

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Panic Button

MODEL NUMBER: 5F55E9

FCC ID: 2AB2Q5F55E9

IC: 10256A-5F55E9

REPORT NUMBER: 4790434809.1-1

ISSUE DATE: September 21, 2022

Prepared for

LEEDARSON LIGHTING CO., LTD. Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/27/2022	Initial Issue	Kebo Zhang
V1	09/21/2022	Updating the antenna gain	Kebo Zhang

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass	
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass	
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass	
6	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass	
Note:				

Note:

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC

PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAI	_IBRATION AND UNCERTAINTY	8
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	MEASUREMENT UNCERTAINTY	8
5.	EQI	JIPMENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	CHANNEL LIST	9
5	5.3.	MAXIMUM PEAK OUTPUT POWER	9
5	5.4.	TEST CHANNEL CONFIGURATION	9
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	5.7.	DESCRIPTION OF TEST SETUP	11
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED1	12
7.	AN	TENNA PORT TEST RESULTS1	14
7	.1.	ON TIME AND DUTY CYCLE	14
7	.2.	6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	15
7	.3.	CONDUCTED OUTPUT POWER	17
7	.4.	POWER SPECTRAL DENSITY	18
7	.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	20
8.	RAI	DIATED TEST RESULTS	22
8	8. <i>1.</i> 8.1.	SPURIOUS EMISSIONS (1 GHz ~ 10 GHz)	
8	8.2. 8.2.		32 32
8	8. <i>3.</i> 8.3.	SPURIOUS EMISSIONS BELOW 30 MHz	
8	8.1.	ANTENNA REQUIREMENTS	37
9.	App	pendix	38
9			
	9.1.	1. Test Result	38
~	9.1.		
9	.2.	Appendix B: Occupied Channel Bandwidth	39

	Page 5 of 47
9.2.1.Test Result9.2.1.Test Graphs	
9.3. Appendix C: Maximum PEAK conducted output power 9.3.1. Test Result	
9.4. Appendix D: Maximum power spectral density9.4.1. Test Result9.4.1. Test Graphs	41
Appendix E: Conducted Spurious Emission9.4.2.Test Result9.4.3.Test Graphs	42
 9.5. Appendix F: Duty Cycle 9.5.1. Test Result 9.5.2. Test Graphs 	46

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	LEEDARSON LIGHTING CO., LTD.
Address:	Xingda Road, Xingtai Industrial Zone, Changtai County,
	Zhangzhou, Fujian, China
Manufacturer Information	

Company Name:LEEDARSON LIGHTING CO., LTD.Address:Xingda Road, Xingtai Industrial Zone, Changtai County,
Zhangzhou, Fujian, China

EUT Information

EUT Name:	Panic Button
Model:	5F55E9
Brand:	ring
Sample Received Date:	June 13, 2022
Sample Status:	Normal
Sample ID:	5027349
Date of Tested:	June 14~June 27, 2022

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:

Kebo. shong.

Kebo Zhang Senior Project Engineer

Approved By:

ephentin

Stephen Guo Laboratory Manager

Check By:

an

Denny Huang Senior Project Engineer

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation Certificate	 Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Panic Button
Model	5F55E9
Battery	DC 3 V
Technology	DSSS
Transmit Frequency Range	912 MHz ~ 920 MHz
Modulation	OQPSK
Bit Rate	100 kbps

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	912	1	920

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
OQPSK	912 - 920	2	14.13	15.53

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
OQPSK	CH 0(Low Channel), CH 1(High Channel)	912 MHz, 920 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter					
Test Software Version sscom5.13.1					
	Transmit	Test Software Setting Value			
Test Mode	Antenna Number	CH 0 CH 1			
OQPSK	1	200(raw)	200(raw)		

Note: raw is the test software setting description provide by customer.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	912 - 920	IFA Antenna	1.4

Test Mode	Transmit and Receive Mode	Description	
OQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.	

Note: 1. The value of the antenna gain was declared by customer.

