

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Outdoor contact sensor

MODEL NUMBER: 5F49E9

FCC ID: 2AB2Q5F49E9

IC: 10256A-5F49E9

REPORT NUMBER: 4790026122.1-2

ISSUE DATE: September 02, 2021

Prepared for

LEEDARSON LIGHTING CO., LTD.
Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

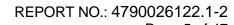
Page 2 of 47

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	09/02/2021	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass	
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass	
3	3 Power Spectral Density FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)		Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass	
6	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass	

Note:


^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	A	TTESTATION OF TEST RESULTS	6
2.	T	EST METHODOLOGY	7
3.	F	ACILITIES AND ACCREDITATION	7
4.	С	ALIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	E	QUIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	CHANNEL LIST	9
	5.3.	MAXIMUM PEAK OUTPUT POWER	9
	5.4.	TEST CHANNEL CONFIGURATION	9
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
	5.7.	DESCRIPTION OF TEST SETUP	11
6.	M	IEASURING INSTRUMENT AND SOFTWARE USED	12
7.	Α	NTENNA PORT TEST RESULTS	14
	7.1.	ON TIME AND DUTY CYCLE	14
	7.2.	6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	15
	7.3.	CONDUCTED OUTPUT POWER	17
	7.4.	POWER SPECTRAL DENSITY	18
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	20
8.	R	ADIATED TEST RESULTS	22
	8.1.		
		.1.1. OQPSK MODE	
	8.2. 8	SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)	32 32
	8.3.		
		.3.1. OQPSK MODE	
9.	Α	NTENNA REQUIREMENTS	37
10		Appendix	38
	10.1	7-7	
		0.1.1. Test Result 0.1.2. Test Graphs	
	1 (0.1.2. 1000 OTAPHO	

Page 5 of 47 10.2.1. 10.2.1. Appendix C: Maximum PEAK conducted output power......40 10.3. 10.3.1. Test Result......40 10.4. Appendix D: Maximum power spectral density41 10.4.1. Test Result......41 10.4.1. Test Graphs41 Appendix E: Conducted Spurious Emission42 10.5. 10.5.1. Test Result.......42 10.5.2. 10.6. Appendix F: Duty Cycle46 Test Result.......46 10.6.1. Test Graphs47 10.6.2.

REPORT NO.: 4790026122.1-2 Page 6 of 47

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: LEEDARSON LIGHTING CO., LTD.

Address: Xingda Road, Xingtai Industrial Zone, Changtai County,

Zhangzhou, Fujian, China

Manufacturer Information

Company Name: Ring LLC

Address: 1523 26th Street, Santa Monica CA 90404, USA

EUT Information

EUT Name: Outdoor contact sensor

Model: 5F49E9 Brand: ring

Sample Received Date: July 15, 2021

Sample Status: Normal Sample ID: 4072704

Date of Tested: July 15, 2021~ August 30, 2021

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:	Check By:
i icpaica by.	Official Dy.

Kebo Zhang

Project Engineer

Kebo. Ther

Shawn Wen

Laboratory Leader

Shemy les

Approved By:

Stephen Guo

Laboratory Manager

REPORT NO.: 4790026122.1-2 Page 7 of 47

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	101 1 (0 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	, , , , , , , , , , , , , , , , , , , ,
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790026122.1-2 Page 8 of 47

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Outdoor contact sensor
Model	5F49E9
Battery	1.5 Vdc X 2
Technology	DSSS
Transmit Frequency Range	912 MHz ~ 920 MHz
Modulation	OQPSK
Bit Rate	100 kbps

5.2. CHANNEL LIST

Channel Frequency (MHz)		Channel	Frequency (MHz)
0 912		1	920

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Test Mode Frequency (MHz)		Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
OQPSK	912 - 920	2	16.05	17.72

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
OQPSK	CH 0(Low Channel), CH 1(High Channel)	912 MHz, 920 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter				
Test Softwar	e Version	sscom5.13.1		
Took Mode	Transmit	Test Software Setting Value		
Test Mode	Antenna Number	CH 0	CH 1	
OQPSK	1	180 (raw)	180(raw)	

Note: raw is the test software setting description provide by customer

Page 10 of 47

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	912 - 920	Built-in	1.67

Test Mode	Transmit and Receive Mode	Description
OQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: 1. The value of the antenna gain was declared by customer.

