

**Test Report for the  
EMC Testing of  
Qubi 3 Model H  
for  
QED Advanced Systems**

Test Report number B2354TR1

Project number B3809

Author: .....  
*Matthew*  
Matthew Smart, Test Technician

Checked: .....  
*DF*  
Mr David Feasey, Technical Manager

Approved: .....  
*DF*  
Mr David Feasey, Technical Manager

| Issue | Description |  |        |  |     |  | Issue by | Date        |
|-------|-------------|--|--------|--|-----|--|----------|-------------|
| 1     | Copy 1      |  | Copy 2 |  | PDF |  | DF       | 24 May 2018 |

This report shall not be reproduced, except in full without the prior written approval of Eurofins York.  
The results contained in this report are only applicable to the apparatus tested.



INVESTORS  
IN PEOPLE

Accredited  
Until 2019

A BEIS designated Notified Body No 2636



Registered Address: Eurofins York  
154 Business Park, Valiant Way, Wolverhampton, WV9 5GB, UK  
Registered in England and Wales  
Company Reg No. 6048589 | VAT Reg No. 887 1276 83

## CONTENTS

|                                                        |           |
|--------------------------------------------------------|-----------|
| <b>Test Report Change History .....</b>                | <b>4</b>  |
| <b>Section 1 Test Location.....</b>                    | <b>5</b>  |
| 1.1 UKAS Accreditation.....                            | 5         |
| <b>Section 2 Customer Information .....</b>            | <b>6</b>  |
| <b>Section 3 Equipment Details.....</b>                | <b>7</b>  |
| 3.1 Equipment Under Test (EUT).....                    | 7         |
| 3.2 EUT Photos .....                                   | 9         |
| 3.3 Configuration of EUT.....                          | 11        |
| 3.4 EUT Monitoring/Auxiliary Equipment .....           | 11        |
| <b>Section 4 Test Specifications .....</b>             | <b>12</b> |
| 4.1 Knowledge Database References.....                 | 13        |
| 4.1.1 Conducted Emissions .....                        | 13        |
| 4.1.2 Radiated Emissions (30MHz to 1000MHz).....       | 13        |
| 4.1.3 Radiated Emissions (1GHz to 18GHz) .....         | 13        |
| 4.2 Compliance Statement.....                          | 13        |
| 4.3 Test Sequence .....                                | 14        |
| <b>Section 5 Conducted Emission Results .....</b>      | <b>15</b> |
| 5.1 Test Specification .....                           | 15        |
| 5.2 Power Line Emission Limits .....                   | 15        |
| 5.3 Receiver Settings .....                            | 15        |
| 5.4 Procedure and Test Software Version .....          | 15        |
| 5.4.1 Date of Test.....                                | 15        |
| 5.4.2 Test Area.....                                   | 15        |
| 5.4.3 Test Setup .....                                 | 16        |
| 5.4.4 Plots .....                                      | 17        |
| 5.4.5 Correction factors .....                         | 19        |
| <b>Section 6 Radiated Emission Results.....</b>        | <b>20</b> |
| 6.1 Test Specification .....                           | 20        |
| 6.2 Procedure and Test Software Version .....          | 20        |
| 6.3 Radiated Emissions (30MHz to 1GHz) .....           | 21        |
| 6.3.1 Limits at 3m .....                               | 21        |
| 6.3.2 Receiver Settings .....                          | 21        |
| 6.3.3 Emissions measurements .....                     | 21        |
| 6.3.4 Date of Test.....                                | 21        |
| 6.3.5 Test Area.....                                   | 21        |
| 6.3.6 Test Setup .....                                 | 22        |
| 6.3.7 Electric field emissions, 30MHz to 1GHz .....    | 23        |
| 6.3.8 Quasi Peak correction factors .....              | 25        |
| 6.4 Radiated Emissions (1GHz to 12.5GHz).....          | 25        |
| 6.4.1 Limits .....                                     | 25        |
| 6.4.2 Receiver Settings .....                          | 25        |
| 6.4.3 Emissions measurements .....                     | 25        |
| 6.4.4 Date of Test.....                                | 25        |
| 6.4.5 Test Area.....                                   | 25        |
| 6.4.6 Test Setup .....                                 | 26        |
| 6.4.7 Exploratory Radiated Emission Maximization.....  | 27        |
| 6.4.8 Electric field emissions, 1GHz to 12.5GHz .....  | 28        |
| 6.4.9 Average correction factors (1GHz to 18GHz) ..... | 32        |
| <b>Appendix A EUT Test Photos .....</b>                | <b>33</b> |
| <b>Appendix B Test Equipment List .....</b>            | <b>36</b> |

**List of Figures**

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| Figure 1: Diagram of EUT .....                                               | 11 |
| Figure 2: Test setup for Conducted Emissions on the AC power port .....      | 16 |
| Figure 3: Conducted Emissions Plot - Input Power 120V 60Hz Live .....        | 17 |
| Figure 4: Conducted Emissions Plot - Input Power 120V 60Hz Neutral .....     | 18 |
| Figure 5: Test Setup for E-Field Measurements from 30MHz to 1GHz .....       | 22 |
| Figure 6: Electric field emissions Plot, 30MHz to 1GHz (125kHz) .....        | 23 |
| Figure 7: Electric field emissions Plot, 30MHz to 1GHz (13.56MHz) .....      | 24 |
| Figure 8: Test Setup for Final E-Field Measurements from 1GHz to 18GHz ..... | 26 |
| Figure 9: Electric field emissions Plot, 1GHz to 6GHz (125kHz) .....         | 28 |
| Figure 10: Electric field emissions Plot, 6GHz to 12.5GHz (125kHz) .....     | 29 |
| Figure 11: Electric field emissions Plot, 1GHz to 6GHz (13.56GHz) .....      | 30 |
| Figure 12: Electric field emissions Plot, 6GHz to 12.5GHz (13.56GHz) .....   | 31 |

**List of Tables**

|                                                                                        |    |
|----------------------------------------------------------------------------------------|----|
| Table 1: Test Sequence.....                                                            | 14 |
| Table 2: Input Power Live Conducted Emissions Peaks.....                               | 17 |
| Table 3: Input Power 120V 60Hz Neutral Conducted Emissions Peaks.....                  | 18 |
| Table 4: Electric Field Emissions Peaks, 30MHz to 1GHz (125kHz) .....                  | 23 |
| Table 5: Electric Field Emissions Peaks, 30MHz to 1GHz (13.56MHz) .....                | 24 |
| Table 6: Frequencies identified during Exploratory Radiated Emission maximization..... | 27 |
| Table 7: Electric Field Emissions Peaks, 1GHz to 6GHz (125kHz) .....                   | 28 |
| Table 8: Electric Field Emissions Peaks, 1GHz to 6GHz (13.56GHz) .....                 | 30 |
| Table 10: Electric Field Emissions Peaks, 6GHz to 12.5GHz (13.56GHz) .....             | 31 |

## Test Report Change History

| Issue | Date | Modification Details          |
|-------|------|-------------------------------|
| 1     |      | Original issue of test report |
| 2     |      |                               |
| 3     |      |                               |
| 4     |      |                               |
| 5     |      |                               |
| 6     |      |                               |
| 7     |      |                               |
| 8     |      |                               |
| 9     |      |                               |
| 10    |      |                               |

## Section 1 Test Location

All testing was performed at;

|                         |                                                             |
|-------------------------|-------------------------------------------------------------|
| <b>Eurofins York</b>    | 46 Waverley Road                                            |
|                         | Beeches Industrial Estate                                   |
|                         | Yate                                                        |
|                         | Bristol                                                     |
|                         | BS37 5QT                                                    |
| <b>Tel:</b>             | +44 (0) 1454 326998                                         |
|                         |                                                             |
| <b>Website</b>          | <a href="http://www.yorkemc.com">http://www.yorkemc.com</a> |
| <b>UKAS Testing No.</b> | 1574                                                        |

### 1.1 UKAS Accreditation

Tests marked "Not UKAS Accredited" in this report are not included in the UKAS Accreditation Schedule for our laboratory.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

York EMC Services latest accreditation schedule can be found at:

[http://www.ukas.org/testing/lab\\_detail.asp?lab\\_id=989&location\\_id=&vMenuOption=3](http://www.ukas.org/testing/lab_detail.asp?lab_id=989&location_id=&vMenuOption=3)

## Section 2 Customer Information

|                                                          |                                           |
|----------------------------------------------------------|-------------------------------------------|
| <b>Company name</b>                                      | QED Advanced Systems                      |
| <b>Address</b>                                           | The Hive                                  |
|                                                          | Beaufighter Road                          |
|                                                          | Western-Super-Mare                        |
|                                                          | Somerset                                  |
|                                                          | BS24 8EE                                  |
|                                                          |                                           |
| <b>Tel:</b>                                              | 07740177133                               |
| <b>Contact</b>                                           | Ian Fisher                                |
| <b>Email</b>                                             | ian.fisher@qedas.com                      |
| <b>Customer Representative(s) present during testing</b> | Ian Fisher was present during the testing |