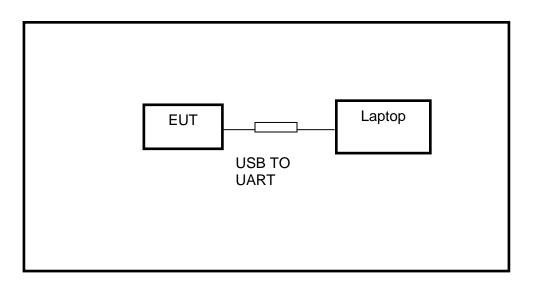
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	Lenovo	TP00094A	/
2	USB TO UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/		/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

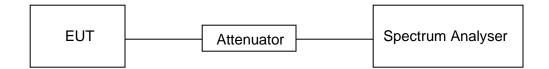
	Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3	101961	Oct.30, 2021	Oct.29, 2022	
Two-Line V- Network	R&S	ENV216	101983	Oct.30, 2021	Oct.29, 2022	
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.30, 2021	Oct.29, 2022	
	Software					
[Description		Manufacturer	Name	Version	
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1	

		Radiated	l Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.31, 2021	Oct.30, 2022
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Oct.30, 2021	Oct.29, 2022
Signal Analyzer	R&S	FSV40	101118	Oct.30, 2021	Oct.29, 2022
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Oct.30, 2021	Oct.29, 2022
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Oct.30, 2021	Oct.29, 2022

7. ANTENNA PORT TEST RESULTS 7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix F.

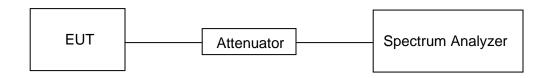
7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	902-928				
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	902-928		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

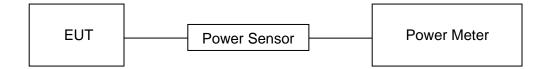
Temperature	22.8 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix A & B.

7.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


	CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Ran (MHz)				Frequency Range (MHz)
	CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conducted Output Power	1 watt or 30 dBm	902-928

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix C.

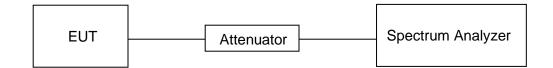
7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency F (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	Shall not be greater than 8 dBm in any 3 kHz band	902-928	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	$3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5 Spurious Emissions		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

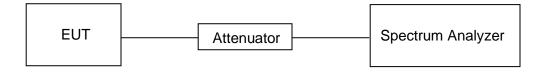
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

1.50.40	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix E.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range	Field Strength Limit	Field Strength Limit		
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m		
(11112)		Quasi-l	Peak	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz							
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)							
0.009-0.490	0.009-0.490 2400/F(kHz) 300						
0.490-1.705	24000/F(kHz)	30					
1.705-30.0 30 30							

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz						
Frequency	Measurement distance (m)					
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300				
490 - 1705 kHz	63.7/F (F in kHz)	30				
1.705 - 30 MHz	0.08	30				

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

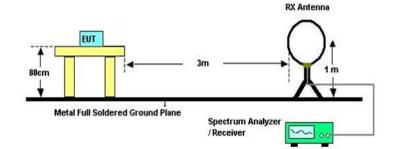
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.8 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2855 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0087 UL Verification Services

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

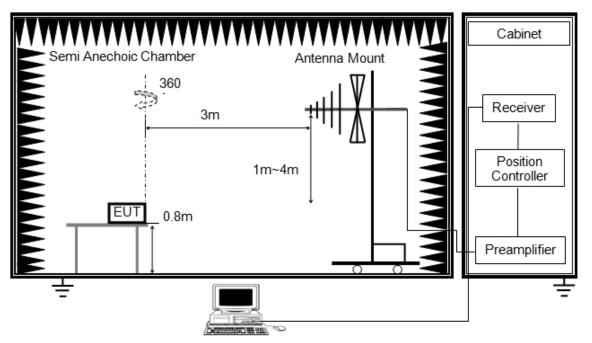
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

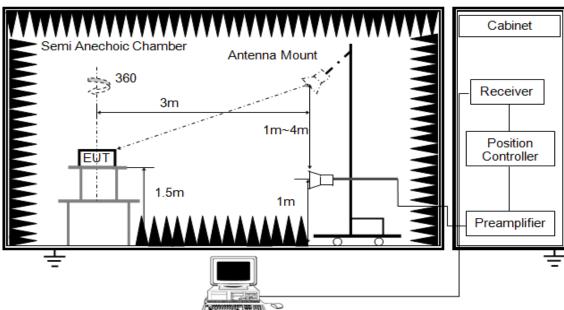
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

