

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

Smart Ceiling insert Fan

MODEL NUMBER: BF1112, BF1112****

REPORT NUMBER: 4791253455-1-RF-2

ISSUE DATE: April 19, 2024

FCC ID: 2AB2Q-BF1112

Prepared for

LEEDARSON LIGHTING CO., LTD Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	April 19, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS6				
2.	TEST N	IETHODOLOGY	7		
3.	FACILI	TIES AND ACCREDITATION	7		
4.	CALIB	RATION AND UNCERTAINTY	8		
4	4.1.	MEASURING INSTRUMENT CALIBRATION	8		
4	4.2.	MEASUREMENT UNCERTAINTY	8		
5.	EQUIPI	MENT UNDER TEST	9		
5	5.1.	DESCRIPTION OF EUT	9		
5	5.2.	CHANNEL LIST	9		
5	5.3.	MAXIMUM POWER	9		
5	5.4.	TEST CHANNEL CONFIGURATION	10		
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10		
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11		
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	12		
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	13		
7.	ANTEN	INA PORT TEST RESULTS	16		
7	7.1.	CONDUCTED OUTPUT POWER	16		
7	7.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17		
7	7.3.	CARRIER HOPPING CHANNEL SEPARATION	19		
7	7.4.	NUMBER OF HOPPING FREQUENCY	21		
7	7.5.	TIME OF OCCUPANCY (DWELL TIME)	23		
7	7.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	25		
7	7.7.	DUTY CYCLE	27		
8.	RADIA	TED TEST RESULTS	28		
8	3.1.	RESTRICTED BANDEDGE	36		
8	3.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	45		
8	3.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	51		
8	3.4.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	63		
8	8.5.	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	66		
8	8.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	68		
8	8.7.	SPURIOUS EMISSIONS FOR SIMULTANEOUS TRANSMISSION	70		
9.	ANTEN	INA REQUIREMENT	78		
10.		AC POWER LINE CONDUCTED EMISSION	79		

11.	TEST DATA	83
<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	83
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	
<i>11.3.</i> 11.3.1.	APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>11.4.</i> 11.4.1. 11.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	90
<i>11.5.</i> 11.5.1. 11.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	92
<i>11.6.</i> 11.6.1. 11.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	95
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	97
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	101
<i>11.9.</i> 11.9.1. 11.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	108

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	LEEDARSON LIGHTING CO., LTD Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian, China
Manufacturer Information Company Name:	LEEDARSON LIGHTING CO., LTD
Address:	Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian, China
EUT Information	
EUT Name:	Smart Ceiling insert Fan
Model:	BF1112
Series Model:	BF1112****
Model Difference:	"*" in the model represents any letter or number, representing different colors, surface treatment processes, sales channels
Brand:	COMMERCIAL ELECTRIC
Sample Received Date:	March 28, 2024
Sample Status:	Normal
Sample ID:	7065254
Date of Tested:	March 28, 2024 to April 19, 2024

APPLICABLE STANDARDS STANDARD TEST RESULTS CFR 47 FCC PART 15 SUBPART C Pass

Prepared By:

fammy . Huang

Fanny Huang Engineer Project Associate

Approved By:

Hephentino

Stephen Guo Operations Manager

Checked By:

Sume)ony

Denny Huang Senior Project Engineer

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C , KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2,ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	· · · · · · · · · · · · · · · · · · ·
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Duty Cycle	±0.028%		
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%		
Carrier Frequency Separation	±1.9%		
Maximum Conducted Output Power	±0.743 dB		
Number of Hopping Channel	±1.9%		
Time of Occupancy	±0.028%		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Smart Ceiling insert Fan
Model	BF1112
Series Model	BF1112****
Model Difference	"*" in the model represents any letter or number, representing different colors, surface treatment processes, sales channels.

