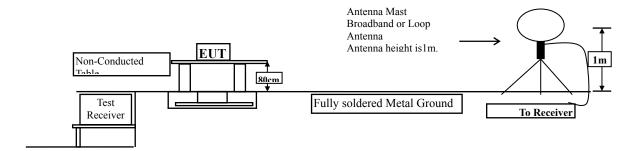
3.4. Uncertainty

± 1.19 dB

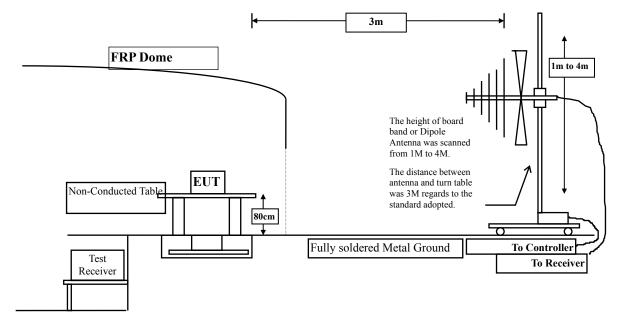
3.5. Test Result of Peak Power Output

:	August Smart Door Lock
:	Peak Power Output
:	CB3
:	2017/05/21
:	Mode 1: Transmit - BLE (GFSK)
	: : : : :

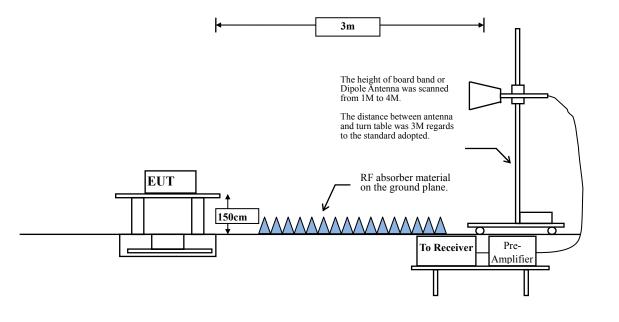

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	-1.145	1 Watt= 30 dBm	Pass
Channel 19	2440.00	-1.218	1 Watt= 30 dBm	Pass
Channel 39	2480.00	-1.132	1 Watt= 30 dBm	Pass



4. Radiated Emission


4.1. Test Setup

Under 30MHz



Below 1GHz

Above 1GHz

4.2. Limits

> General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits									
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)							
0.009-0.490	2400/F(kHz)	300							
0.490-1.705	24000/F(kHz)	30							
1.705-30	30	30							
30-88	100	3							
88-216	150	3							
216-960	200	3							
Above 960	500	3							

Remarks: 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.4. Uncertainty

± 4.08 dB above 1GHz

± 4.22 dB below 1GHz

4.5. Test Result of Radiated Emission

Site: CB8	3				Time: 2017/05/	/31 - 11:04			
Limit: FC	C_Part15.2	.09_RE((3m)		Margin: 0				
Probe: Ho	orn_3117_()016705	55(1-18GHz)		Polarity: Horizo	ontal			
EUT: Aug	gust Smart [Joor Lo	ck		Power: 120V/6	0Hz			
Note: Mor		smit 24	02MHz by BLE						
	80								
	70								
	60								
	50						1	2	3
	40						*	*	
Level(dBuV/m)	30								
Leve	20								
	10								
	0								
	-10								
	-20 1000								100
						Frequency(MI	Hz)		
No Mark	k Eroqu		Maggura Loval	Deading Loval	Over Limit	Limit	Easter	T	

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		4804.000	42.229	36.394	-31.771	74.000	5.835	РК
2		7206.000	43.538	34.767	-30.462	74.000	8.770	РК
3	*	9608.000	44.683	34.232	-29.317	74.000	10.451	РК

Note: 1. Measure Level = Reading Level + Factor.

Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

Site:	CB8				Time: 2017/05/31 - 11:04					
Limi	t: FCC_	_Part15.209_RE(3m)			Margin: 0				
Prob	e: Horr	n_3117_0016705	5(1-18GHz)			Polarity:	Vertica	I		
EUT	EUT: August Smart Door Lock						20V/60)Hz		
Note	e: Mode	e 1 : Transmit 240	2MHz by BLE							
	80									
	70									
	60						-			
	50					1	1	2	3	
	€ 4 0					*	3	*	*	
	40 (m//ng) 20 20					-				
	Panal 20									
	10									
	0									
	-10									
	-20									
	100	00			Err	equency(MHz			10000	18000
No	Mark	Frequency	Measure Level	Reading		Over Li		Limit	Factor	Туре
-		(MHz)	(dBuV/m)		(dBuV)			(dBuV/m)	(dB)	511
1		4804.000	41.405		35.570	(dB) -3	2.595	74.000	5.835	РК
2	*	7206.000	44.474		35.703		9.526	74.000	8.770	РК
3		9608.000	44.427		33.976	-2	9.573	74.000	10.451	РК

Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

Site:	CB8				Time: 2017/05/31 - 11:05				
Limi	t: FCC_	_Part15.209_RE(3m)		Margin: 0				
Prob	e: Horr	n_3117_0016705	5(1-18GHz)		Polarity: Horizor	ntal			
EUT	: Augus	st Smart Door Loo	k		Power: 120V/60)Hz			
Note		e 1 : Transmit 244	0MHz by BLE						
	80								
	70								
	60								
	50				1	2	3		
	Ê 40				*	*	*		
	40 (m//ng) 20 20								
	20 Level								
	10								
	0								
	-10								
	-20 100	00			Ai Adhi	1 1 1 1	10000	18000	
			Γ		requency(MHz)				
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре	
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)		
1		4880.000	40.677	34.565	-33.323	74.000	6.113	РК	
2		7320.000	42.251	33.333	-31.749	74.000	8.918	РК	
3	*	9760.000	43.595	33.073	-30.405	74.000	10.523	РК	

Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

Site:	CB8				Time: 2017/05/31 - 11:05				
Limit	t: FCC_	_Part15.209_RE(3m)		Margin: 0				
Prob	e: Horr	n_3117_0016705	5(1-18GHz)		Polarity: Vertica	I			
EUT	: Augus	st Smart Door Loo	:k		Power: 120V/60)Hz			
Note	: Mode	1 : Transmit 244	0MHz by BLE						
	80								
	70								
	60								
	50				ĩ	2	3		
	€ 4 0				*	*	*		
	40 (m//m) 20 20								
	Panal 20								
	10								
	0								
	-10								
	-20								
	100	0			(8411-)		10000	<mark>18000</mark>	
No	Mark	Frequency	Measure Level	Reading Level	equency(MHz) Over Limit	Limit	Factor	Туре	
110	Marit	(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	-746	
1		4880.000	41.384	35.272	-32.616	74.000	6.113	РК	
2		7320.000	43.338	34.420	-30.662	74.000	8.918	PK	
3	*	9760.000	45.116	34.594	-28.884	74.000	10.523	РК	

Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

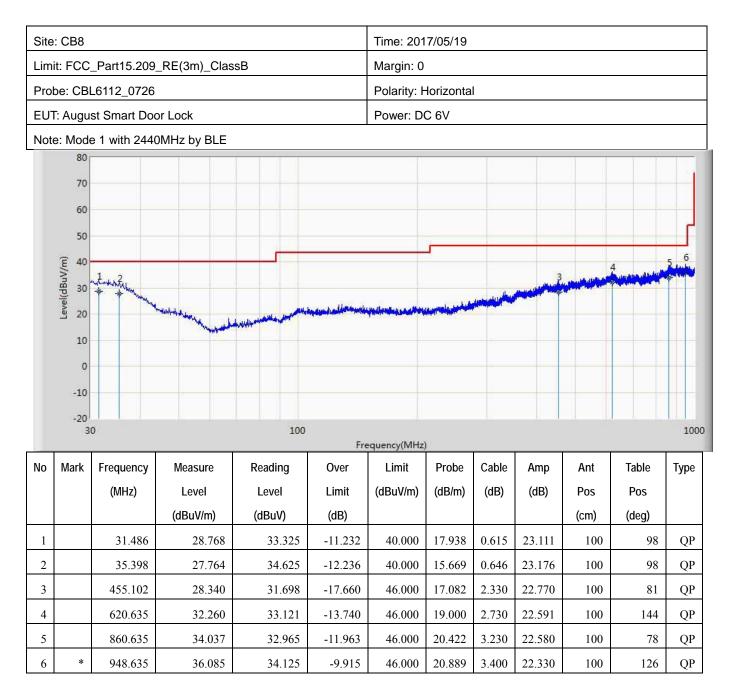
Site:	CB8				Time: 2017/05/31 - 11:05				
Limit	t: FCC_	Part15.209_RE(3	3m)		Margin: 0				
Prob	e: Horr	n_3117_0016705	5(1-18GHz)		Polarity: Horizor	ntal			
EUT	Augus	t Smart Door Loc	:k		Power: 120V/60	Hz			
Note		1 : Transmit 248	0MHz by BLE						
	80								
	70								
	60								
	50					2	3		
	Ê 40				1	*	*		
	40 30 20 20								
	20								
	10								
	0								
	-10								
	-20 100	0					10000	18000	
	100	ř.		Fre	equency(MHz)		10000	10000	
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре	
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)		
1		4960.000	41.080	34.972	-32.920	74.000	6.108	РК	
2		7440.000	43.230	34.361	-30.770	74.000	8.868	РК	
3	*	9920.000	44.036	33.099	-29.964	74.000	10.937	РК	

Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

Site:	CB8				Time: 2017/05/3	31 - 11:05			
Limit	t: FCC_	Part15.209_RE(3	3m)		Margin: 0				
Prob	e: Horr	_3117_0016705	5(1-18GHz)		Polarity: Vertical				
EUT	: Augus	t Smart Door Loc	k		Power: 120V/60	Hz			
Note	11.20	1 : Transmit 248	0MHz by BLE						
	80								
	70								
	60								
	50				1	2	3		
	Ê 40				*	*	*		
	40 (m//m) 30 20 20								
	Clevel(
	10								
	0								
	-10								
	-20 100	0		Ex	equency(MHz)		10000	18000	
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре	
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	.,,,,,	
1		4960.000	41.312	35.204	-32.688	74.000	6.108	РК	
2		7440.000	43.361	34.492	-30.639	74.000	8.868	PK	
3	*	9920.000	43.556	32.619	-30.444	74.000	10.937	PK	


Note: 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.

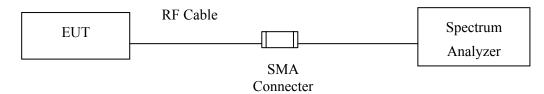
Note: 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Note: 4." * ", means this data is the worst emission level.

The worst case of Radiated Emission below 1GHz:

Note:

1. " * ", means this data is the worst emission level.


Site	: CB8			Time: 2017/05/19								
Lim	it: FCC	_Part15.209_	_RE(3m)_Clas	sB		Margin: 0						
Pro	be: CBI	L6112_0726				Polarity: Vertical						
EU	T: Augu	st Smart Doo	or Lock			Power: D	C 6V					
Not	e: Mode	e 1 with 2440	MHz by BLE									
	80	-										
	70									_		
	60									_		_
	50						9					
	€ 40										P.	ALCON.
	40 30 20	Manganta .		2	3		- Internet			a station	AND	
	level 20		answerter and all and a later of the state o	A STAL SHALL BURGER BURGER	and asked with the start	المعمل المحاول						_
	10		1									
	0											
	-10											
	-20											
	-20	0		100	Fre	quency(MHz)			100		11. I.I.	1000
No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		34.312	24.896	31.121	-15.104	40.000	16.299	0.634	23.159	200	98	QP
2		104.635	23.478	33.965	-20.022	43.500	11.564	1.109	23.160	100	257	QP
3		126.325	28.877	38.624	-14.623	43.500	12.120	1.213	23.080	100	21	QP
4		243.615	28.903	38.635	-17.097	46.000	11.898	1.680	23.310	100	32	QP
5		416.142	26.321	30.698	-19.679	46.000	16.323	2.250	22.950	100	81	QP
6	*	833.614	34.450	33.451	-11.550	46.000	20.269	3.180	22.450	100	105	QP

Note:

1. " * ", means this data is the worst emission level.

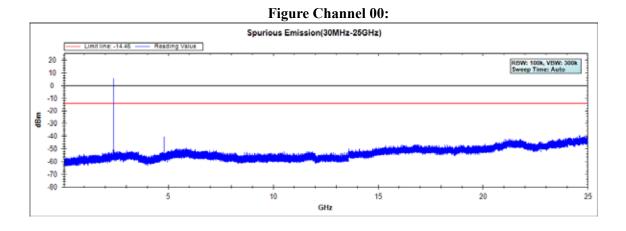
5. **RF Antenna Conducted Test**

5.1. Test Setup

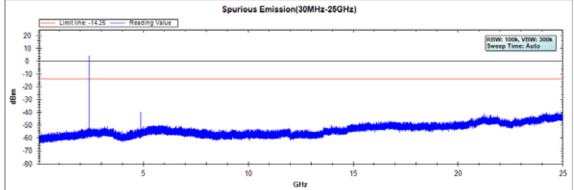
5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure


The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

5.4. Uncertainty


± 1.20dB

5.5. Test Result of RF Antenna Conducted Test

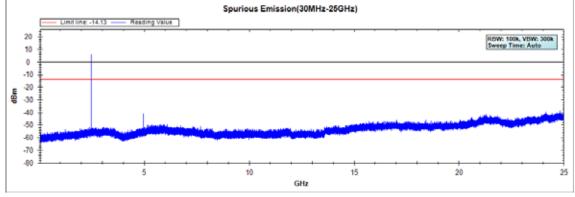
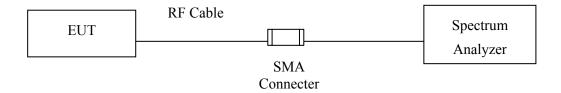
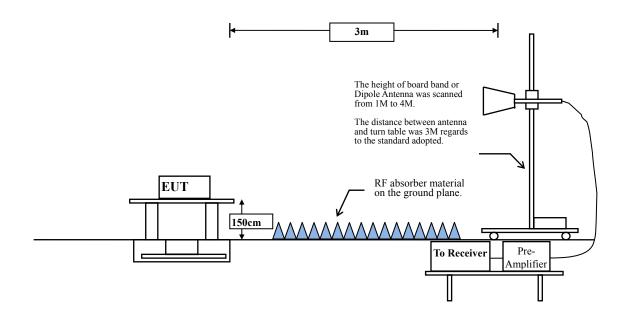

Product	:	August Smart Door Lock
Test Item	:	RF Antenna Conducted Test
Test Site	:	CB3
Test date	:	2017/05/21
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Figure Channel 19:

Figure Channel 39:



6. Band Edge


6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

Above 1GHz

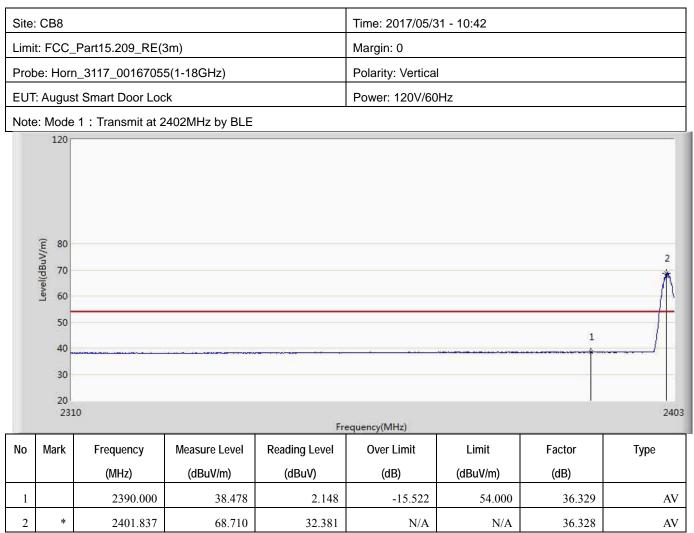
6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

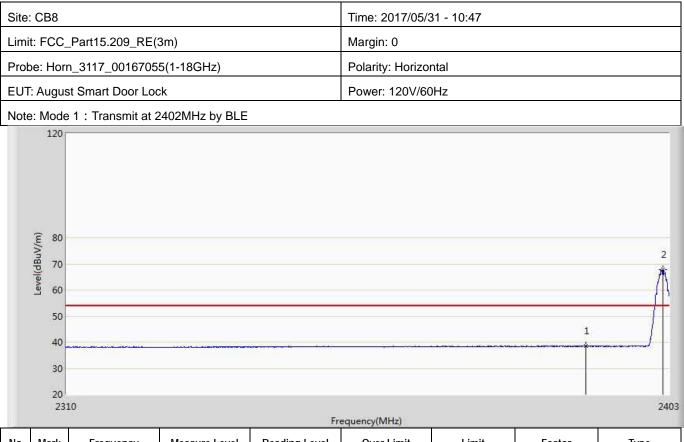
6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.