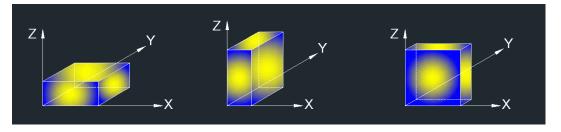
The setting of the spectrum analyser

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

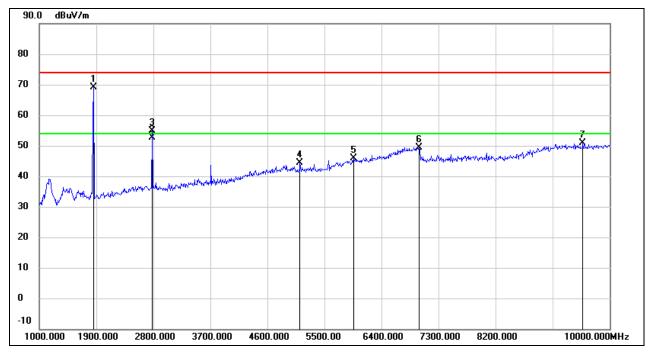
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: For the radiated restricted bandedge, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

TEST ENVIRONMENT


Temperature	24.3 °C	Relative Humidity	61 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

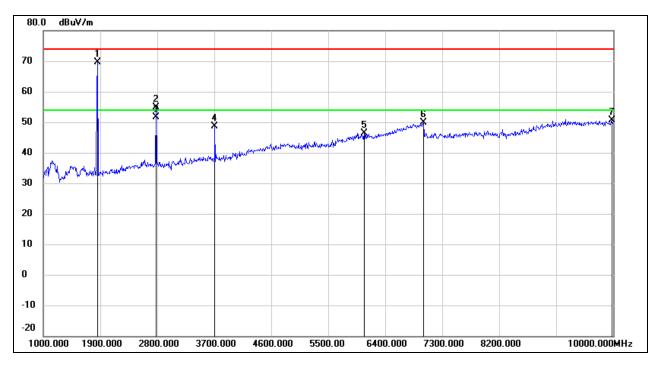
RESULTS

8.1. SPURIOUS EMISSIONS (1 GHz ~ 10 GHz)

8.1.1. OQPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1855.000	80.54	-11.45	69.09	/	/	peak
2	2782.000	60.21	-7.56	52.65	54.00	-1.35	AVG
3	2782.000	62.54	-7.56	54.98	74.00	-19.02	peak
4	5113.000	44.22	0.08	44.30	74.00	-29.70	peak
5	5959.000	43.78	2.21	45.99	74.00	-28.01	peak
6	6994.000	43.59	5.81	49.40	74.00	-24.60	peak
7	9577.000	40.75	10.24	50.99	74.00	-23.01	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

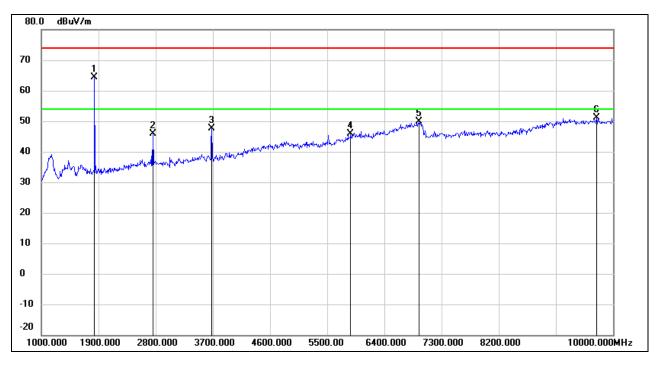
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1855.000	81.09	-11.45	69.64	/	/	peak
2	2782.000	62.36	-7.56	54.80	74.00	-19.20	peak
3	2782.000	59.24	-7.56	51.68	54.00	-2.32	AVG
4	3709.000	53.75	-5.20	48.55	74.00	-25.45	peak
5	6067.000	43.99	2.49	46.48	74.00	-27.52	peak
6	7003.000	43.99	5.83	49.82	74.00	-24.18	peak
7	9982.000	39.65	11.00	50.65	74.00	-23.35	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