REPORT NO.: 4790026122.1-2 Page 11 of 47

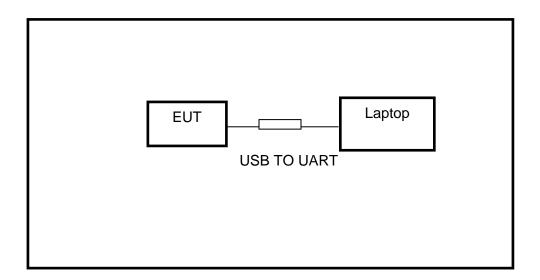
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	TP00094A	/
2	UART	/	/	/

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in an engineering mode though the laptop before the testing.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Nov. 12, 2020	Nov. 11, 2021
	Software				
Description			Manufacturer	Name	Version
Test Software	Test Software for Conducted Emissions			EZ-EMC	Ver. UL-3A1

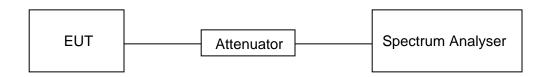
Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	April 24, 2020	April 23, 2023	
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021	
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021	
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021	
Horn Antenna	Schwarzbeck	BBHA9170	#697	July 20, 2021	July 19, 2024	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021	
Loop antenna	Schwarzbeck	1519B	80000	Jan.17, 2019	Jan.17,2022	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021	
	Software					
Description			Manufacturer	Name	Version	
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1	

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

Page 14 of 47

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix F.

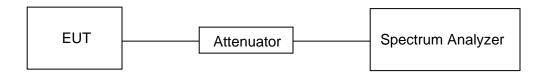
REPORT NO.: 4790026122.1-2 Page 15 of 47

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit Frequency Rang (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5		

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 x RBW For 99 % Occupied Bandwidth: ≥3 x RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 16 of 47

TEST ENVIRONMENT

Temperature	25.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

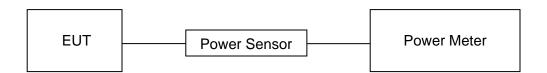
RESULTS

Please refer to appendix A & B.

Page 17 of 47

7.3. CONDUCTED OUTPUT POWER

LIMITS


	CFR 47 FCC Part15 (15.24 ISED RSS-247 IS		
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conducted Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix C.

Page 18 of 47

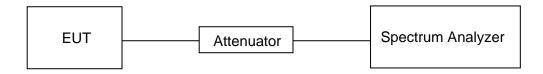
7.4. POWER SPECTRAL DENSITY

LIMITS

	CFR 47 FCC Part15 (ISED RSS-2	(15.247) Subpart C 247 ISSUE 2	
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix D.

REPORT NO.: 4790026122.1-2 Page 20 of 47

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

	CFR 47 FCC Part15 ISED RSS-	(15.247) Subpart C 247 ISSUE 2
Section	Test Item	Limit
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

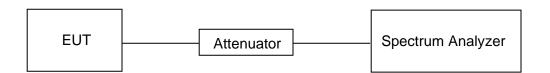
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

Onlinge the settings i	or emission level measurement.
Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix E.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radia	ated outside of the specified frequence	cy bands above 30) MHz
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
(1411 12)	(av/m) at o m	Quasi-	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	E00	Peak	Average
Above 1000	500	74	54

FCC Emission	ons radiated outside of the specified fr	equency bands below 30 MHz
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