Frequency Range:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, ∏/4DQPSK
Normal Test Voltage:	AC 120 V, 60 Hz

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
GFSK	2402 ~ 2480	0-78[79]	1.43	5.69
∏/4DQPSK	2402 ~ 2480	0-78[79]	1.96	6.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
∏/4DQPSK - 2DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
∏/4DQPSK - 2DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)	
	DH1	27	
GFSK	DH3	183	
	DH5	339	
	2-DH1	54	
∏/4-DQPSK	2-DH3	367	
	2-DH5	679	

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	П/4DQPSK	3Mbit/s

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test So	oftware	FCC_assist_1.0.2.2				
Modulation Type	Transmit Antenna	Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	10	10	10		
∏/4DQPSK	1	10	10	10		

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Internal antenna	4.26

Test Mode	Transmit and Receive Mode	Description			
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
∏/4DQPSK	П/4DQPSK ITX, 1RX Antenna 1 can be used as transmitting/real antenna.				
Note: 1.BT&BLE&WIFI 2.4G can transmit simultaneously. (declared by client)					

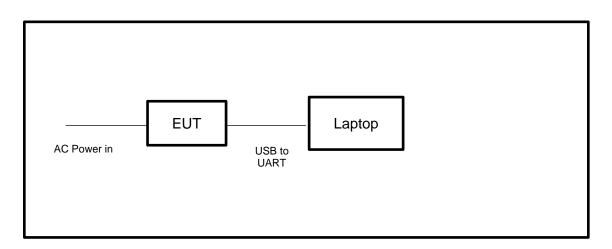
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remark
1	PC	Lenovo	E42-80	/
2	UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment Manufacture			cturer	Model	No.	Serial No.	Last (Cal.	Due. Date
Power sensor, Power N	leter	R&\$	3	OSP1	20	100921	Mar.25,	2024	Mar.24,2025
Vector Signal Genera	tor	R&\$	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024	
Signal Generator		R&\$	5	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&	3	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
	Software								
Description			Manut	facturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwa	rz	EMC	32		10.60.10
Tonsend RF Test System									
Equipment	Man	ufacturer	Moo	del No.	S	Serial No.	Last (Cal.	Due. Date
Wideband Radio Communication Tester		R&S	CM	IW500	155523		Oct.12, 2023		Oct.11, 2024
Wireless Connectivity Tester		R&S	CM	IW270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	NS	030A	MY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5182B	MY	⁄56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5172B	ΜY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	MY	⁄55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	SANMOOD SG-		80-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	Aglient 84		495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JS08		0806-2	23E	380620666	Mar.25,	2024	Mar.24,2025
	Software								
Description		Manufac	turer	Name				Version	
Tonsend SRD Test Syst	tem	Tonse	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Conducted Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024			
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024			
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024			
Software								
	Description		Manufacturer	Name	Version			
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1			

Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024			
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024			
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024			
Software								
[Description		Manufacturer	Name	Version			
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

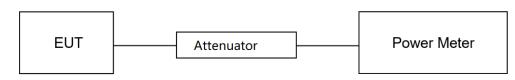
REPORT NO.: 4791253455-1-RF-2 Page 15 of 109

Other Instrument								
Equipment	Manufacturer Model No. Serial No. Last Cal. Due Date							
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024			
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024			
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024			

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


	CFR 47 FC	C Part15 (15.247), Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

Test Date April 10, 2024 Test By Walker Yuan
--

TEST RESULTS

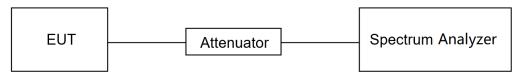
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5	
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

Test Date April 10, 2024 Test By	Walker Yuan
----------------------------------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

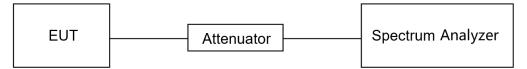
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

		CFR 47 FCC Part15 (15.247)	
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

	Test Date	April 10, 2024	Test By	Walker Yuan
--	-----------	----------------	---------	-------------

TEST RESULTS

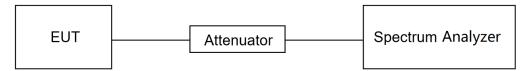
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR	47 FCC Part15 (15.247), Sub	part C
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

Test Date	April 10, 2024	Test By	Fanny Huang

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

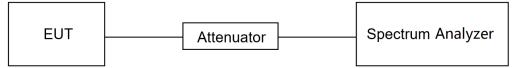
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