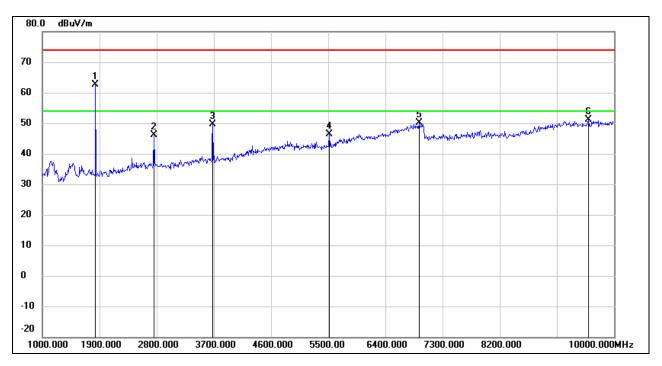
5. For transmit duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1837.000	75.85	-11.50	64.35	/	/	peak
2	2755.000	53.47	-7.63	45.84	74.00	-28.16	peak
3	3682.000	53.01	-5.28	47.73	74.00	-26.27	peak
4	5869.000	44.08	1.91	45.99	74.00	-28.01	peak
5	6949.000	44.19	5.59	49.78	74.00	-24.22	peak
6	9739.000	40.63	10.55	51.18	74.00	-22.82	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

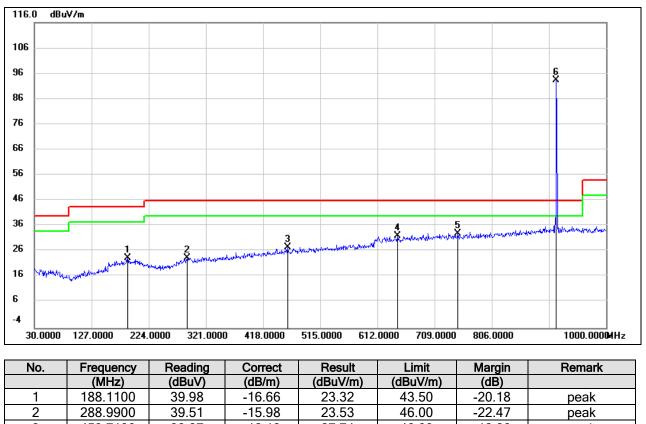
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1837.000	74.09	-11.50	62.59	/	/	peak
2	2755.000	53.68	-7.63	46.05	74.00	-27.95	peak
3	3682.000	55.01	-5.28	49.73	74.00	-24.27	peak
4	5518.000	45.77	0.73	46.50	74.00	-27.50	peak
5	6931.000	44.57	5.51	50.08	74.00	-23.92	peak
6	9595.000	40.73	10.28	51.01	74.00	-22.99	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

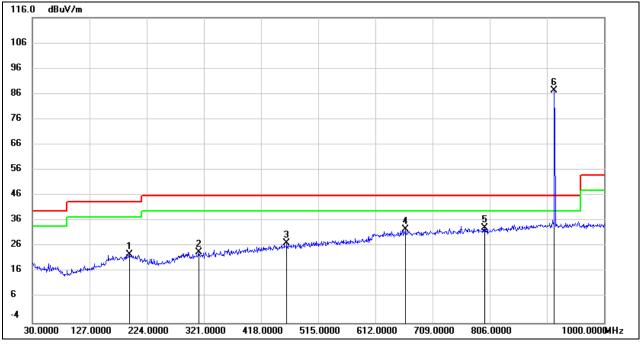
3. Peak: Peak detector.


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

8.2. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.2.1. OQPSK MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


3	459.7100	39.87	-12.13	27.74	46.00	-18.26	peak
4	645.9500	41.07	-9.05	32.02	46.00	-13.98	peak
5	747.8000	40.99	-7.92	33.07	46.00	-12.93	peak
6	911.6100	99.14	-4.85	94.29	/	/	Fundamental

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	194.9000	39.24	-16.49	22.75	43.50	-20.75	QP
2	312.2700	38.86	-15.01	23.85	46.00	-22.15	QP
3	461.6500	39.50	-12.11	27.39	46.00	-18.61	QP
4	662.4400	41.46	-8.68	32.78	46.00	-13.22	QP
5	797.2700	40.80	-7.35	33.45	46.00	-12.55	QP
6	911.6100	95.06	-4.85	90.21	/	/	Fundamental