## Section 3 Equipment Details

### 3.1 Equipment Under Test (EUT)

|                                                   |                                                                                                                                                                                                |      |      |    |                 |                   |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----|-----------------|-------------------|--|--|
| <b>Date received:</b>                             | 13-04-2018                                                                                                                                                                                     |      |      |    |                 |                   |  |  |
| <b>EUT name:</b>                                  | Qubi 3 Model H                                                                                                                                                                                 |      |      |    |                 |                   |  |  |
| <b>Type/Part no:</b>                              | Qubi 3 Model H                                                                                                                                                                                 |      |      |    |                 |                   |  |  |
| <b>Serial no/s:</b>                               | Q3H100001                                                                                                                                                                                      |      |      |    |                 |                   |  |  |
| <b>EUT description:</b>                           | "The EUT's primary function is a bookable workspace management system that allows persons to enter meeting rooms that they have booked. The EUT is intended to operate in a RCLI" environment. |      |      |    |                 |                   |  |  |
| <b>No of units tested:</b>                        | One                                                                                                                                                                                            |      |      |    |                 |                   |  |  |
| <b>EUT power:</b>                                 | 120                                                                                                                                                                                            | V    | 60   | Hz | Single phase    |                   |  |  |
| <b>Highest internal frequency:</b>                | 2.5 GHz                                                                                                                                                                                        |      |      |    |                 |                   |  |  |
| <b>Cables:</b>                                    | Cable 1                                                                                                                                                                                        |      | 1    | m  | <b>Screened</b> | <b>Terminated</b> |  |  |
| <b>Size of EUT (mm)</b>                           | L: -                                                                                                                                                                                           | 0.13 | W: - |    | 0.9             | H: - 0.025        |  |  |
| <b>Tested as</b>                                  | Table top                                                                                                                                                                                      |      |      |    |                 |                   |  |  |
| <b>Mode/s of operation</b>                        | Card reader operating and communicating with external card                                                                                                                                     |      |      |    |                 |                   |  |  |
| <b>Firmware Version</b>                           | Issue 5                                                                                                                                                                                        |      |      |    |                 |                   |  |  |
| <b>Software Version</b>                           | V1.11.00                                                                                                                                                                                       |      |      |    |                 |                   |  |  |
| <b>Client modification statement:</b>             | N/A                                                                                                                                                                                            |      |      |    |                 |                   |  |  |
| <b>Modifications incorporated during testing:</b> | N/A                                                                                                                                                                                            |      |      |    |                 |                   |  |  |

|                        |                                                       |
|------------------------|-------------------------------------------------------|
| <b>Radio Module(s)</b> | 2.4GHz, WiFi Silicon Labs Module- FCC ID-2ABPY-5B9198 |
|                        | 125kHz RFID Elatec Module- FCC ID-WP5TWN4F4           |
|                        | 13.56 RFID ST Microelectronics Module FCC ID- N/A     |

### 3.2 EUT Photos



EUT Front



EUT Rear



**EUT LH Side**



**EUT RH Side**

### 3.3 Configuration of EUT

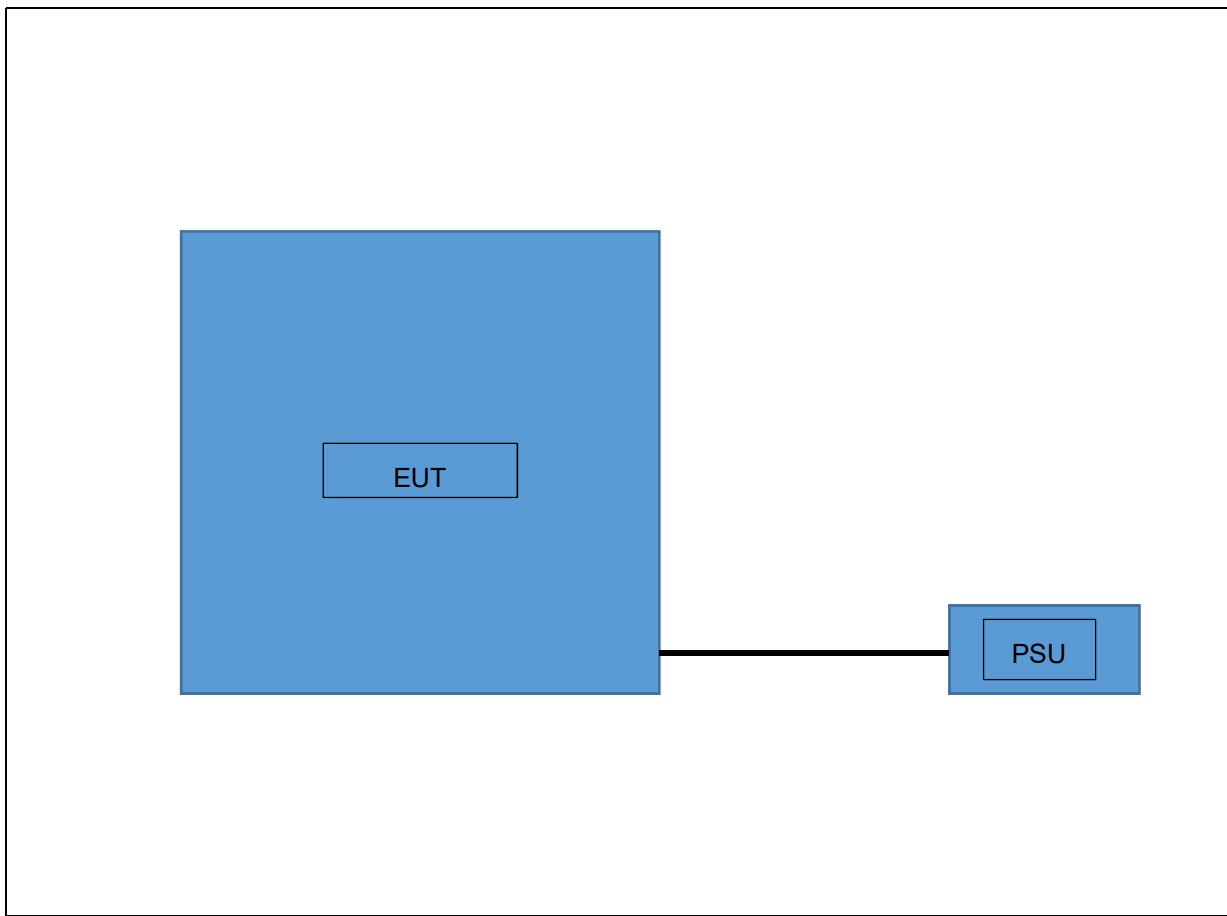



Figure 1: Diagram of EUT

### 3.4 EUT Monitoring/Auxiliary Equipment

| Equipment Name | Type No. | Serial No. |
|----------------|----------|------------|
| None           | N/A      | N/A        |

## Section 4 Test Specifications

The tests were performed in accordance with York EMC Services Quotation B3809

The tests were performed in accordance with Customer Test Plan N/A

| <b>47CFR Part 15, Sub Part B Unintentional Radiators</b>                                                                                                  |                               |                                  |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|--------------------|
| <b>Which references the following specification: -</b>                                                                                                    |                               |                                  |                    |
| <b>ANSI C63.4: 2014 Methods of Measurements of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range 9kHz to 40GHz.</b> |                               |                                  |                    |
| <b>Test</b>                                                                                                                                               | <b>Method</b>                 | <b>Levels</b>                    | <b>Result</b>      |
| Conducted Emissions<br>(0.15 – 30MHz)                                                                                                                     | ANSI C63.4: 2014<br>Section 7 | Part 15 Clause 15.107<br>Class B | Pass               |
| Radiated Emissions<br>Electric Field<br>Measurements<br>(30 – 12.5GHz)                                                                                    | ANSI C63.4: 2014<br>Section 8 | Part 15 Clause 15.109<br>Class B | Pass<br>See Note 1 |

Note 1 :All testing was carried out at a test distance of 3m and the limits adjusted accordingly. This is a deviation from the standard as Class A limits are specified at 10m test distance.

#### 4.1 Knowledge Database References

The following KDBs were referenced during the testing of the Qubi 3, Model H

The latest knowledge database references are available via the FCC KDB website at:

<https://apps.fcc.gov/kdb>

##### 4.1.1 Conducted Emissions

None

##### 4.1.2 Radiated Emissions (30MHz to 1000MHz)

None

##### 4.1.3 Radiated Emissions (1GHz to 12.5 GHz)

| Publication Number | Keyword                                          | Publication Date |
|--------------------|--------------------------------------------------|------------------|
| 714737             | 15B, Average Detector for Unintentional Radiator | 30/11/2010       |
| 414788             | Radiated Emissions Test Site                     | 04/18/2017       |

#### 4.2 Compliance Statement

The Qubi 3, Model H, as tested, was shown to meet requirements of the standards listed in Section 4 of this report.

#### 4.3 Test Sequence

| Test Description           | Test Order | Test Repeated | Comment |
|----------------------------|------------|---------------|---------|
| <b>Radiated Emissions</b>  |            |               |         |
| 30MHz to 1GHz              | 1a         | No            | Pass    |
| 1GHz to 12.5GHz            | 1b         | No            | Pass    |
| <b>Conducted Emissions</b> |            |               |         |
| AC Power Ports             | 2          | No            | Pass    |

Table 1: Test Sequence

## Section 5 Conducted Emission Results

### 5.1 Test Specification

|                         |                                                                                                                                                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard                | ANSI C63.4:2014                                                                                                                                                                                                                                                                 |
| Measurement Uncertainty | The reported uncertainty of measurement $y \pm U$ , where expended uncertainty $U$ is based on a standard uncertainty multiplied by a coverage factor of $k=2$ , providing a level of confidence of approximately 95 % is $\pm 3.34\text{dB}$ (EN55016-4-2:2011+A1:2014) ESHS30 |

### 5.2 Power Line Emission Limits

| Frequency<br>(MHz) | Class A<br>(dB $\mu$ V) |         | Class B<br>(dB $\mu$ V) |          |
|--------------------|-------------------------|---------|-------------------------|----------|
|                    | Quasi Peak              | Average | Quasi Peak              | Average  |
| 0.15 – 0.5         | 79.0                    | 66.0    | 66 – 56*                | 56 – 46* |
| 0.5 – 5.0          | 73.0                    | 60.0    | 56.0                    | 46.0     |
| 5.0 - 30           | 73.0                    | 60.0    | 60.0                    | 50.0     |

Note: \* The limit decreases linearly with the logarithm of the frequency in the range

### 5.3 Receiver Settings

| Receiver Parameters  | Setting                |
|----------------------|------------------------|
| Detector Function    | Quasi Peak and Average |
| Start Frequency      | 150kHz                 |
| Stop Frequency       | 30MHz                  |
| Resolution Bandwidth | 10kHz                  |
| Video Bandwidth      | Auto                   |