The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

6.4. Uncertainty


- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz

6.5. Test Result of Band Edge

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2390.000	38.505	2.175	-15.495	54.000	36.329	AV
2	*	2402.023	67.733	31.404	N/A	N/A	36.328	AV

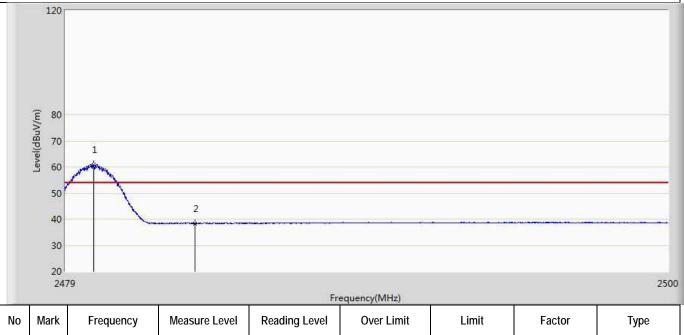
Site:	: CB8				Time: 2017/05/	31 - 10:49		
Limi	t: FCC_I	Part15.209_RE((3m)		Margin: 0			
Prob	be: Horn	_3117_0016705	55(1-18GHz)		Polarity: Horizo	ontal		
EUT	: August	Smart Door Lo	ck		Power: 120V/6	0Hz		
Note	e: Mode	1: Transmit at 2	2402MHz by BLE					
	(m 80 70 60 50 40 30 20 2310				equency(MHz)		1	2
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		<i></i>		(15.10)	()=)	((

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2390.000	51.400	15.070	-22.600	74.000	36.329	РК
2	*	2401.605	79.608	43.279	N/A	N/A	36.329	РК

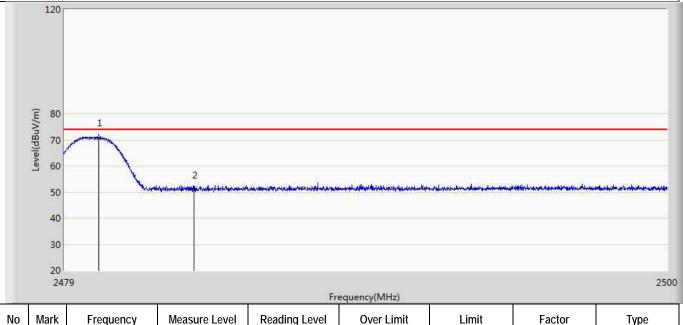


5	CB8			Time: 2017/05/3	31 - 10:51					
Limit:	FCC_Part15.209_RE(3m	ו)		Margin: 0						
Probe: Horn_3117_00167055(1-18GHz) Polarity: Vertical										
EUT:	August Smart Door Lock			Power: 120V/60)Hz					
Note:	Mode 1: Transmit at 240	02MHz by BLE								
	(m/Qng/lang) 70 60						2			
	60 50 who wind a high the second seco	irdingten etan de state tagen deserve		squency(MHz)	ngnallaftikalinganasikingan disebut pangangan	1	240			

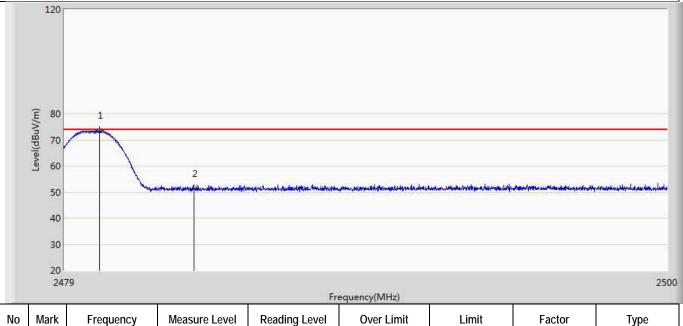
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2390.000	51.095	14.765	-22.905	74.000	36.329	РК
2	*	2401.977	80.853	44.524	N/A	N/A	36.328	РК


Site: CB8	Time: 2017/05/31 - 10:52
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical
EUT: August Smart Door Lock	Power: 120V/60Hz

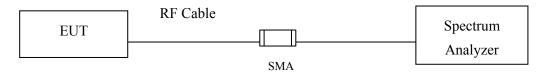
No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2479.872	63.043	26.630	N/A	N/A	36.413	AV
2		2483.500	38.402	1.935	-15.598	54.000	36.467	AV


Site: CB8	Time: 2017/05/31 - 10:59
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal
EUT: August Smart Door Lock	Power: 120V/60Hz

