

Produkte

Products

 Prüfbericht - Nr.:
 60403119 001
 Seite 22 von 24

 Test Report No.
 Page 22 of 24

6 Safety Human Exposure

6.1 Radio Frequency Exposure Compliance

6.1.1 Electromagnetic Fields

RESULT: Pass

Test Specification

Test standard : CFR47 FCC Part 2: Section 2.1091

CFR47 FCC Part 1: Section 1.1310 FCC KDB Publication 447498 v06

FCC KDB Publication 865664 D02 v01r02

OET Bulletin 65 (Edition 97-01) RSS-102 Issue 5 March 2019

FCC requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 20cm normally can be maintained between the user and the device.

MPE Calculation Method according to OET Bulletin 65

Power Density: $S_{(mW/cm^2)} = PG/4\pi R^2$ or $EIRP/4\pi R^2$

Where:

 $S = power density (mW/cm^2)$

P = power input to the antenna (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (cm)

The nominal maximum conducted output power specified:

802.11b/g/n: 20.00 dBm

BLuetooth Low Energy: 9.00 dBm

From the peak RF output power, the minimum mobile separation distance, d=20 cm, as well as the antenna gain (-0.2 dBi 802.11b/g/n and Bluetooth Low Energy), the RF power density can be calculated as below:

For 802.11b/g/n: $S_{(mW/cm^2)} = PG/4\pi R^2 = 0.019 \text{ mW/cm}^2$

For BLuetooth Low Energy: $S_{(mW/cm^2)} = PG/4\pi R^2 = 0.002 \text{ mW/cm}^2$

Limits for Maximum Permissible Exposure (MPE) according to FCC Part 1.1310: 1.0 mW/cm2