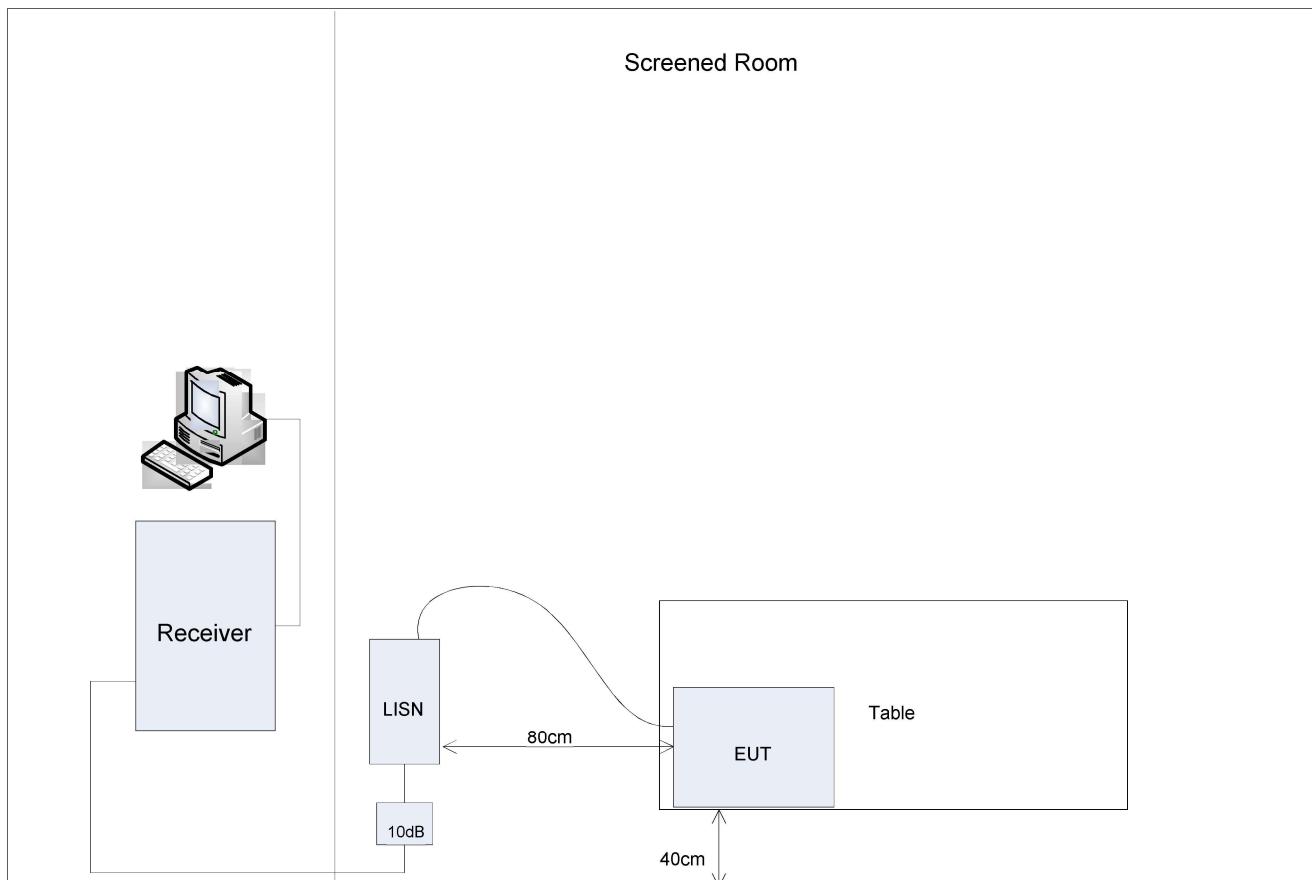
### 5.4 Procedure and Test Software Version

|                              |                             |
|------------------------------|-----------------------------|
| Eurofins York test procedure | BEP19 Issue 8 20 Nov 2014   |
| Test software                | RadiMation Version 2016.1.6 |

#### 5.4.1 Date of Test

13 Apr 2018

#### 5.4.2 Test Area


LAB 2

### 5.4.3 Test Setup

This test was applied to the EUT's Live and Neutral lines. The EUT was configured in the screened room on an 80cm high table and was positioned 40cm from the room wall.

A calibrated mains extension lead was used to ensure a known impedance was presented to the EUT

The EUT was then powered from the mains supply via a Line Impedance Stabilisation Network (LISN).



**Figure 2: Test setup for Conducted Emissions on the AC power port**

The screened room provides an environment that ensures valid, repeatable measurement results that meet the requirements of Clause 5.2 of ANSI C63.4-2014.

#### 5.4.4 Plots

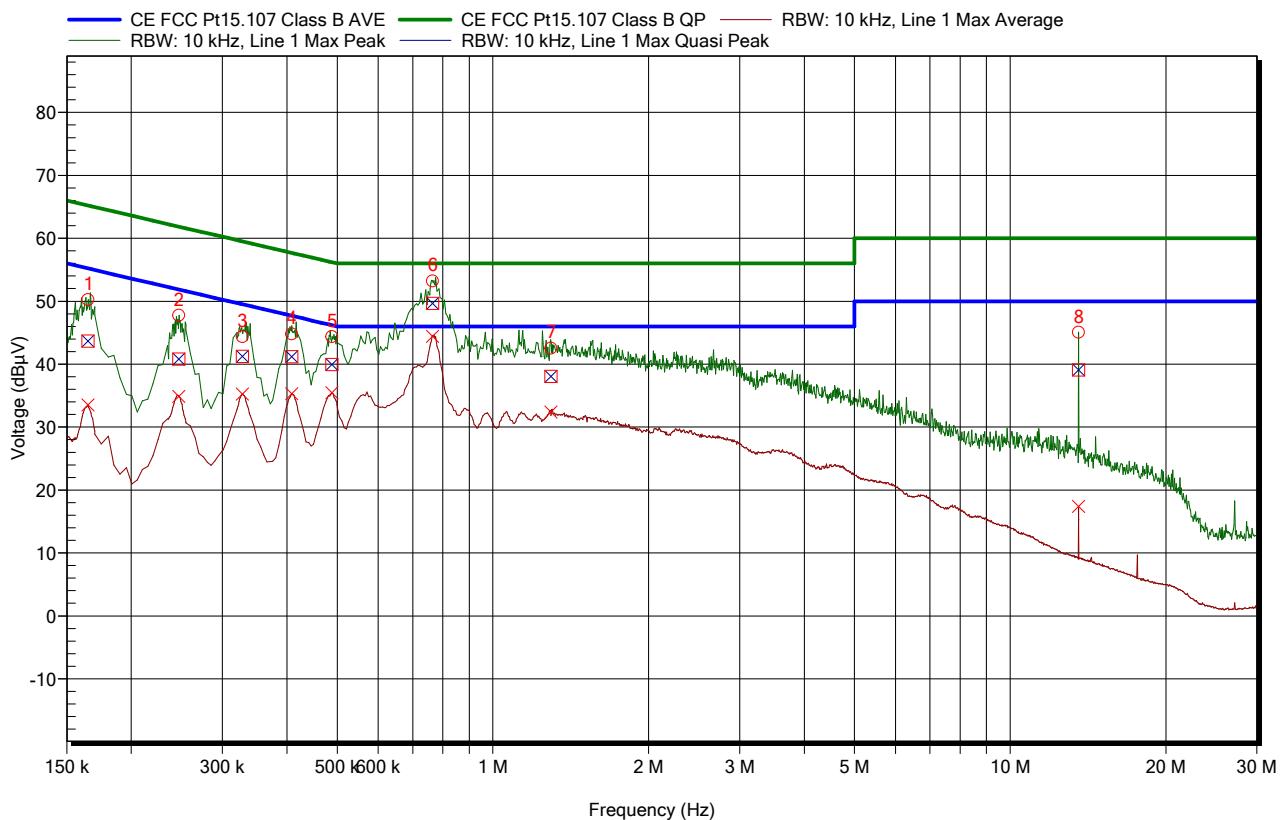



Figure 3: Conducted Emissions Plot - Input Power 120V 60Hz Live

| Frequency | Peak       | Average    | Average Difference | Average Status | Quasi-Peak | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Status |
|-----------|------------|------------|--------------------|----------------|------------|------------------|-----------------------|-------------------|
| 165 kHz   | 50.24 dBμV | 33.55 dBμV | -21.66 dB          | Pass           | 43.69 dBμV | 65.21 dBμV       | -21.52 dB             | Pass              |
| 247 kHz   | 47.78 dBμV | 34.88 dBμV | -16.97 dB          | Pass           | 40.81 dBμV | 61.86 dBμV       | -21.04 dB             | Pass              |
| 328 kHz   | 44.38 dBμV | 35.27 dBμV | -14.23 dB          | Pass           | 41.25 dBμV | 59.5 dBμV        | -18.25 dB             | Pass              |
| 408.5 kHz | 44.78 dBμV | 35.3 dBμV  | -12.38 dB          | Pass           | 41.17 dBμV | 57.68 dBμV       | -16.51 dB             | Pass              |
| 488 kHz   | 44.37 dBμV | 35.46 dBμV | -10.74 dB          | Pass           | 39.94 dBμV | 56.2 dBμV        | -16.26 dB             | Pass              |
| 765 kHz   | 53.2 dBμV  | 44.4 dBμV  | -1.6 dB            | Pass           | 49.64 dBμV | 56 dBμV          | -6.36 dB              | Pass              |
| 1.29 MHz  | 42.51 dBμV | 32.39 dBμV | -13.61 dB          | Pass           | 38.05 dBμV | 56 dBμV          | -17.95 dB             | Pass              |
| 13.56 MHz | 45.04 dBμV | 17.39 dBμV | -32.61 dB          | Pass           | 39.1 dBμV  | 60 dBμV          | -20.9 dB              | Pass              |