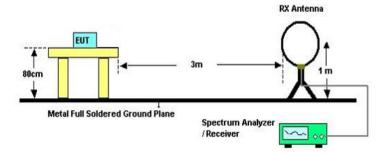
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
1.125 - 4.128	167.72 - 173.2	14.47 - 14.5
1.17725 - 4.17775	240 – 285	15.35 - 16.2
1.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
3.215 - 6.218	608 - 614	23.6 - 24.0
3.26775 - 6.26825	980 - 1427	31.2 - 31.8
3.31175 - 6.31225	1435 - 1626.5	38.43 - 36.5
3.291 - 8.294	1845.5 - 1848.5	Above 38.6
3.362 - 8.366	1880 - 1710	
3.37625 - 8.38675	1718.8 - 1722.2	
3.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
2.57675 - 12.57725	2655 - 2900	
3.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
6.69475 - 16.69525	3345.8 - 3358	
6.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
87.5 - 38.25	5350 - 5480	
73 - 74.6	7250 - 7750	
4.8 - 75.2	8025 - 8500	
08 – 138		
	ds listed in table 7 and in bands above 38.6	

300 Selles 01 R33s.

FCC Restricted bands of operation refer to FCC §15.205 (a):

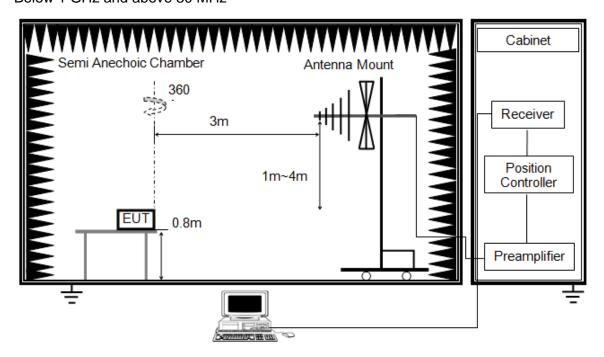
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

Page 24 of 47

TEST SETUP AND PROCEDURE

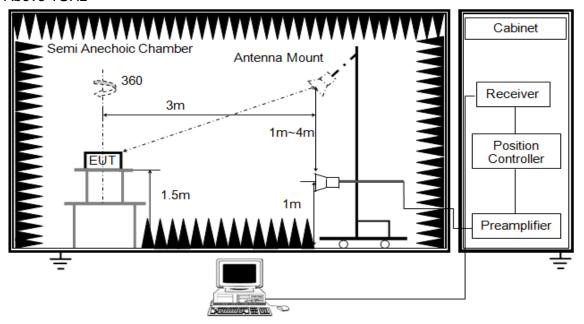
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

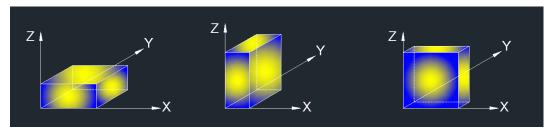
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1GHz


The setting of the spectrum analyser

RBW	1 MHz
1 / B / / /	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

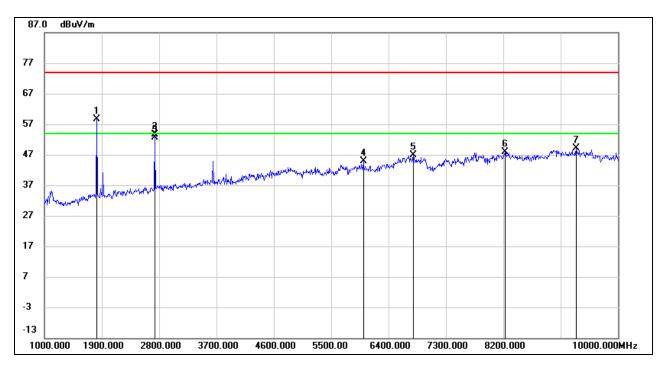
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