Test Date April 10, 2024 Test By Walker Yu	n
--	---

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

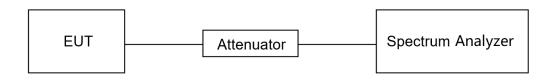
CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

ISpan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

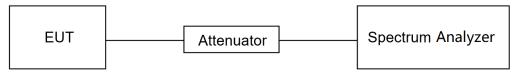
TEST DATE / ENGINEER

Test Date April 10, 2024 Test By	Walker Yuan
----------------------------------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V 60Hz

TEST DATE / ENGINEER

Test Date April 10, 2024 Test By Walker	Yuan
---	------

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range (MHz)	Field Strength Limit (dBuV/m) at 3 m Quasi-Peak				
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
	300	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz					
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300			
0.490-1.705 24000/F(kHz)		30			
1.705-30.0	30	30			

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(²)	
13.36-13.41				

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made

to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

Note 1: The manufacturer has recommended that the EUT only be used in the desktop (horizontal) orientation; therefore, all radiated testing was performed in desktop orientation.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

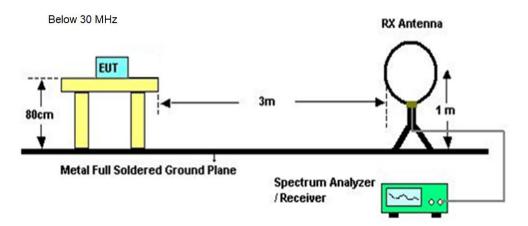
5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

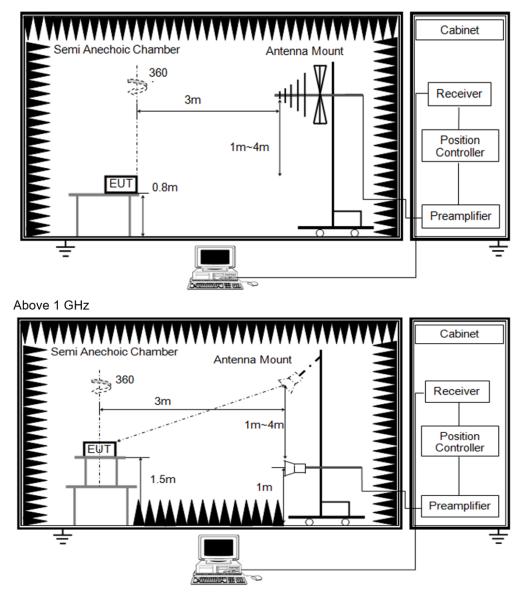
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:


1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

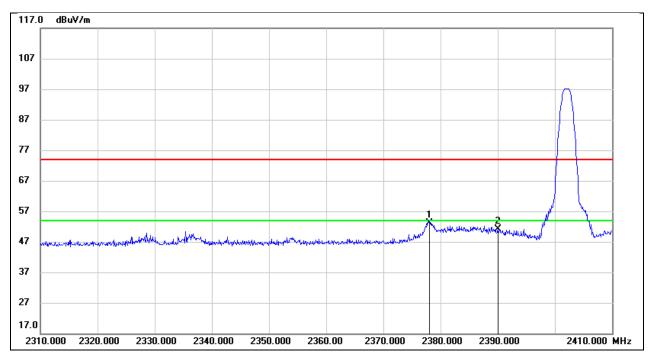
Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