Table 2: Input Power Live Conducted Emissions Peaks

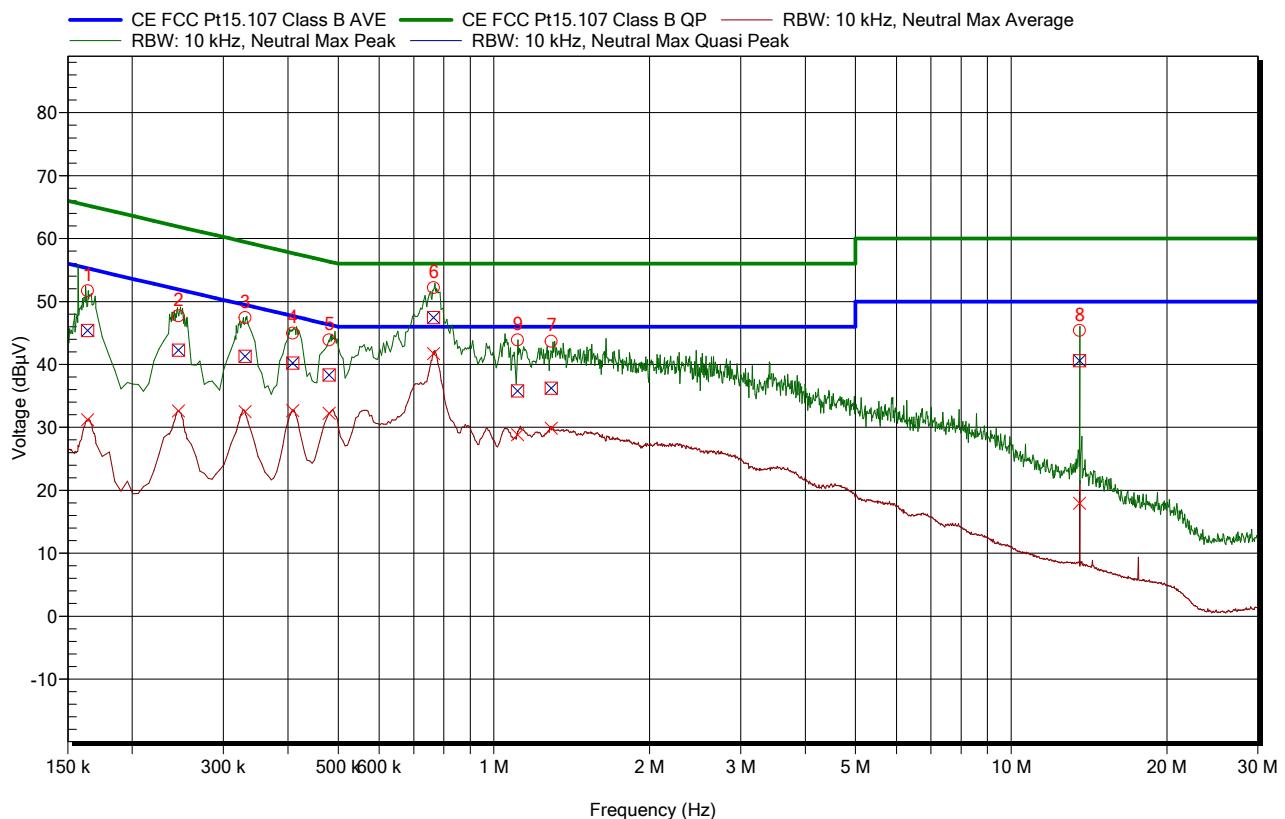



Figure 4: Conducted Emissions Plot - Input Power 120V 60Hz Neutral

| Frequency  | Peak       | Average    | Average Difference | Average Status | Quasi-Peak | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Status |
|------------|------------|------------|--------------------|----------------|------------|------------------|-----------------------|-------------------|
| 164 kHz    | 51.69 dBµV | 31.21 dBµV | -24.05 dB          | Pass           | 45.4 dBµV  | 65.26 dBµV       | -19.86 dB             | Pass              |
| 245.5 kHz  | 47.72 dBµV | 32.62 dBµV | -19.29 dB          | Pass           | 42.28 dBµV | 61.91 dBµV       | -19.63 dB             | Pass              |
| 330.5 kHz  | 47.42 dBµV | 32.49 dBµV | -16.95 dB          | Pass           | 41.31 dBµV | 59.44 dBµV       | -18.13 dB             | Pass              |
| 408.5 kHz  | 44.98 dBµV | 32.68 dBµV | -15 dB             | Pass           | 40.19 dBµV | 57.68 dBµV       | -17.49 dB             | Pass              |
| 480 kHz    | 43.88 dBµV | 32.23 dBµV | -14.11 dB          | Pass           | 38.33 dBµV | 56.34 dBµV       | -18.01 dB             | Pass              |
| 765 kHz    | 52.17 dBµV | 41.73 dBµV | -4.27 dB           | Pass           | 47.47 dBµV | 56 dBµV          | -8.53 dB              | Pass              |
| 1.29 MHz   | 43.66 dBµV | 29.85 dBµV | -16.15 dB          | Pass           | 36.23 dBµV | 56 dBµV          | -19.77 dB             | Pass              |
| 13.558 MHz | 45.4 dBµV  | 17.91 dBµV | -32.09 dB          | Pass           | 40.56 dBµV | 60 dBµV          | -19.44 dB             | Pass              |
| 1.111 MHz  | 43.89 dBµV | 28.86 dBµV | -17.14 dB          | Pass           | 35.82 dBµV | 56 dBµV          | -20.18 dB             | Pass              |

Table 3: Input Power 120V 60Hz Neutral Conducted Emissions Peaks

#### **5.4.5 Correction factors**

The quasi-peak correction and average correction are shown in the above table. This correction figure consists of LISN Insertion loss (IL), Attenuator loss (AL), Cable loss (CL) and Transient Limiter Loss (TL)

The Actual Signal Level (ASL) is calculated as follows:

$$\text{ASL (dB}\mu\text{V)} = \text{Indicated Signal Level (dB}\mu\text{V)} + \text{IL (dB)} + \text{AL (dB)} + \text{CL (dB)} + \text{TL (dB)}$$

## Section 6 Radiated Emission Results

### 6.1 Test Specification

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard                | ANSI C63.4:2014                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measurement Uncertainty | <p>The reported uncertainty of measurement <math>y \pm U</math>, where expended uncertainty <math>U</math> is based on a standard uncertainty multiplied by a coverage factor of <math>k=2</math>, providing a level of confidence of approximately 95% is</p> <p>5.16dB (EN55016-4-2:2011 +A1:2014 (&lt;1GHz)) ESU40</p> <p>4.66dB (EN55016-4-2:2011 +A1:2014 (1-6GHz)) ESU40/HL050</p> <p>4.96dB (EN55016-4-2:2011 +A1:2014 (6-18GHz)) ESU40/HL050</p> |

### 6.2 Procedure and Test Software Version

|                                              |                             |
|----------------------------------------------|-----------------------------|
| Eurofins York test procedure (30MHz to 1GHz) | BEP23 Issue 10 Oct 2016     |
| Eurofins York test procedure (1GHz to 40GHz) | BEP27 Issue 7 7 Oct 2016    |
| Test software                                | RadiMation Version 2016.1.6 |

### 6.3 Radiated Emissions (30MHz to 1GHz)

#### 6.3.1 Limits at 3m

| Frequency<br>(MHz) | Class A<br>(dB $\mu$ V/m) | Class B<br>(dB $\mu$ V/m) |
|--------------------|---------------------------|---------------------------|
|                    | Quasi Peak                | Quasi Peak                |
| 30 - 88            | 49.5                      | 40.0                      |
| 88 - 216           | 53.5                      | 43.5                      |
| 216 - 960          | 56.4                      | 46.0                      |
| 960- 1000          | 59.5                      | 54.0                      |

Note: FCC 47 CFR Part 15 Section 15.109 specifies test limits at 10m for Class A and 3m for Class B. Please note that for Class A, limits have adjusted by 10dB to correct for the measurement distance of 3m.

#### 6.3.2 Receiver Settings

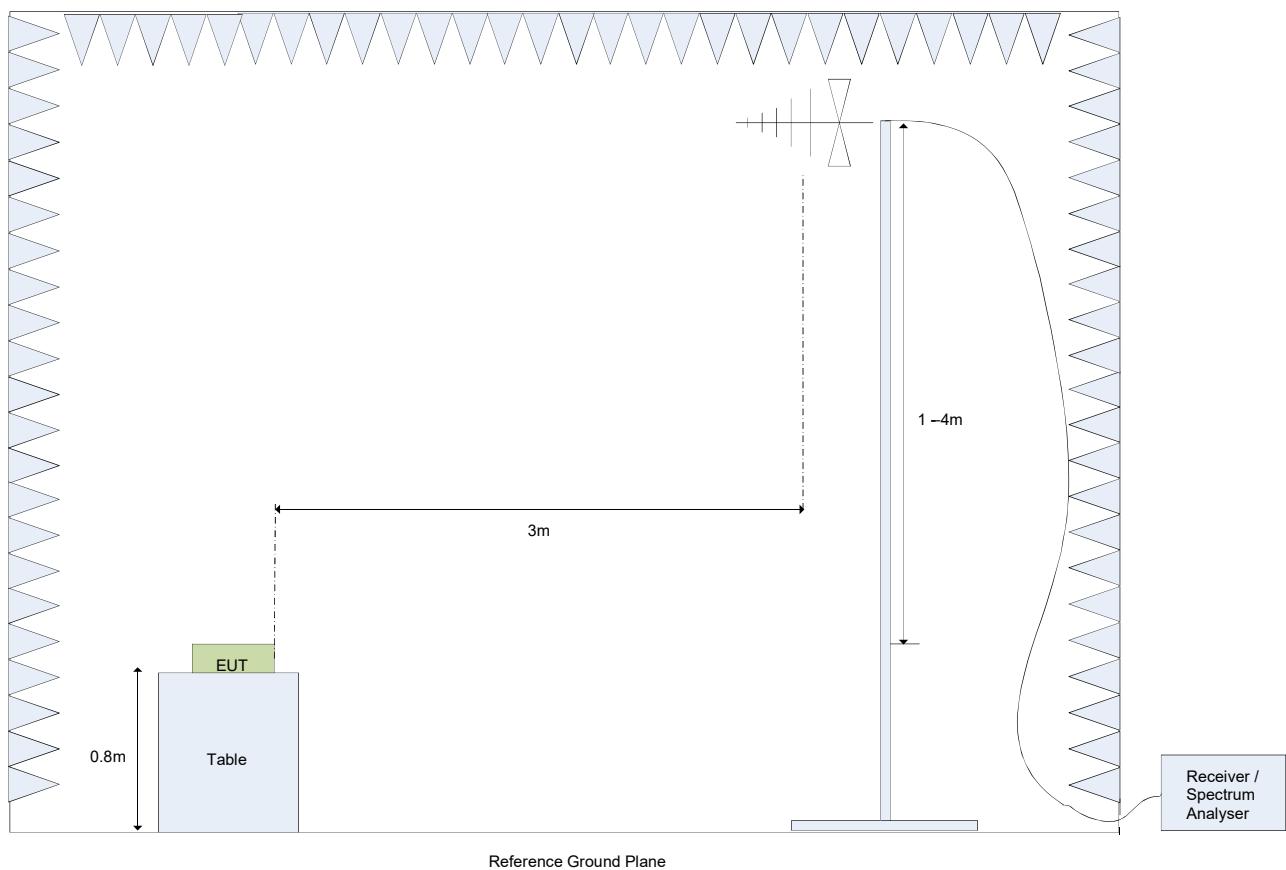
| Receiver Parameters  | Setting    |
|----------------------|------------|
| Detector Function    | Quasi Peak |
| Start Frequency      | 30MHz      |
| Stop Frequency       | 1000MHz    |
| Resolution Bandwidth | 120kHz     |
| Video Bandwidth      | Auto       |

#### 6.3.3 Emissions measurements

#### 6.3.4 Date of Test

13 Apr 2018

#### 6.3.5 Test Area


LAB 1 (SAC)

### 6.3.6 Test Setup

The EUT was configured in the SAC on an 80cm high table.