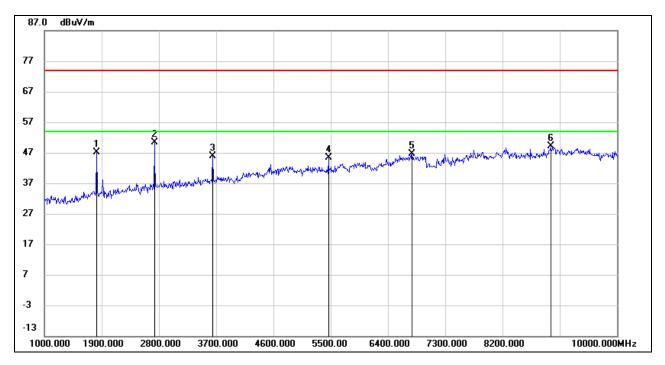
Temperature	24.2 °C	Relative Humidity	46 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V


RESULTS

8.1. SPURIOUS EMISSIONS (1 GHz ~ 10 GHz)

8.1.1. OQPSK MODE

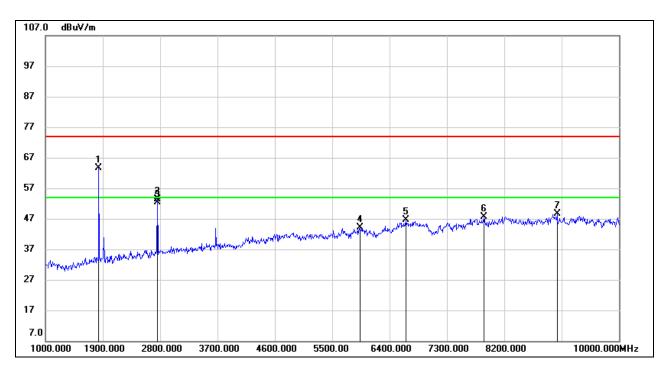
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1824.100	68.76	-10.06	58.70	/	/	peak
2	2736.100	60.70	-6.97	53.73	74.00	-20.27	peak
3	2736.100	59.57	-6.97	52.60	54.00	-1.40	AVG
4	6010.600	41.55	3.30	44.85	74.00	-29.15	peak
5	6789.400	41.36	5.57	46.93	74.00	-27.07	peak
6	8227.000	38.68	9.25	47.93	74.00	-26.07	peak
7	9349.600	38.96	10.05	49.01	74.00	-24.99	peak

- 2. Peak: Peak detector.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 6.*-indicates frequency is out of the restricted bands and the limit is referring to 15.247 (d) and RSS-247 clause 5.5. We had already performed the conducted non-restricted bands test, please refer to clause 7.5.

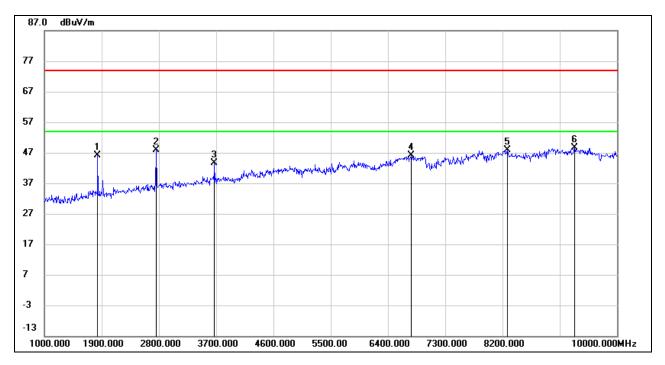
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1824.100	57.17	-10.06	47.11	74.00	-26.89	peak
2	2736.100	57.30	-6.97	50.33	74.00	-23.67	peak
3	3648.400	49.86	-3.97	45.89	74.00	-28.11	peak
4	5472.700	43.36	2.09	45.45	74.00	-28.55	peak
5	6784.300	41.13	5.56	46.69	74.00	-27.31	peak
6	8963.200	38.82	10.24	49.06	74.00	-24.94	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