Temperature	23.5 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	

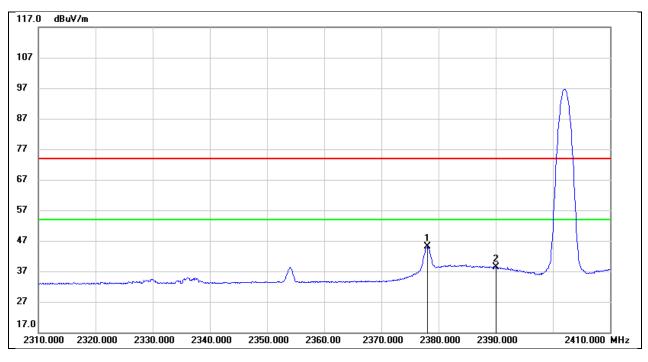
TEST DATE / ENGINEER

Test Date	April 17, 2024	Test By	Mason Wang

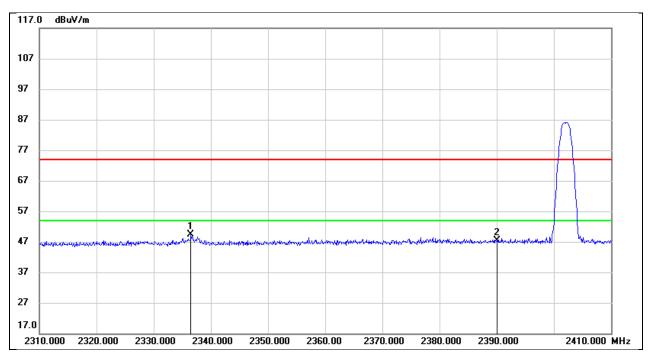

TEST RESULTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

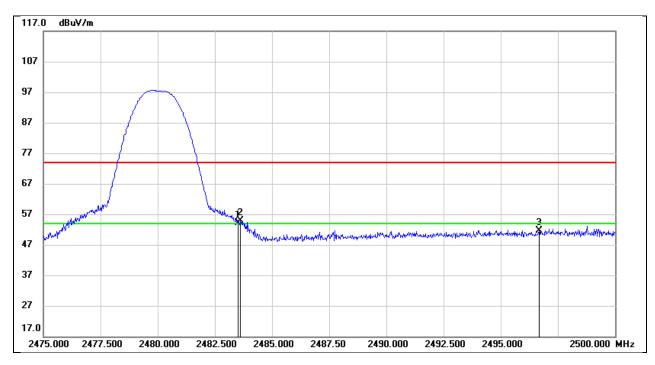
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

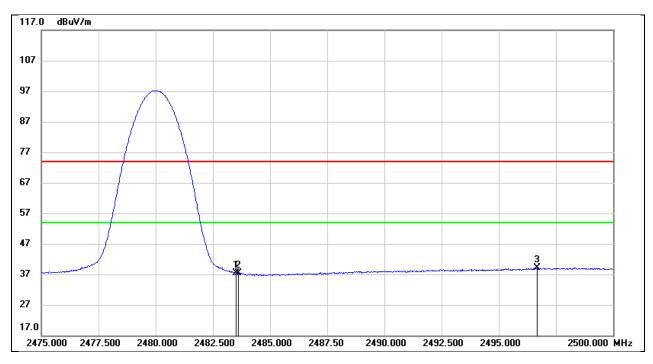
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.000	20.32	32.86	53.18	74.00	-20.82	peak
2	2390.000	18.13	32.92	51.05	74.00	-22.95	peak


Test Mode:	GFSK AV	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

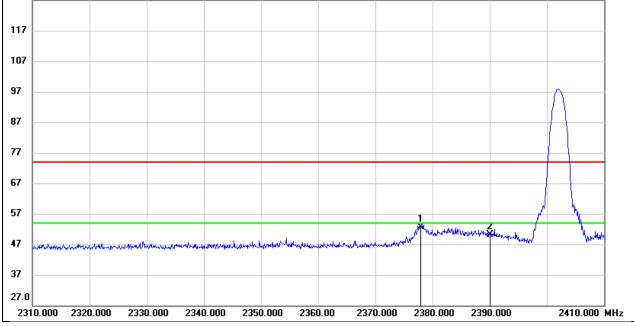
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.000	12.22	32.86	45.08	54.00	-8.92	AVG
2	2390.000	5.48	32.92	38.40	54.00	-15.60	AVG