The measurement was performed with an antenna to EUT separation distance of 3m. The Quasi peak limits are therefore increased by 10dB (from the 10m values), to allow for the reduction in the measurement distance.

The results were maximised in orientation 0-360 degrees and height 1-4m.



**Figure 5: Test Setup for E-Field Measurements from 30MHz to 1GHz**

Note 1 : With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.

Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

## 6.3.7 Electric field emissions, 30MHz to 1GHz

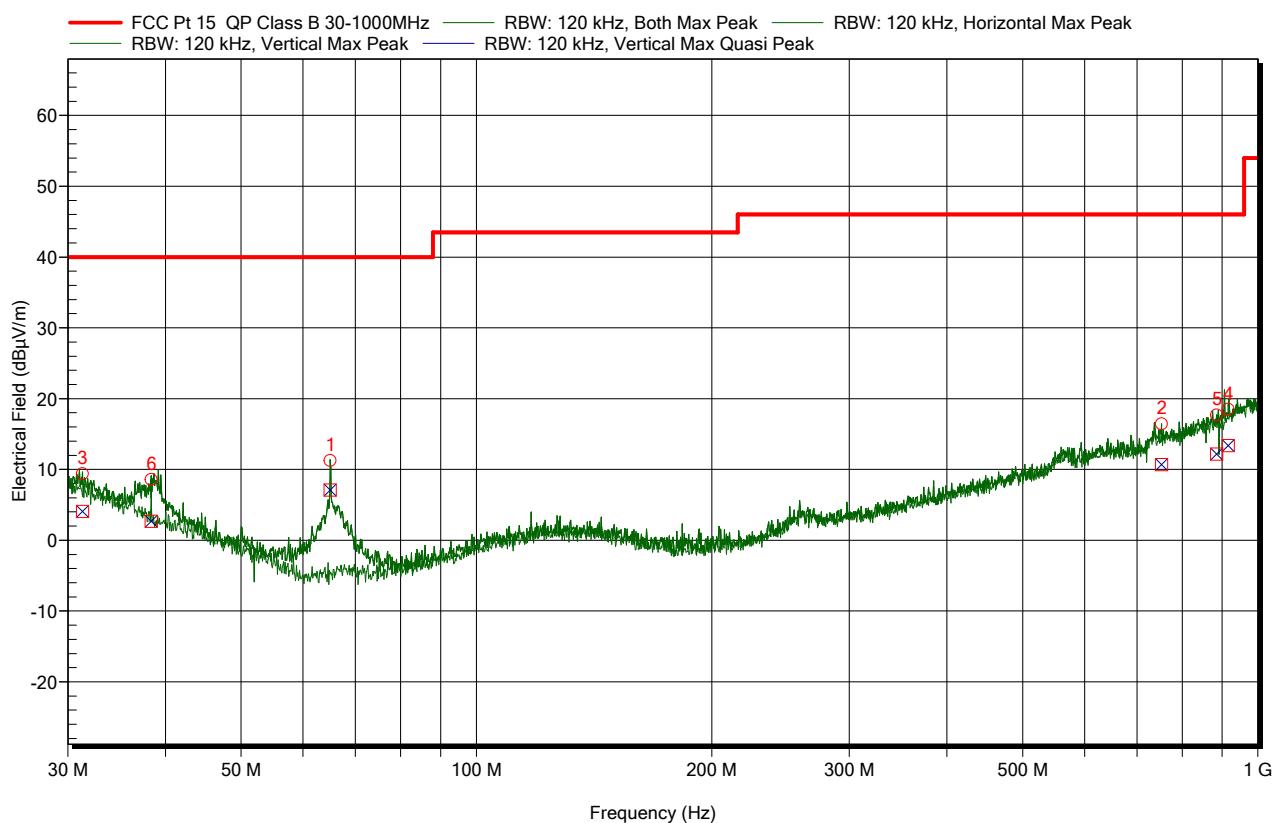



Figure 6: Electric field emissions Plot, 30MHz to 1GHz (125kHz)

| Frequency   | Peak               | Quasi-Peak         | Quasi-Peak Difference | Quasi-Peak Status | Angle      | Height | Polarization |
|-------------|--------------------|--------------------|-----------------------|-------------------|------------|--------|--------------|
| 65.012 MHz  | 11.24 dB $\mu$ V/m | 7.07 dB $\mu$ V/m  | -32.93 dB             | Pass              | 353 Degree | 1.1 m  | Vertical     |
| 752.331 MHz | 16.43 dB $\mu$ V/m | 10.67 dB $\mu$ V/m | -35.33 dB             | Pass              | 358 Degree | 1.7 m  | Vertical     |
| 31.336 MHz  | 9.41 dB $\mu$ V/m  | 4.07 dB $\mu$ V/m  | -35.93 dB             | Pass              | 327 Degree | 1.8 m  | Vertical     |
| 916.039 MHz | 18.51 dB $\mu$ V/m | 13.38 dB $\mu$ V/m | -32.62 dB             | Pass              | 323 Degree | 1.5 m  | Vertical     |
| 885.247 MHz | 17.7 dB $\mu$ V/m  | 12.18 dB $\mu$ V/m | -33.82 dB             | Pass              | 353 Degree | 3.5 m  | Vertical     |
| 38.356 MHz  | 8.55 dB $\mu$ V/m  | 2.67 dB $\mu$ V/m  | -37.33 dB             | Pass              | 328 Degree | 1.4 m  | Vertical     |

Table 4: Electric Field Emissions Peaks, 30MHz to 1GHz (125kHz)

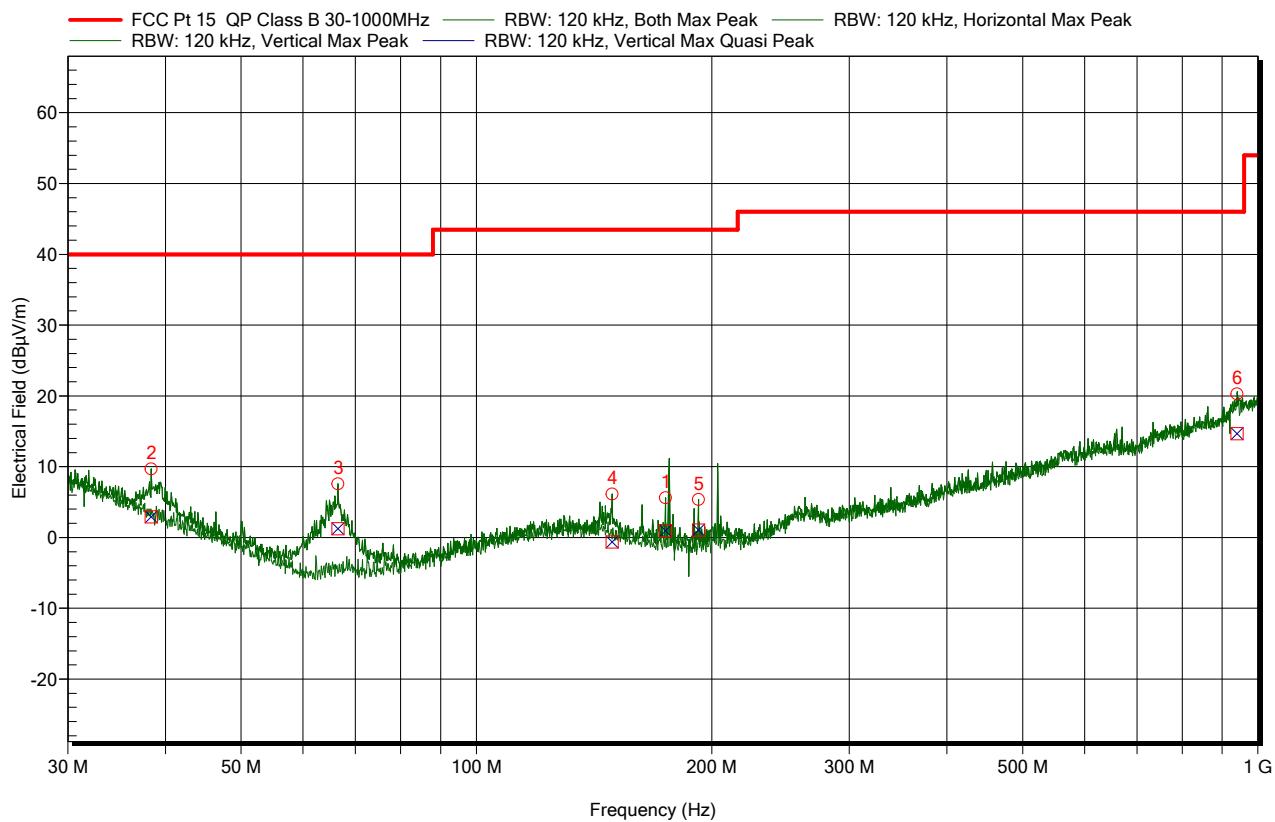



Figure 7: Electric field emissions Plot, 30MHz to 1GHz (13.56MHz)

| Frequency   | Peak               | Quasi-Peak         | Quasi-Peak Difference | Quasi-Peak Status | Angle      | Height | Polarization |
|-------------|--------------------|--------------------|-----------------------|-------------------|------------|--------|--------------|
| 174.568 MHz | 5.62 dB $\mu$ V/m  | 0.93 dB $\mu$ V/m  | -42.57 dB             | Pass              | 328 Degree | 1.1 m  | Vertical     |
| 38.365 MHz  | 9.7 dB $\mu$ V/m   | 2.93 dB $\mu$ V/m  | -37.07 dB             | Pass              | 313 Degree | 1 m    | Vertical     |
| 66.489 MHz  | 7.56 dB $\mu$ V/m  | 1.26 dB $\mu$ V/m  | -38.74 dB             | Pass              | 328 Degree | 1.7 m  | Vertical     |
| 149.202 MHz | 6.11 dB $\mu$ V/m  | -0.63 dB $\mu$ V/m | -44.13 dB             | Pass              | 333 Degree | 1.1 m  | Vertical     |
| 192.366 MHz | 5.35 dB $\mu$ V/m  | 1.06 dB $\mu$ V/m  | -42.44 dB             | Pass              | 358 Degree | 1.2 m  | Vertical     |
| 940.691 MHz | 20.25 dB $\mu$ V/m | 14.66 dB $\mu$ V/m | -31.34 dB             | Pass              | 342 Degree | 1.8 m  | Vertical     |

Table 5: Electric Field Emissions Peaks, 30MHz to 1GHz (13.56MHz)

### 6.3.8 Quasi Peak correction factors

The quasi peak correction is shown in the above table. This correction figure consists of Antenna factor (AF); Attenuator loss (AL) and Cable loss (CL).