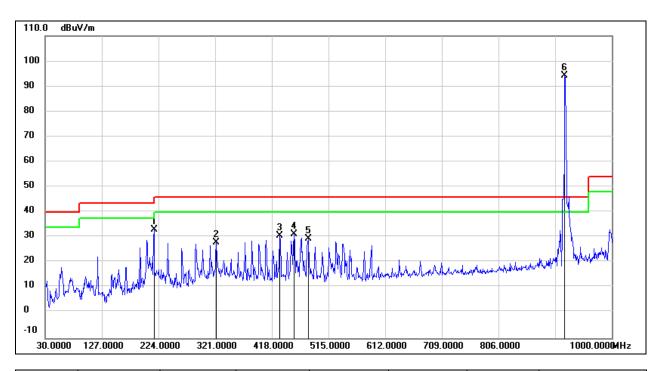


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1840.000	73.72	-10.08	63.64	/	/	peak
2	2760.100	60.08	-6.81	53.27	74.00	-20.73	peak
3	2760.100	59.12	-6.81	52.31	54.00	-1.69	AVG
4	5938.000	41.18	3.06	44.24	74.00	-29.76	peak
5	6667.300	41.09	5.53	46.62	74.00	-27.38	peak
6	7885.900	39.76	7.99	47.75	74.00	-26.25	peak
7	9028.600	38.09	10.44	48.53	74.00	-25.47	peak

- 2. Peak: Peak detector.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 6.*-indicates frequency is out of the restricted bands and the limit is referring to 15.247 (d) and RSS-247 clause 5.5. We had already performed the conducted non-restricted bands test, please refer to clause 7.5.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

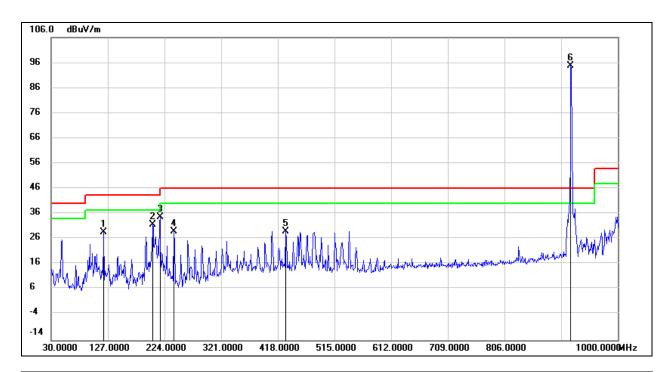
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1840.000	56.16	-10.08	46.08	74.00	-27.92	peak
2	2760.100	54.71	-6.81	47.90	74.00	-26.10	peak
3	3680.200	47.47	-3.82	43.65	74.00	-30.35	peak
4	6774.100	40.60	5.56	46.16	74.00	-27.84	peak
5	8276.500	38.91	9.06	47.97	74.00	-26.03	peak
6	9335.500	38.73	9.98	48.71	74.00	-25.29	peak


- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

8.2. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.2.1. OQPSK MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	216.2400	50.84	-17.84	33.00	46.00	-13.00	peak
2	322.9400	42.68	-14.75	27.93	46.00	-18.07	peak
3	431.5800	43.35	-12.70	30.65	46.00	-15.35	peak
4	455.8300	43.44	-12.27	31.17	46.00	-14.83	peak
5	480.0800	41.11	-11.79	29.32	46.00	-16.68	peak
6	919.4900	98.91	-4.76	94.15	/	/	fundamental