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

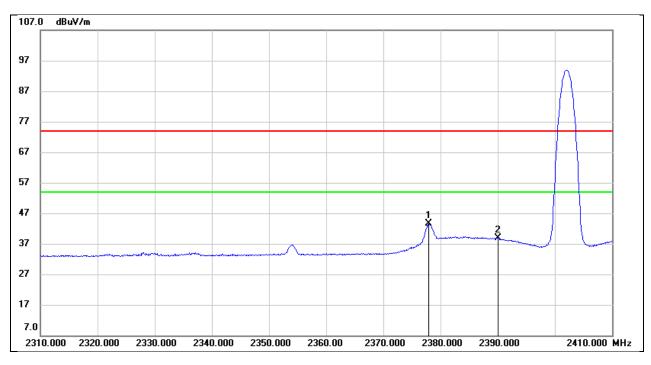
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2336.500	16.74	32.63	49.37	74.00	-24.63	peak
2	2390.000	14.53	32.92	47.45	74.00	-26.55	peak


Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

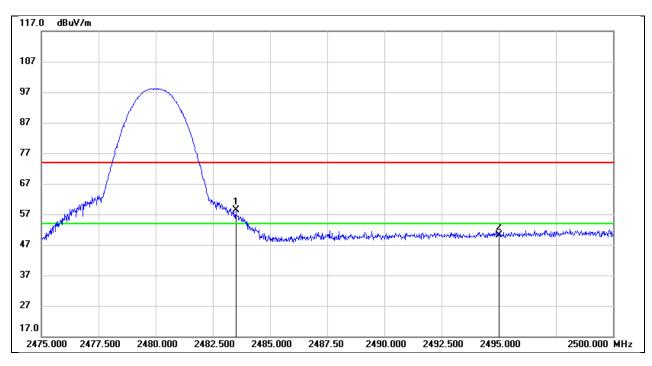
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	21.14	32.94	54.08	74.00	-19.92	peak
2	2483.625	22.02	32.94	54.96	74.00	-19.04	peak
3	2496.675	18.78	32.93	51.71	74.00	-22.29	peak


Test Mode:	GFSK AV	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

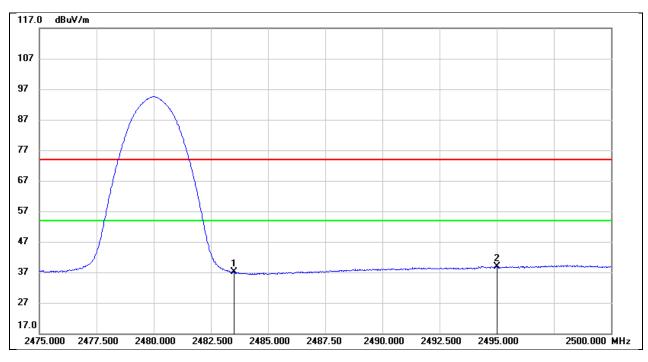
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	4.37	32.94	37.31	54.00	-16.69	AVG
2	2483.625	4.38	32.94	37.32	54.00	-16.68	AVG
3	2496.675	6.17	32.93	39.10	54.00	-14.90	AVG


		Frequency(MHz):	2402	
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz	
127.0 dBuV/m				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2377.900	19.86	32.86	52.72	74.00	-21.28	peak
2	2390.000	17.31	32.92	50.23	74.00	-23.77	peak

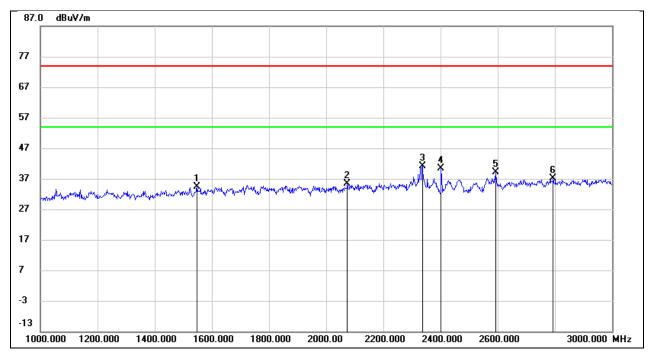

Test Mode:	П/4DQPSK AV	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2377.900	10.65	32.86	43.51	54.00	-10.49	AVG
2	2390.000	6.03	32.92	38.95	54.00	-15.05	AVG


Test Mode:	П/4DQPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	25.43	32.94	58.37	74.00	-15.63	peak
2	2495.025	17.31	32.94	50.25	74.00	-23.75	peak