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

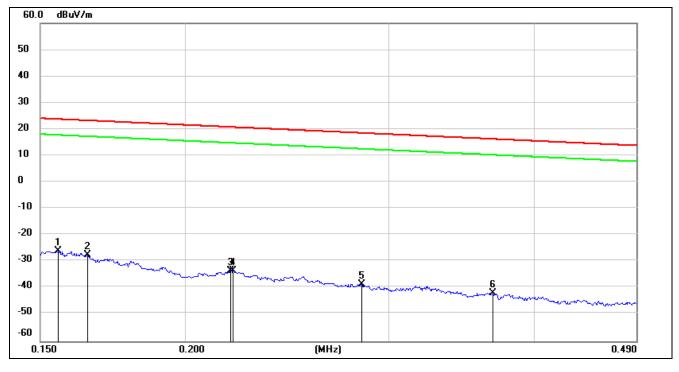
8.3. SPURIOUS EMISSIONS BELOW 30 MHz

8.3.1. OQPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	76.22	-101.40	-25.18	47.6	-76.68	-3.90	-72.78	peak
2	0.0131	72.47	-101.38	-28.91	45.25	-80.41	-6.25	-74.16	peak
3	0.0188	70.14	-101.35	-31.21	42.12	-82.71	-9.38	-73.33	peak
4	0.0279	68.17	-101.38	-33.21	38.69	-84.71	-12.81	-71.90	peak
5	0.0427	62.64	-101.45	-38.81	34.99	-90.31	-16.51	-73.80	peak
6	0.0693	60.77	-101.56	-40.79	30.79	-92.29	-20.71	-71.58	peak

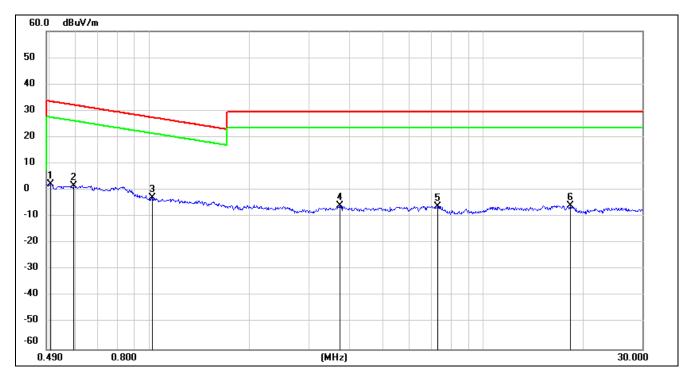

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	23.77	-77.38	-27.73	-49.65	peak
2	0.1647	74.26	-101.66	-27.4	23.27	-78.90	-28.23	-50.67	peak
3	0.2190	68.27	-101.75	-33.48	20.79	-84.98	-30.71	-54.27	peak
4	0.2200	68.24	-101.75	-33.51	20.75	-85.01	-30.75	-54.26	peak
5	0.2837	63.22	-101.83	-38.61	18.54	-90.11	-32.96	-57.15	peak
6	0.3684	59.98	-101.93	-41.95	16.27	-93.45	-35.23	-58.22	peak


Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	64.43	-62.07	2.36	33.56	-49.14	-17.94	-31.20	peak
2	0.5917	63.74	-62.08	1.66	32.16	-49.84	-19.34	-30.50	peak
3	1.0212	59.49	-62.25	-2.76	27.42	-54.26	-24.08	-30.18	peak
4	3.7100	55.70	-61.41	-5.71	29.54	-57.21	-21.96	-35.25	peak
5	7.3361	55.08	-61.17	-6.09	29.54	-57.59	-21.96	-35.63	peak
6	18.2545	54.93	-60.90	-5.97	29.54	-57.47	-21.96	-35.51	peak

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

8.1. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

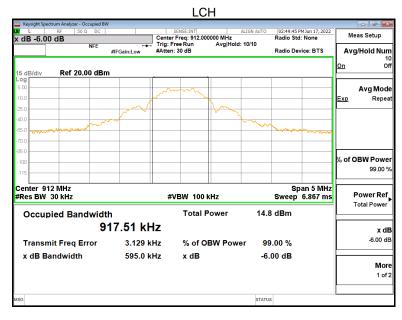
9.1. Appendix A: DTS Bandwidth 9.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
OQPSK	Ant1	Low	0.6097	≥0.5	PASS
OQFSK	Anti	High	0.5766	≥0.5	PASS

9.1.2. Test Graphs

LCH

HCH


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.2. Appendix B: Occupied Channel Bandwidth 9.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Verdict
OQPSK	A nt1	Low	0.918	PASS
UQF3K	Ant1	High	0.917	PASS