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

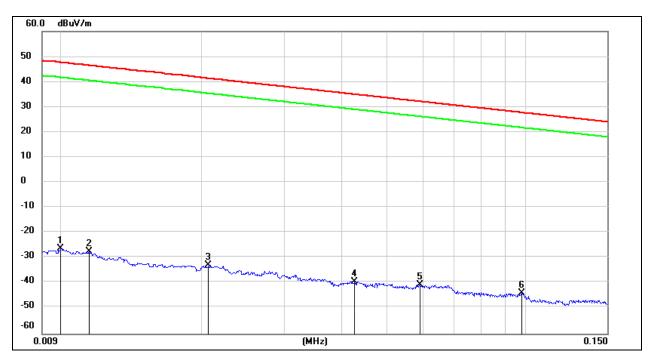
SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	120.2100	48.65	-19.85	28.80	43.50	-14.70	peak
2	203.6300	48.33	-16.70	31.63	43.50	-11.87	peak
3	216.2400	52.72	-17.84	34.88	46.00	-11.12	peak
4	240.4900	48.30	-19.17	29.13	46.00	-16.87	peak
5	431.5800	41.83	-12.70	29.13	46.00	-16.87	peak
6	919.4900	99.57	-4.76	94.81	/	/	fundamental

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

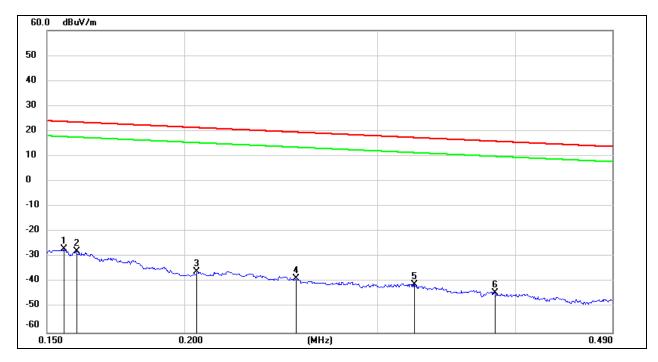


8.3. SPURIOUS EMISSIONS BELOW 30 MHz

8.3.1. OQPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

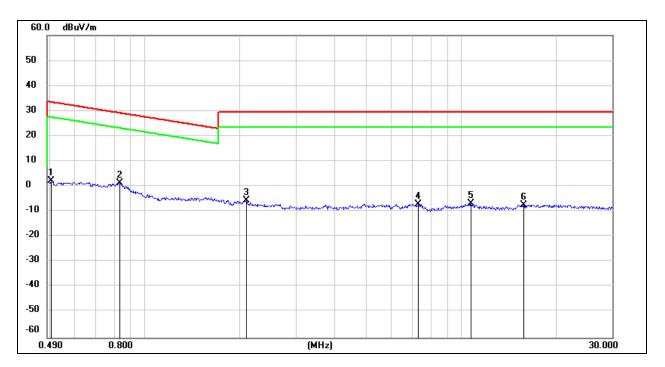
9 kHz~ 150 kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-77.68	-3.90	-73.78	peak
2	0.0114	73.88	-101.40	-27.52	46.46	-79.02	-5.04	-73.98	peak
3	0.0206	68.42	-101.35	-32.93	41.32	-84.43	-10.18	-74.25	peak
4	0.0427	62.14	-101.45	-39.31	34.99	-90.81	-16.51	-74.30	peak
5	0.0589	60.81	-101.52	-40.71	32.2	-92.21	-19.30	-72.91	peak
6	0.0981	57.77	-101.78	-44.01	27.77	-95.51	-23.73	-71.78	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	74.77	-101.65	-26.88	23.77	-78.38	-27.73	-50.65	peak
2	0.1595	73.86	-101.65	-27.79	23.55	-79.29	-27.95	-51.34	peak
3	0.2053	65.79	-101.73	-35.94	21.35	-87.44	-30.15	-57.29	peak
4	0.2530	63.14	-101.80	-38.66	19.54	-90.16	-31.96	-58.20	peak
5	0.3240	60.87	-101.88	-41.01	17.39	-92.51	-34.11	-58.40	peak
6	0.3830	57.70	-101.94	-44.24	15.94	-95.74	-35.56	-60.18	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	64.44	-62.07	2.37	33.56	-49.13	-17.94	-31.19	peak
2	0.8296	63.44	-62.17	1.27	29.23	-50.23	-22.27	-27.96	peak
3	2.0939	56.39	-61.79	-5.4	29.54	-56.90	-21.96	-34.94	peak
4	7.3361	54.08	-61.17	-7.09	29.54	-58.59	-21.96	-36.63	peak
5	10.7299	53.98	-60.83	-6.85	29.54	-58.35	-21.96	-36.39	peak
6	15.7759	53.75	-60.99	-7.24	29.54	-58.74	-21.96	-36.78	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