Field strength (FS) is calculated as follows:

$$FS \text{ (dB}\mu\text{V/m)} = \text{Indicated Signal Level (dB}\mu\text{V)} + AF \text{ (dB)} + AL \text{ (dB)} + CL \text{ (dB)}$$

## 6.4 Radiated Emissions (1GHz to 12.5GHz)

### 6.4.1 Limits

| Frequency<br>(GHz) | Class A<br>(dB $\mu$ V/m) | Class B<br>(dB $\mu$ V/m) |
|--------------------|---------------------------|---------------------------|
|                    | Average                   | Average                   |
| 1-12.5             | 59.5                      | 54.0                      |

### 6.4.2 Receiver Settings

| Receiver Parameters  | Setting |
|----------------------|---------|
| Detector Function    | Average |
| Start Frequency      | 1GHz    |
| Stop Frequency       | 12.5GHz |
| Resolution Bandwidth | 1MHz    |
| Video Bandwidth      | Auto    |

### 6.4.3 Emissions measurements

### 6.4.4 Date of Test

13 Apr 2013

### 6.4.5 Test Area

LAB 1 (SAC)

#### 6.4.6 Test Setup

The EUT was configured in the SAC on an 80cm high table.

Exploratory measurements on the EUT were carried out to identify suspect frequencies and worst case orientations, see Section 6.4.7.

The measurement was then performed with an antenna to EUT separation distance of 3m.

The antenna was kept in the “cone of radiation” from the EUT and pointed at the area both in azimuth and elevation using the tilt mechanism on the antenna mast.

The results were maximised in orientation 0-360 degrees and height 1-4m.

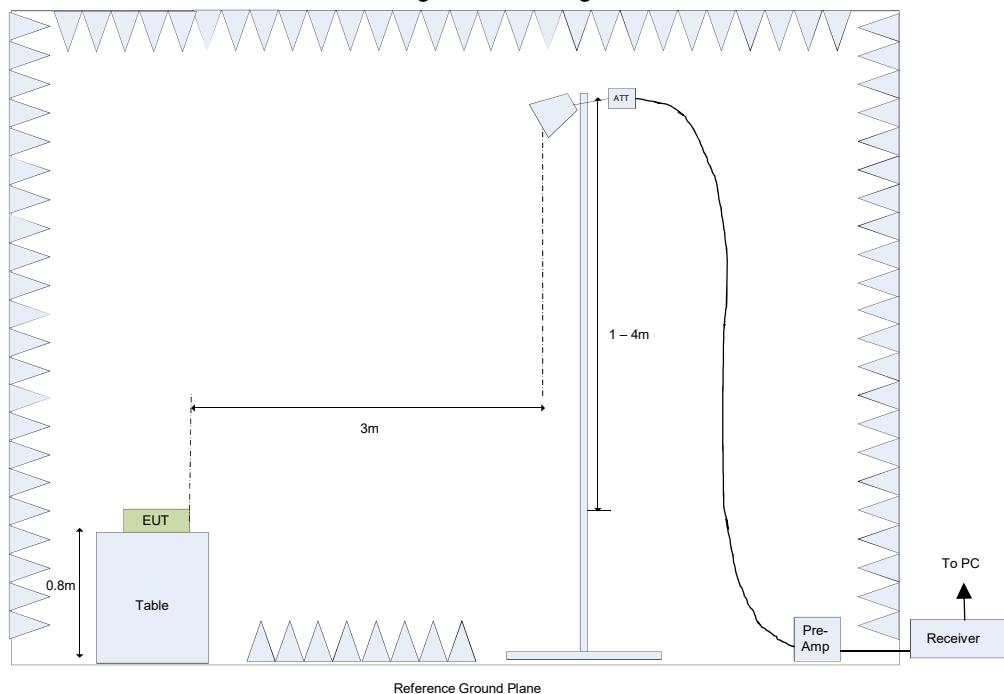



Figure 8: Test Setup for Final E-Field Measurements from 1GHz to 18GHz

Note 1 : With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.

Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

#### 6.4.7 Exploratory Radiated Emission Maximization

During exploratory testing, suspect emissions from the EUT were identified both in terms of the frequency and directionality. This was achieved by manually positioning the antenna close to the EUT and also by scanning it over all sides of the EUT whilst observing a spectral display. The typical distance between the surface of the EUT and the scanning antenna was circa 30cm.

| Frequency<br>(GHz) | Mode of operation | EUT face<br>* | Emissions Angle<br>(w.r.t. turntable) | Height | Polarization |
|--------------------|-------------------|---------------|---------------------------------------|--------|--------------|
| N/A                | N/A               | N/A           | N/A                                   | N/A    | N/A          |

**Table 6: Frequencies identified during Exploratory Radiated Emission maximization**

Note 1 : The front face of the EUT is deemed to be 0°, which is then turned in a clockwise direction through 360°.

Note 2 : The method for the exploratory radiated emission maximisation is as detailed in Annex E of ANSI

Note 3 : No emissions of concern were detected during the exploratory process

## 6.4.8 Electric field emissions, 1GHz to 12.5GHz

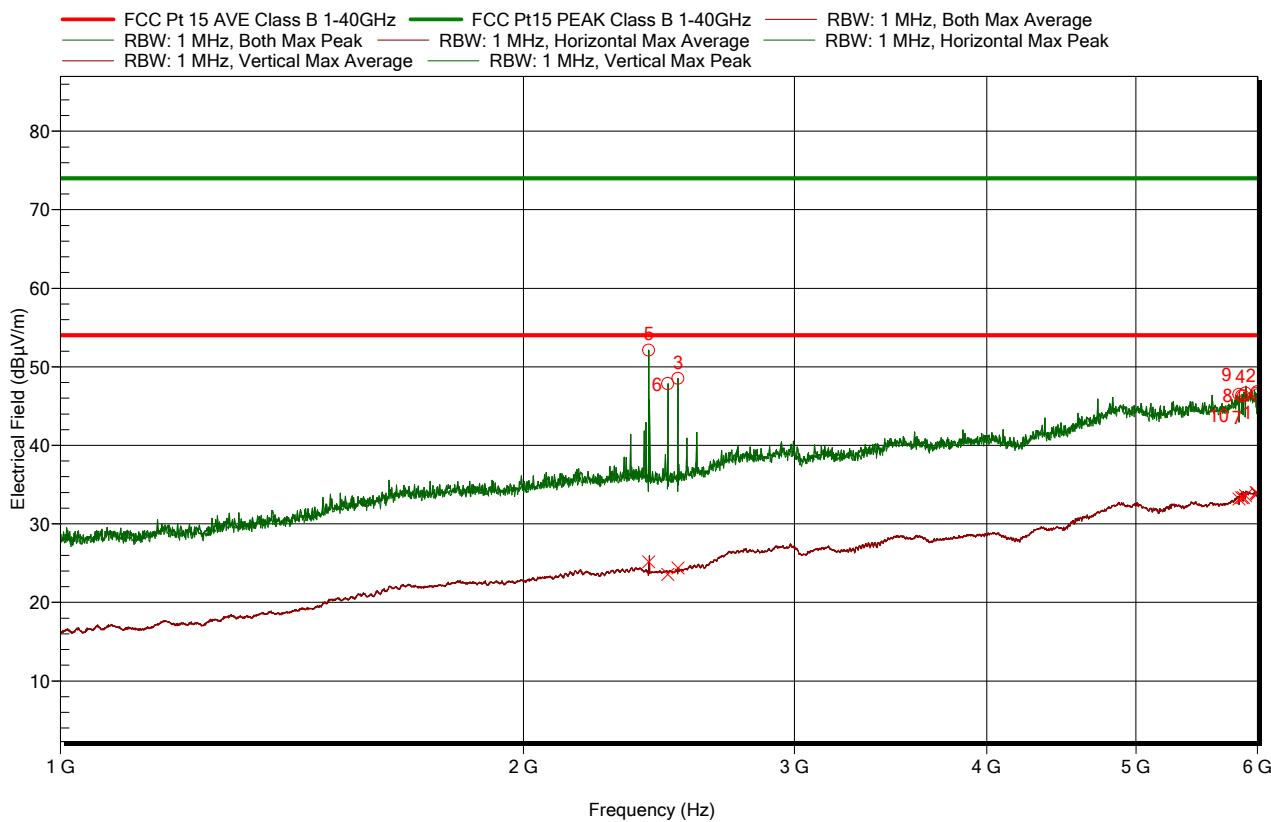
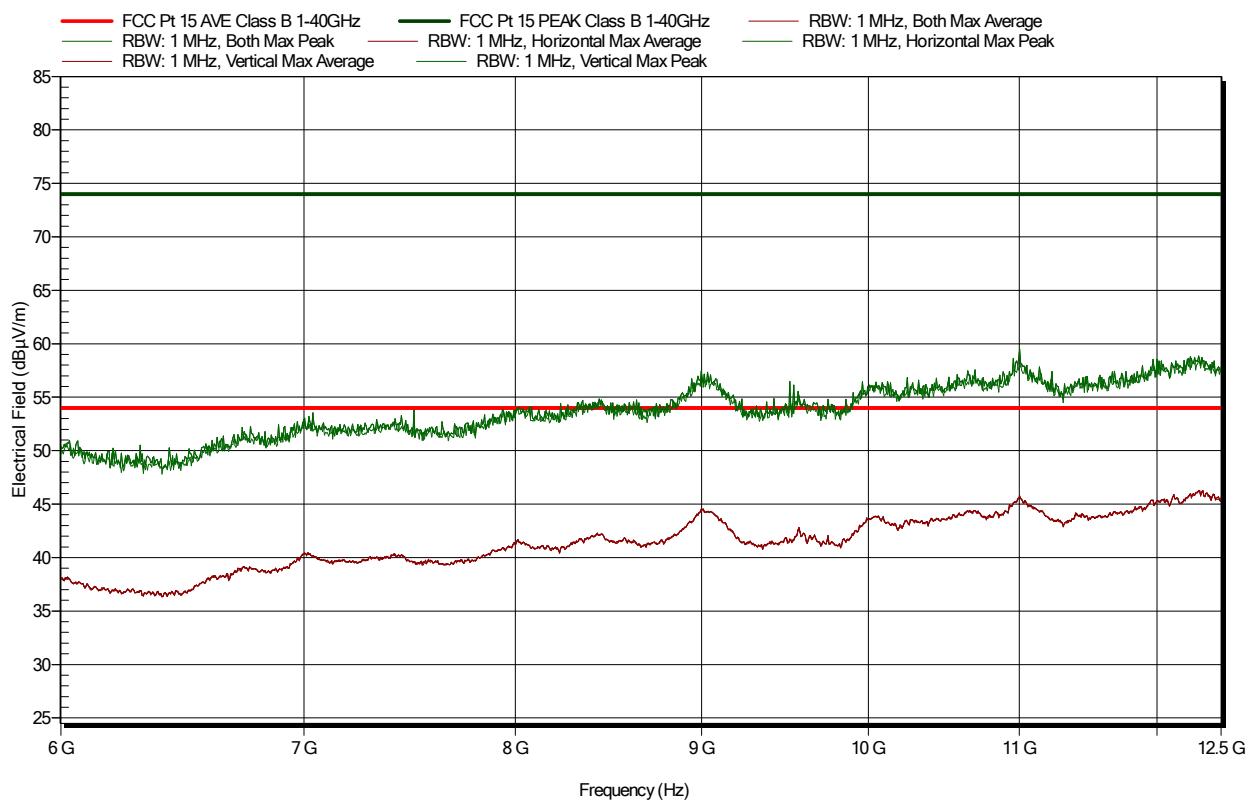