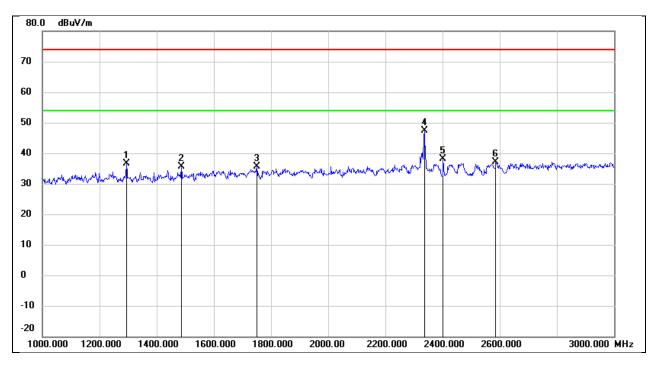
Test Mode:	П/4DQPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	4.12	32.94	37.06	54.00	-16.94	AVG
2	2495.025	6.02	32.94	38.96	54.00	-15.04	AVG

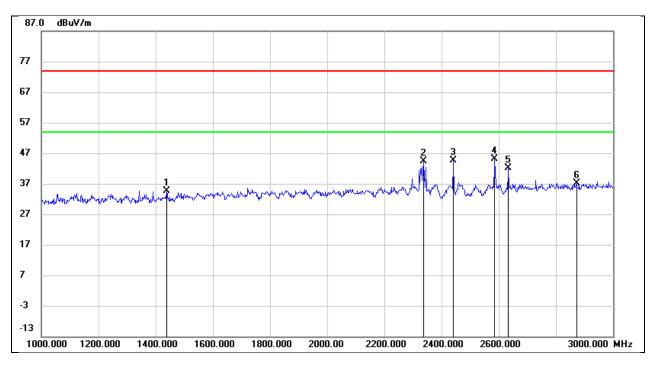
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

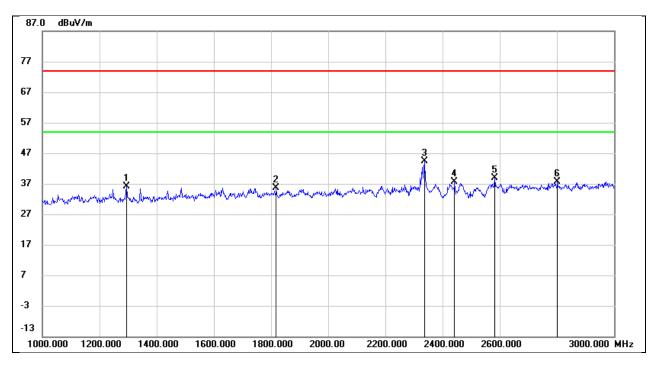


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1548.000	45.79	-11.46	34.33	74.00	-39.67	peak
2	2074.000	44.98	-9.66	35.32	74.00	-38.68	peak
3	2336.000	49.10	-7.87	41.23	74.00	-32.77	peak
4	2402.000	47.73	-7.40	40.33	/	/	fundamental
5	2594.000	46.80	-7.66	39.14	74.00	-34.86	peak
6	2794.000	44.04	-6.82	37.22	74.00	-36.78	peak

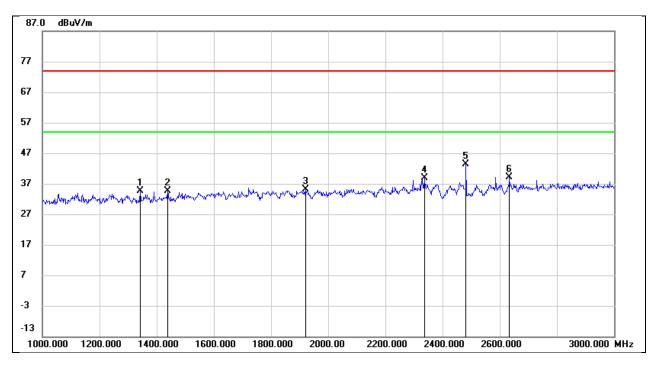
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