Page 37 of 47

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

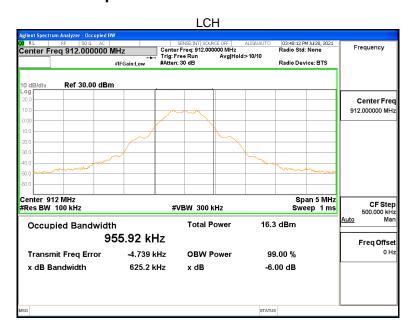
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

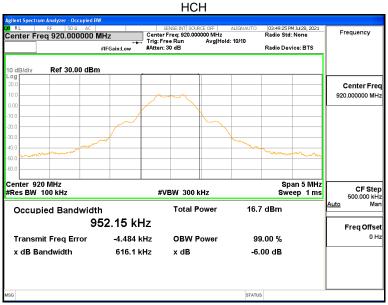
Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

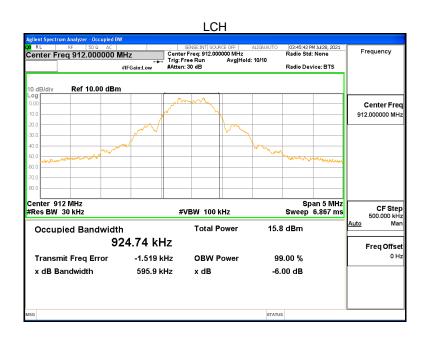


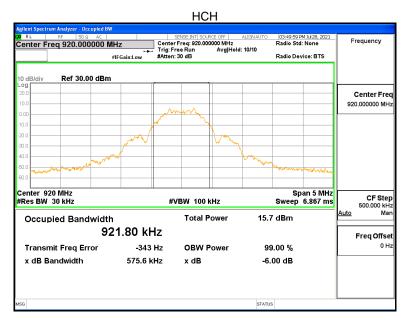

10. Appendix

10.1. Appendix A: DTS Bandwidth 10.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
OQPSK	A nt1	Low	0.6252	≥0.5	PASS
	Ant1	High	0.6161	≥0.5	PASS

10.1.2. Test Graphs





10.2. Appendix B: Occupied Channel Bandwidth 10.2.1. Test Result

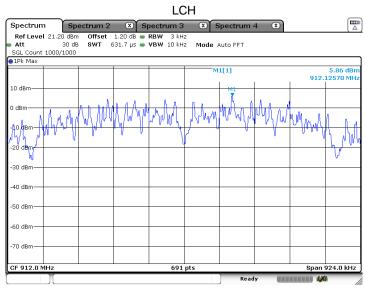
Test Mode	Antenna	Channel	OCB [MHz]	Verdict
OQPSK	Ant1	Low	0.925	PASS
		High	0.922	PASS

10.2.1. Test Graphs

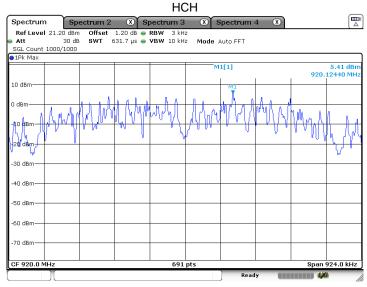
Page 40 of 47

10.3. Appendix C: Maximum PEAK conducted output power 10.3.1. Test Result

Test Mode	Antenna	Channel	Result [dBm]	Limit[MHz]	Verdict
OQPSK	A n+1	Low	16.05	<=30	PASS
	Ant1	High	15.85	<=30	PASS