Figure 9: Electric field emissions Plot, 1GHz to 6GHz (125kHz)

| Frequency | Peak               | Peak Difference | Peak Correction | Peak Status | Average            | Average Difference | Average Correction | Average Status | Angle      | Height | Polarization |
|-----------|--------------------|-----------------|-----------------|-------------|--------------------|--------------------|--------------------|----------------|------------|--------|--------------|
| 5.859 GHz | 46.3 dB $\mu$ V/m  | -27.7 dB        | -6.9 dB         | Pass        | 33.35 dB $\mu$ V/m | -20.65 dB          | -6.9 dB            | Pass           | 15 Degree  | 1 m    | Horizontal   |
| 5.99 GHz  | 46.6 dB $\mu$ V/m  | -27.4 dB        | -6.8 dB         | Pass        | 34 dB $\mu$ V/m    | -20 dB             | -6.8 dB            | Pass           | 89 Degree  | 1 m    | Vertical     |
| 2.52 GHz  | 48.53 dB $\mu$ V/m | -25.47 dB       | -19.1 dB        | Pass        | 24.4 dB $\mu$ V/m  | -29.6 dB           | -19.1 dB           | Pass           | 104 Degree | 1 m    | Horizontal   |
| 5.891 GHz | 46.67 dB $\mu$ V/m | -27.33 dB       | -6.8 dB         | Pass        | 33.6 dB $\mu$ V/m  | -20.4 dB           | -6.8 dB            | Pass           | 119 Degree | 1 m    | Horizontal   |
| 2.412 GHz | 52.12 dB $\mu$ V/m | -21.88 dB       | -19.7 dB        | Pass        | 25.15 dB $\mu$ V/m | -28.85 dB          | -19.7 dB           | Pass           | 149 Degree | 1 m    | Horizontal   |
| 2.482 GHz | 47.83 dB $\mu$ V/m | -26.17 dB       | -19.3 dB        | Pass        | 23.57 dB $\mu$ V/m | -30.43 dB          | -19.3 dB           | Pass           | 149 Degree | 1 m    | Horizontal   |
| 5.998 GHz | 46.83 dB $\mu$ V/m | -27.17 dB       | -6.8 dB         | Pass        | 33.88 dB $\mu$ V/m | -20.12 dB          | -6.8 dB            | Pass           | 164 Degree | 1 m    | Horizontal   |
| 5.996 GHz | 46.4 dB $\mu$ V/m  | -27.6 dB        | -6.8 dB         | Pass        | 33.83 dB $\mu$ V/m | -20.17 dB          | -6.8 dB            | Pass           | 179 Degree | 1 m    | Vertical     |
| 5.873 GHz | 46.27 dB $\mu$ V/m | -27.73 dB       | -6.9 dB         | Pass        | 33.35 dB $\mu$ V/m | -20.65 dB          | -6.9 dB            | Pass           | 239 Degree | 1 m    | Vertical     |
| 5.836 GHz | 46.49 dB $\mu$ V/m | -27.51 dB       | -7 dB           | Pass        | 33.17 dB $\mu$ V/m | -20.83 dB          | -7 dB              | Pass           | 284 Degree | 1 m    | Horizontal   |

Table 2: Electric Field Emissions Peaks, 1GHz to 6GHz (125kHz)



**Figure 10: Electric field emissions Plot, 6GHz to 12.5GHz (125kHz)**

Note 1 : No max peaks were detected during the scans of the EUT

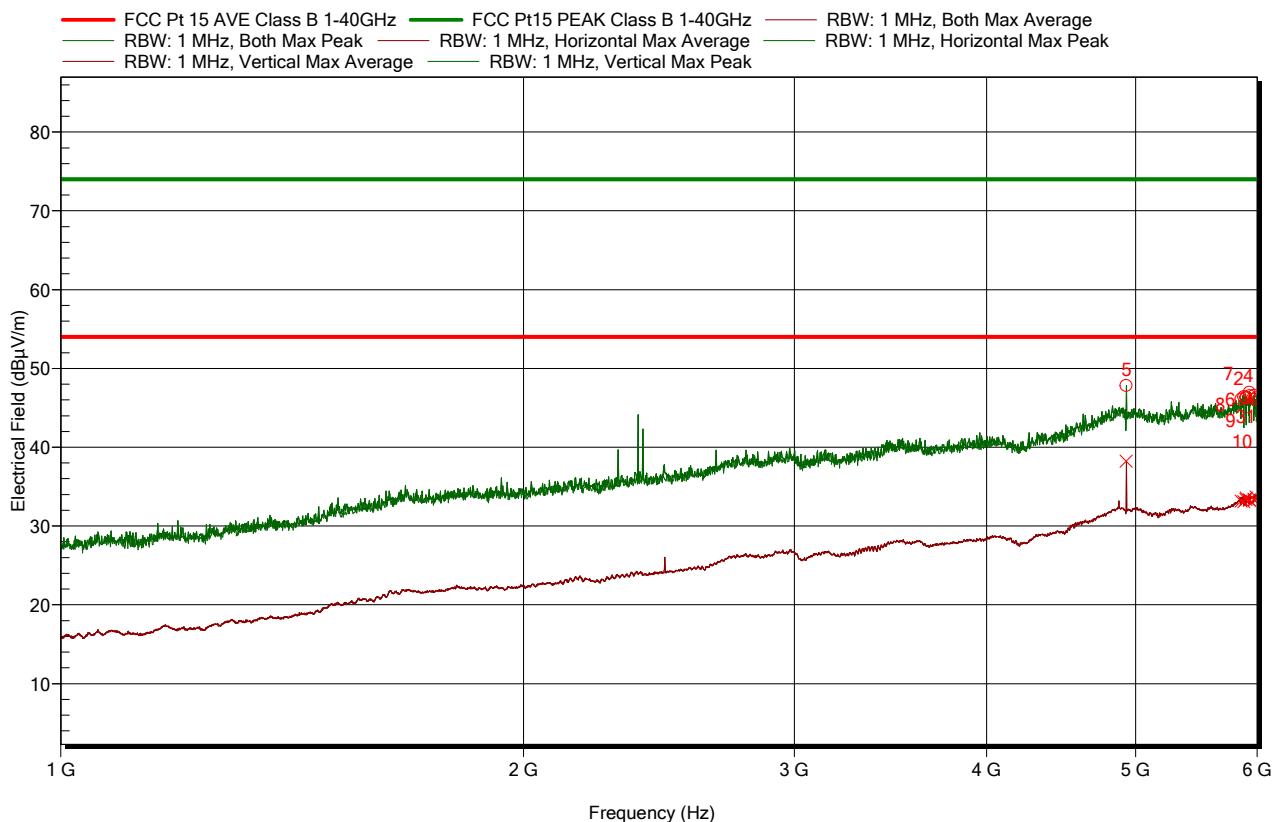



Figure 11: Electric field emissions Plot, 1GHz to 6GHz (13.56GHz)