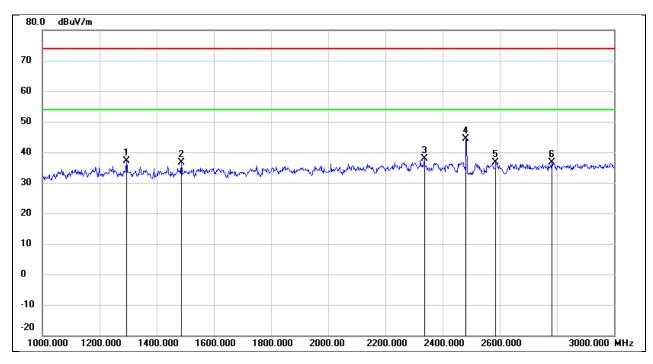
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	49.19	-12.53	36.66	74.00	-37.34	peak
2	1486.000	47.36	-11.84	35.52	74.00	-38.48	peak
3	1750.000	46.20	-10.47	35.73	74.00	-38.27	peak
4	2336.000	55.30	-7.87	47.43	74.00	-26.57	peak
5	2402.000	45.58	-7.40	38.18	/	/	fundamental
6	2586.000	44.72	-7.66	37.06	74.00	-36.94	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	46.79	-12.15	34.64	74.00	-39.36	peak
2	2336.000	52.19	-7.87	44.32	74.00	-29.68	peak
3	2441.000	51.96	-7.44	44.52	/	/	fundamental
4	2586.000	52.71	-7.66	45.05	74.00	-28.95	peak
5	2634.000	49.76	-7.54	42.22	74.00	-31.78	peak
6	2872.000	43.64	-6.47	37.17	74.00	-36.83	peak

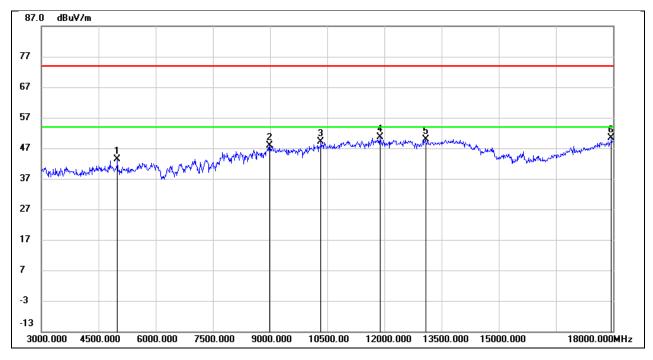

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	48.65	-12.53	36.12	74.00	-37.88	peak
2	1818.000	45.97	-10.23	35.74	74.00	-38.26	peak
3	2336.000	52.32	-7.87	44.45	74.00	-29.55	peak
4	2441.000	44.99	-7.44	37.55	/	/	fundamental
5	2582.000	46.45	-7.64	38.81	74.00	-35.19	peak
6	2802.000	44.35	-6.80	37.55	74.00	-36.45	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

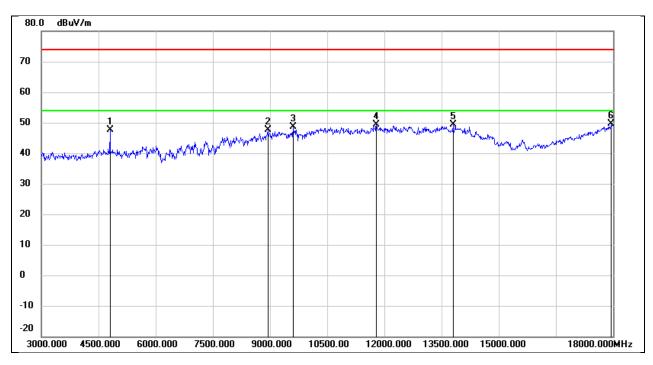
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1342.000	47.18	-12.48	34.70	74.00	-39.30	peak
2	1438.000	46.79	-12.15	34.64	74.00	-39.36	peak
3	1920.000	45.24	-10.16	35.08	74.00	-38.92	peak
4	2336.000	46.69	-7.87	38.82	74.00	-35.18	peak
5	2480.000	50.81	-7.47	43.34	1	/	fundamental
6	2634.000	46.76	-7.54	39.22	74.00	-34.78	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