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.008	60.748	24.333	N/A	N/A	36.415	AV
2		2483.500	38.394	1.927	-15.606	54.000	36.467	AV


Site: CB8	Time: 2017/05/31 - 11:01
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal
EUT: August Smart Door Lock	Power: 120V/60Hz

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.197	70.859	34.441	N/A	N/A	36.417	РК
2		2483.500	50.831	14.364	-23.169	74.000	36.467	РК


Site: CB8	Time: 2017/05/31 - 11:02
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical
EUT: August Smart Door Lock	Power: 120V/60Hz

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.229	73.501	37.083	N/A	N/A	36.418	РК
2		2483.500	51.392	14.925	-22.608	74.000	36.467	РК

7. 6dB Bandwidth

7.1. Test Setup

7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.4. Uncertainty

± 283Hz

7.5. Test Result of 6dB Bandwidth

Product	:	August Smart Door Lock
Test Item	:	6dB Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	690.2	>500	Pass

Figure Channel 00:

Keysight Spectrum Analyzer - Occupied BW	GHz Center FFGain:Low #Atten	SENSE:INT Freq: 2.402000000 GHz ree Run Avg Hold : 6 dB	Radi 1:>10/10	33:28 AM May 26, 2017 o Std: None o Device: BTS	Frequency
15 dB/div Ref 10.00 dBm					Center Freq 2.402000000 GHz
35.0 50.0 66.0 80.0 55.0					
Center 2.402 GHz #Res BW 100 kHz	#	VBW 300 kHz		Span 5 MHz Sweep 1 ms	CF Step 500.000 kHz Auto Man
Occupied Bandwidth 1.0))771 MHz	Total Power	5.32 dB	m	Freq Offset
Transmit Freq Error x dB Bandwidth	-182 Hz 690.2 kHz	% of OBW Pow x dB	er 99.00 ^d -6.00 d		0 Hz
#5G			STATUS		

Product	:	August Smart Door Lock
Test Item	:	6dB Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2440MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
19	2440	703.4	>500	Pass

Figure Channel 19:

Keysight Spectrum Analyzer - Occupied BW					- 6 🗷
Center Freq 2.440000000		sense:INT r Freq: 2.440000000 GHz Free Run Avg Ho h: 6 dB	ALIGN AUTO	11:32:53 AM May 26, 2017 Radio Std: None Radio Device: BTS	Frequency
15 dB/div Ref 10.00 dBm					Center Freq 2.44000000 GHz
600 650 600 650 600 110					
Center 2.44 GHz #Res BW 100 kHz Occupied Bandwidth		VBW 300 kHz Total Power	5.43	Span 5 MHz Sweep 1 ms	CF Stej 500.000 kH Auto Mai
)807 MHz _{178 Hz}	% of OBW Pov		.00 %	Freq Offse 0 H
x dB Bandwidth	703.4 kHz	x dB		00 dB	
MSG			STATUS	6	

Product	:	August Smart Door Lock
Test Item	:	6dB Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2480MHz)

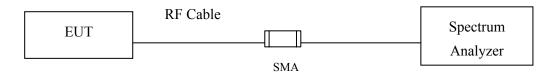

Channel No.	Frequency (MHz)	1 5		Result
39	2480	686.6	>500	Pass

Figure	Channel	39:
--------	---------	-----

8. **Power Density**

8.1. Test Setup

8.2. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013, the maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.4. Uncertainty

± 1.20 dB

8.5. Test Result of Power Density

Product	:	August Smart Door Lock
Test Item	:	Power Density Data
Test Site	:	CB3
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)

Channel No.	Frequency (MHz)	Measure Level (8dBm/3kKz)	Limit (8dBm/3kKz)	Result
00	2402	-16.127	8dBm	Pass

Figure Channel 00:

Product	:	August Smart Door Lock
Test Item	:	Power Density Data
Test Site	:	CB3
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2440MHz)

Channel No.	Frequency (MHz)	Measure Level (8dBm/3kKz)	Limit (8dBm/3kKz)	Result
19	2440	-16.654	8dBm	Pass

Figure Channel 19:

:	August Smart Door Lock
:	Power Density Data
:	CB3
:	Mode 1: Transmit - BLE (GFSK) (2480MHz)
	:

Channel No.	Frequency (MHz)	Measure Level (8dBm/3kKz)	Limit (8dBm/3kKz)	Result
39	2480	-15.784	8dBm	Pass

Figure Channel 39:

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.