

6 Safety Human Exposure

6.1 Radio Frequency Exposure Compliance

6.1.1 Electromagnetic Fields

RESULT:**Pass****Test Specification**

Test standard	:	CFR47 FCC Part 2: Section 2.1091
		CFR47 FCC Part 1: Section 1.1310
		FCC KDB Publication 447498 v06
		FCC KDB Publication 865664 D02 v01r02
		OET Bulletin 65 (Edition 97-01)
		RSS-102 Issue 5 March 2019

FCC requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 20cm normally can be maintained between the user and the device.

MPE Calculation Method according to OET Bulletin 65Power Density: $S_{(\text{mW/cm}^2)} = PG/4\pi R^2$ or $EIRP/4\pi R^2$

Where:

 S = power density (mW/cm^2) P = power input to the antenna (mW) G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna (cm)**The nominal maximum conducted output power specified:**

802.11b/g/n: 20.00 dBm

Bluetooth Low Energy: 9.00 dBm

From the peak RF output power, the minimum mobile separation distance, $d=20$ cm, as well as the antenna gain (-0.2 dBi 802.11b/g/n and Bluetooth Low Energy), the RF power density can be calculated as below:

For 802.11b/g/n: $S_{(\text{mW/cm}^2)} = PG/4\pi R^2 = 0.019 \text{ mW/cm}^2$ For BLuetooth Low Energy: $S_{(\text{mW/cm}^2)} = PG/4\pi R^2 = 0.002 \text{ mW/cm}^2$ **Limits for Maximum Permissible Exposure (MPE) according to FCC Part 1.1310:** 1.0 mW/cm^2