| Frequency | Peak               | Peak Difference | Peak Correction | Peak Status | Average            | Average Difference | Average Correction | Average Status | Angle      | Height | Polarization |
|-----------|--------------------|-----------------|-----------------|-------------|--------------------|--------------------|--------------------|----------------|------------|--------|--------------|
| 5.99 GHz  | 46.29 dB $\mu$ V/m | -27.71 dB       | -6.8 dB         | Pass        | 33.68 dB $\mu$ V/m | -20.32 dB          | -6.8 dB            | Pass           | 44 Degree  | 1 m    | Horizontal   |
| 5.881 GHz | 46.38 dB $\mu$ V/m | -27.62 dB       | -6.9 dB         | Pass        | 33.07 dB $\mu$ V/m | -20.93 dB          | -6.9 dB            | Pass           | 74Degree   | 1 m    | Horizontal   |
| 5.901 GHz | 46.21 dB $\mu$ V/m | -27.79 dB       | -6.8 dB         | Pass        | 33.54 dB $\mu$ V/m | -20.46 dB          | -6.8 dB            | Pass           | 149 Degree | 1 m    | Vertical     |
| 5.97 GHz  | 46.57 dB $\mu$ V/m | -27.43 dB       | -6.8 dB         | Pass        | 33.37 dB $\mu$ V/m | -20.63 dB          | -6.8 dB            | Pass           | 164Degree  | 1 m    | Horizontal   |
| 4.929 GHz | 47.85 dB $\mu$ V/m | -26.15 dB       | -9.9 dB         | Pass        | 38.21 dB $\mu$ V/m | -15.79 dB          | -9.9 dB            | Pass           | 224Degree  | 1 m    | Vertical     |
| 5.856 GHz | 46.09 dB $\mu$ V/m | -27.91 dB       | -6.9 dB         | Pass        | 33.14 dB $\mu$ V/m | -20.86 dB          | -6.9 dB            | Pass           | 224Degree  | 1 m    | Vertical     |
| 5.899 GHz | 46.35 dB $\mu$ V/m | -27.65 dB       | -6.8 dB         | Pass        | 33.39 dB $\mu$ V/m | -20.61 dB          | -6.8 dB            | Pass           | 239Degree  | 1 m    | Horizontal   |
| 5.928 GHz | 46.96 dB $\mu$ V/m | -27.04 dB       | -6.7 dB         | Pass        | 33.29 dB $\mu$ V/m | -20.71 dB          | -6.7 dB            | Pass           | 284 Degree | 1 m    | Horizontal   |
| 5.931 GHz | 46.53 dB $\mu$ V/m | -27.47 dB       | -6.7 dB         | Pass        | 33.28 dB $\mu$ V/m | -20.72 dB          | -6.7 dB            | Pass           | 329Degree  | 1 m    | Vertical     |
| 5.975 GHz | 46.06 dB $\mu$ V/m | -27.94 dB       | -6.8 dB         | Pass        | 33.31 dB $\mu$ V/m | -20.69 dB          | -6.8 dB            | Pass           | 344Degree  | 1 m    | Horizontal   |

Table 3: Electric Field Emissions Peaks, 1GHz to 6GHz (13.56GHz)

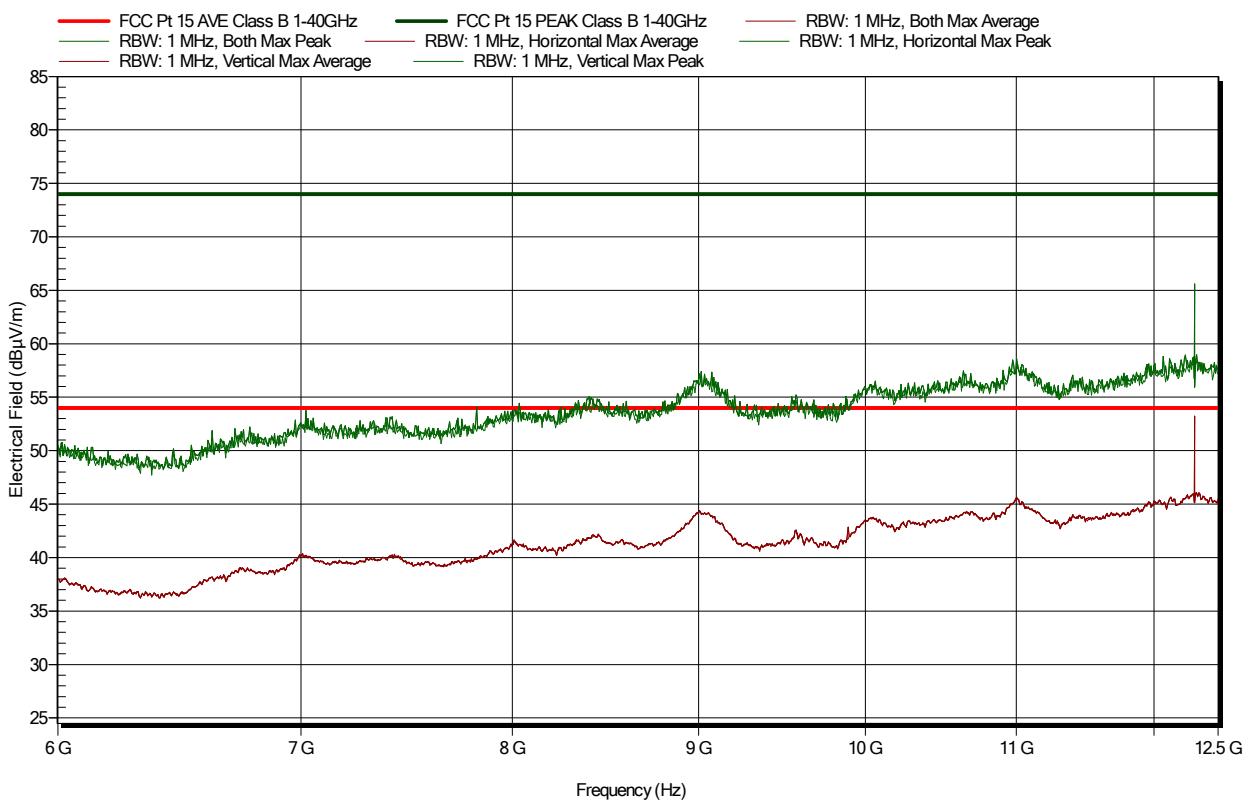



Figure 12: Electric field emissions Plot, 6GHz to 12.5GHz (13.56GHz)

| Frequency  | Peak         | Peak Difference | Peak Correction | Peak Status | Average      | Average Difference | Average Correction | Average Status | Angle     | Height | Polarization |
|------------|--------------|-----------------|-----------------|-------------|--------------|--------------------|--------------------|----------------|-----------|--------|--------------|
| 12.312 GHz | 65.58 dBμV/m | -8.42 dB        | 4.5 dB          | Pass        | 51.76 dBμV/m | -2.24 dB           | 4.5 dB             | Pass           | 49 Degree | 1 m    | Vertical     |

Table 4: Electric Field Emissions Peaks, 6GHz to 12.5GHz (13.56GHz)

#### 6.4.9 Average correction factors (1GHz to 18GHz)


The total average corrections are shown in the above table. This correction figure consists of Preamplifier gain (PG), Antenna factor (AF); Attenuator loss (AL) and Cable loss (CL).

Field strength (FS) is calculated as follows:

$$FS \text{ (dB}\mu\text{V/m)} = \text{Indicated Signal Level (dB}\mu\text{V)} - PG \text{ (dB)} + AF \text{ (dB)} + AL \text{ (dB)} + CL \text{ (dB)}$$

## Appendix A EUT Test Photos

### Conducted Emissions



**Photo 1: Conducted Emissions, Power Line**

## Radiated Emissions



**Photo 2: Radiated Emissions, close-up shot**

The cable/wire placement on the test site was setup to produce the highest radiated emissions. The above photograph(s) illustrates the setup tested.



**Photo 3: Radiated Emissions, 30MHz to 1GHz**



**Photo 4: Radiated Emissions, 1GHz to 18GHz**

## Appendix B Test Equipment List

### Conducted Emissions

| Item                                         | Serial No.    | Last Calibration Date | Calibration Interval |
|----------------------------------------------|---------------|-----------------------|----------------------|
| Rainford Screened Room<br>7.0m x 4.0m x 3.0m | Lab2          | N/A                   | N/A, Note 2          |
| Rohde & Schwarz ESHS10                       | B0916         | 20/12/2017            | 12 Months            |
| Rohde & Schwarz ESHS30<br>Measuring Receiver | B1401         | 03/02/2017            | 12 Months            |
| Rohde & Schwarz ESH3-Z5                      | B0816         | 11/05/2017            | 12 Months            |
| 10dB Attenuator / Limiter                    | B0539         | 11/10/2017            | 12 Months            |
| 6dB Attenuator                               | B0949         | 09/10/2017            | 12 Months            |
| Agilent Spectrum Analyser<br>8594E           | B0878         | 31/01/2018            | 12 Months            |
| CNE V Emission Source                        | B0855         | N/A                   | N/A                  |
| LISN Adapter LSA02                           | B0914         | N/A                   | N/A                  |
| BNC type Test cable                          | C07           | 11/10/2017            | 12 Months            |
| BNC type Test cable                          | C12           | 09/10/2017            | 12 Months            |
| N-type Test cable                            | B03           | 09/10/2017            | 12 Months            |
| Mains cable M04                              | IEC Lead 1.0m | N/A                   | N/A                  |
| Auriol Scientific Environmental<br>Monitor   | B1376         | 20-06-2017            | 12 Months            |

**Radiated Emissions Equipment**

| Item                                                                                       | Serial No. | Last Calibration Date | Calibration Interval |
|--------------------------------------------------------------------------------------------|------------|-----------------------|----------------------|
| Rainford Shielded Room<br>Ferrite/hybrid lined semi/anechoic chamber<br>8.9m x 4.8m x 5.4m | LAB1       | 24/02/2015            | 36 Months, Note 2    |
| 60A Mains Filter DS23335C                                                                  | (Fixed)    | N/A                   | N/A                  |
| R&S ESU40 Measuring Receiver                                                               | B0984      | 26/01/2018            | 1 year               |
| Chase Bilog Antenna, 30MHz - 1GHz<br>CBL6111A                                              | B0544      | 15/04/2016            | 36 Months            |
| 6dB Attenuator (3GHz)                                                                      | B1444      | 15/04/2016            | 36 Months            |
| CNE V Emission Source                                                                      | B0855      | N/A                   | N/A                  |
| Agilent Spectrum Analyser 8594E                                                            | B0878      | 31/01/2018            | 36 Months            |
| R&S HL050 Log Periodic Antenna                                                             | B0936      | 10/11/2016            | 36 Months            |
| 3dB Attenuator (18GHz)                                                                     | B1327      | 04/10/2017            | 12 Months            |
| 18GHz Bonn Preamplifier BLM0118-5A                                                         | B1333      | 05/02/2018            | 12 Months            |
| YES emission reference source CGE01C                                                       | B0996      | N/A                   | N/A                  |
| Maturo Antenna Mast                                                                        | B1405      | N/A                   | N/A                  |
| Clark Compressor (Mast)                                                                    | B0953      | N/A                   | N/A                  |
| Auriol Scientific Environmental Monitor                                                    | B1375      | 20/06/2017            | 12 Months            |
| 2m 26GHz Gigalink test cable                                                               | B0957      | 02/10/2017            | 12 Months            |
| 5m 26GHz Gigalink test cable                                                               | B0959      | 02/10/2017            | 12 Months            |
| 9m N Type Cable PL800-NMNM-9M                                                              | B1591      | 02/10/2017            | 12 Months            |