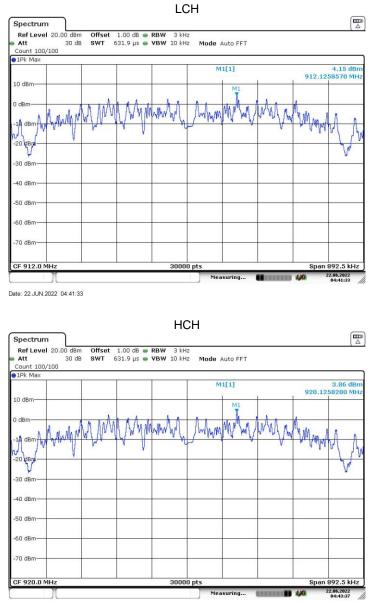
9.2.1. Test Graphs

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

НСН

9.3. Appendix C: Maximum PEAK conducted output power 9.3.1. Test Result

Test Mode	Antenna	Channel	Result [dBm]	Limit[dBm]	Verdict
OODEK	A set 1	Low	14.13	< 30	PASS
OQPSK	Ant1	High	13.81	< 30	PASS



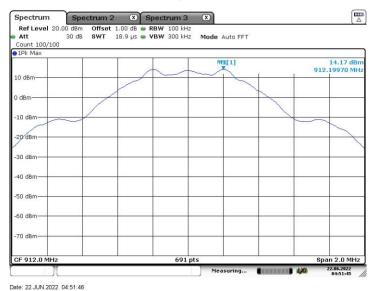
9.4. Appendix D: Maximum power spectral density

9.4.1. Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
OQPSK	A pt1	Low	4.15	<=8	PASS
OQPSK	Ant1	High	3.86	<=8	PASS

9.4.1. Test Graphs

Date: 22.JUN.2022 04:43:37


Appendix E: Conducted Spurious Emission 9.4.2. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Verdict
OQPSK	Ant1	Low	See the below graphs	PASS
UQF3K	Anti	High	See the below graphs	PASS

9.4.3. Test Graphs

Low CH, Reference

Low CH, Bandedge

1Pk Max					~ ~ ~ ~					
					M	1[1]				58 dBn 30 MH
LO dBm				c		-		91	12.00	JU MIH
. In										
dBm	-D1 -5.830 d	200)		
10 dBm—	D1 -3.830 u	DITI								
20 dBm				-					\downarrow	_
30 dBm—										
10 10-1										
40 dBm									1	1
50 dBm—	-	-						MI	r	74
60 dBm	plan wat	barman	mulum	-	4 marine will	din forman	2 James	M1 Janowy		
			1000							
70 dBm-	-		-		-			-	-	

Date: 22.JUN.2022 04:52:17

Low CH, Spurious

Spectrum Ref Level	10 20		Spectrum 3	×		
Att	20.00 asi 30 d		VBW 300 kHz	Mode Auto Sw	een	
Count 10/10				House Hate Sh	cop	
1Pk Max			5.0 M			
M1				M2[1]		-45.06 dBn
10 dBm			-	11/1 / 11 / 1		1.824430 GH
LO UBIII				M1[1]		12.55 dBn
) dBm						912.180 MH
	1 -5.830	dDes				
-10 dBm	1 -3.830	ubin				
20 dBm						
-30 dBm						
40 dBm	M2		-			
FO dow	T					
-50 dBm-				المعادية المعادية	and a	
- had and a full		فسلم ومعاهدته والمراجل والمراجل ورسم وممال	and the first have been all the first states of the second	Contraction of the Contract of the Contract	and the street all a set	In surface and the second s
and become a sub-			CT LITTO MUSICAL LITT		a strengthered	
-70 dBm			-		_	
Start 30.0 N	IHz		30000 pt	ts	10	Stop 10.0 GHz
larker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1 M2	1	912.18 MHz 1.82443 GHz	12.55 dBm -45.06 dBm			
1116	1	1.02 TTJ GH2	13.00 ubin	Measuring		22.06.2022

Date: 22.JUN.2022 04:52:45

High CH, Reference

Ref Level 20.		1.00 dB 🖷 RBW			
Att	30 dB SWT	18.9 µs 👄 VBW	300 kHz Mode Ar	uto FFT	
Count 100/100					
APK MOA			(vera)	[1]	13.67 dBn
10 dBm				1	920.20000 MH
D dBm					
-10 dBm	$ \rightarrow $				
20 12-					
-20 dBm					1
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm		a			
oo dom					
-70 dBm					
CF 920.0 MHz	22.0		691 pts		Span 2.0 MHz