10.4. Appendix D: Maximum power spectral density


10.4.1. Test Result

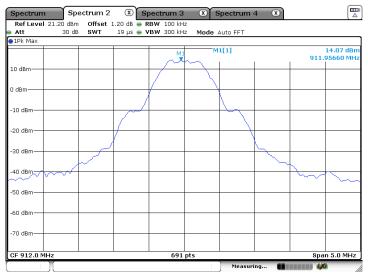
Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
OQPSK	A n+1	Low	5.86	<=8	PASS
	Ant1	High	5.41	<=8	PASS

10.4.1. Test Graphs

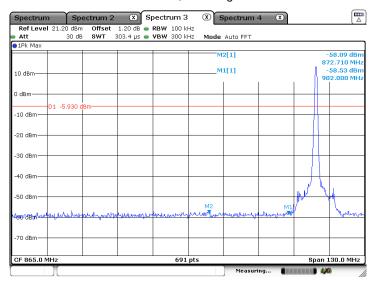
Date: 18 JUL 2021 15:24:16

Date: 18 JUL 2021 15:35:17

Page 42 of 47

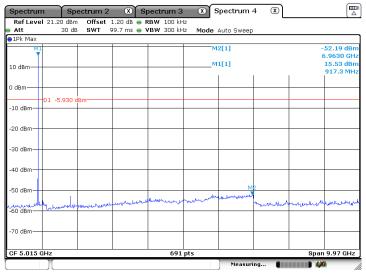

10.5. Appendix E: Conducted Spurious Emission 10.5.1. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Verdict
OQPSK	Ant1	Low	See the below graphs	PASS
	Anti	High	See the below graphs	PASS

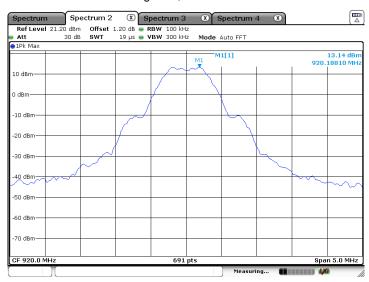

10.5.2. Test Graphs

Low CH, Reference

Date: 18 JUL 2021 15:24:50

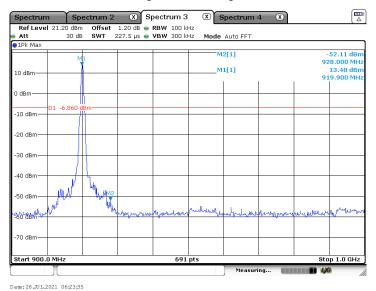

Low CH, Bandedge

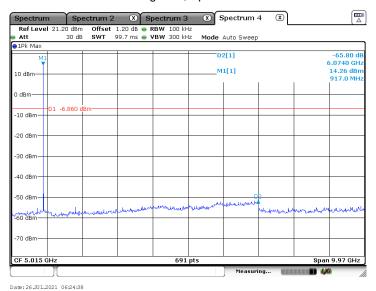
Date: 18 JUL 2021 15:31:45



Low CH, Spurious

Date: 18 JUL 2021 15:34:06


High CH, Reference


Date: 18.JUL 2021 15:35:32

High CH, Bandedge

High CH, Spurious

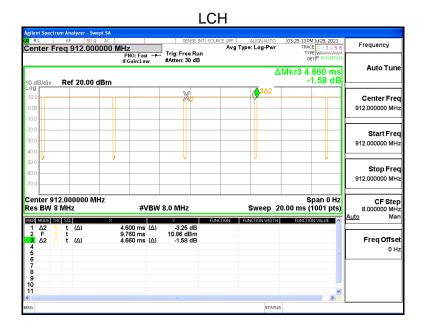
Page 46 of 47

10.6. Appendix F: Duty Cycle 10.6.1. Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
OQPSK	4.50	4.66	0.9657	96.57	0.15	0.22	0.5

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

10.6.2. Test Graphs

END OF REPORT