Date: 22.JUN.2022 04:50:09

High CH, Bandedge

			M1[1]			-53.01 dBm 928.000 MHz		
l0 dBm								
) dBm								
10 dBm	-6.330 dBm							
20 dBm								
30 dBm								
40 dBm	ц							
50 dem	When			_				
60 dBm	highland	anonim	monundendersh	hanaverserves	vormenteda	millionidiateriteriteri		

Date: 22.JUN.2022 04:50:39

High CH, Spurious

Spect			Spectrum 2 🛛 🗴	Spectrum 3	×		
Ref Lo Att Count		0.00 d 30		 RBW 100 kHz VBW 300 kHz 	Mode Auto Sv	weep	
1Pk M	ЭX			20 X			
10 dBm	MI				M1[1]		12.16 dBr 920.150 MH -44.84 dBr
0 dBm-	_			_			1.840386 GH
-10 dBm	D	6.33	0 dBm				
-20 dBm				-			
-30 dBm				-		_	
40 dBm		K	12 Y				
-50 dBm		70.000	and the second	ومراجع والمتعالم والمعالم	الماليوس وماليون ومالي	and the second second	
and the stands		agastites.				The state of the s	
-70 dBm	1			-			
Start 3	0.0 MI	Hz		30000 p	ots		Stop 10.0 GHz
1arker			100707100-01270 - 11	1 2.9 million (1993)		No. 5 Control State	2 March 200 March 200
Type M1	Ref	Trc 1	X-value 920.15 MHz	Y-value 12.16 dBm	Function	Funct	ion Result
M2		1	1.840386 GHz	-44.84 dBm			
		1			Measuring.		22.06.2022 94:51:08

Date: 22.JUN.2022 04:51:08

9.5. Appendix F: Duty Cycle 9.5.1. Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
OQPSK	4.4928	4.6957	0.9568	95.68	0.19	0.22	0.5
OQPSK	4.4928	4.6957	0.9568	95.68	0.19	0.22	0.5

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

9.5.2. Test Graphs

Spect	rum	Sp	ectrum 4 🛛 🗴				
	evel :	20.00 dBm		IB 🖷 RBW 10 MHz			
SGL		30 de	8 🖷 SWT 20 m	is 👄 VBW 10 MHz			
1Pk Cl	rw						
_			M1	003	3 D3[1]		-0.08 d
10 dBm					M1[1]		4.6957 m 12.90 dBr
					WILTI		5.6232 m
0 dBm-							
-10 dBm	1 <u> </u>						
-20 dBm) 						
-30 dBm	n		W	V		W	L
-40 dBm	1						
-50 dBm	1						
-60 dBrr) (
-70 dBm							
CF 912	.0 MH	z	I	691 pt	s		2.0 ms/
Marker							
Туре	Ref		X-value	Y-value	Function	Function	n Result
M1 D2	M1	1	5.6232 ms 4.4928 ms	12.90 dBm -0.03 dB			
D3	M1	1	4.6957 ms	-0.08 dB			

Date: 20. JUN. 2022 09: 28: 36

Spectrum	r	Spectrum 4 🛛 🗴	1			
Ref Level	20.00	dBm Offset 13.49 c	B 🖷 RBW 10 MHz			
Att	30) dB 👄 SWT 20 m	is 👄 VBW 10 MHz			
SGL						
1Pk Clrw				200 - P. 181		
		MI	02	D3[1]		-10.60 d
10 dBm-						4.6957 m
			þß	M1[1]		12.47 dBr 5.5942 m
0 dBm						0100121
-10 dBm						
-10 0011						2
-20 dBm						
-30 dBm		~	64 102			~
10.10						
-40 dBm						
-50 dBm						
-60 dBm			-			
-70 dBm						
CF 920.0 N	Hz		691 pts			2.0 ms/
Marker	1 - 1	¥ 1				o 11
Type Ret M1	Trc 1	X-value 5.5942 ms	Y-value 12.47 dBm	Function	Function	1 Result
D2 M		4.4928 ms	0.00 dB			
D3 M		4.6957 ms	-10.60 dB			
	21			Ready	-	20.06.2022 09:29:11

.......

Date: 20. JUN. 2022 09:29:11

END OF REPORT