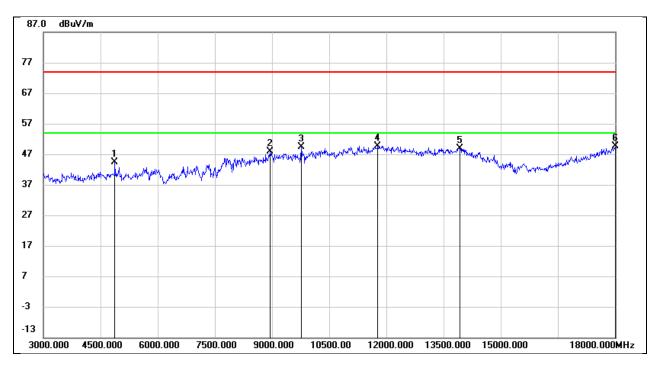


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	49.69	-12.53	37.16	74.00	-36.84	peak
2	1486.000	48.36	-11.84	36.52	74.00	-37.48	peak
3	2336.000	45.80	-7.87	37.93	74.00	-36.07	peak
4	2480.000	51.73	-7.47	44.26	/	/	fundamental
5	2586.000	44.22	-7.66	36.56	74.00	-37.44	peak
6	2782.000	43.41	-6.87	36.54	74.00	-37.46	peak

8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

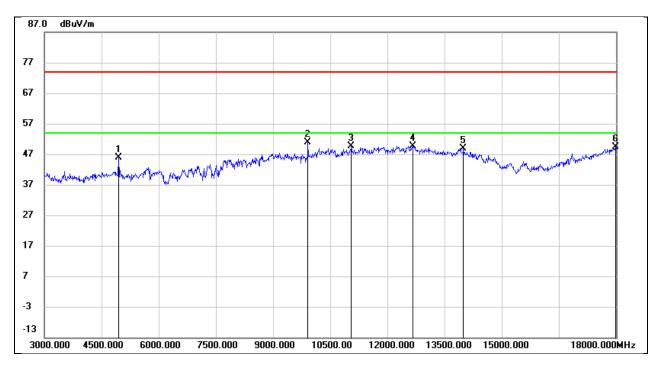
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4995.000	42.53	0.83	43.36	74.00	-30.64	peak
2	8985.000	37.03	10.97	48.00	74.00	-26.00	peak
3	10335.000	35.96	13.14	49.10	74.00	-24.90	peak
4	11880.000	32.63	17.97	50.60	74.00	-23.40	peak
5	13080.000	30.37	19.50	49.87	74.00	-24.13	peak
6	17955.000	23.70	26.66	50.36	74.00	-23.64	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

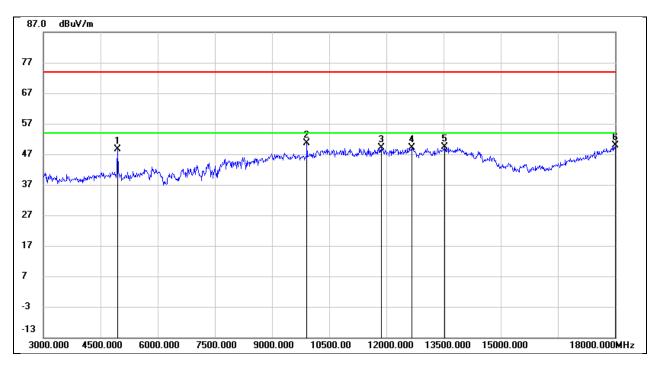
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	47.16	0.46	47.62	74.00	-26.38	peak
2	8940.000	37.28	10.35	47.63	74.00	-26.37	peak
3	9600.000	37.61	11.06	48.67	74.00	-25.33	peak
4	11790.000	31.84	17.60	49.44	74.00	-24.56	peak
5	13800.000	26.64	22.64	49.28	74.00	-24.72	peak
6	17955.000	23.05	26.66	49.71	74.00	-24.29	peak

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

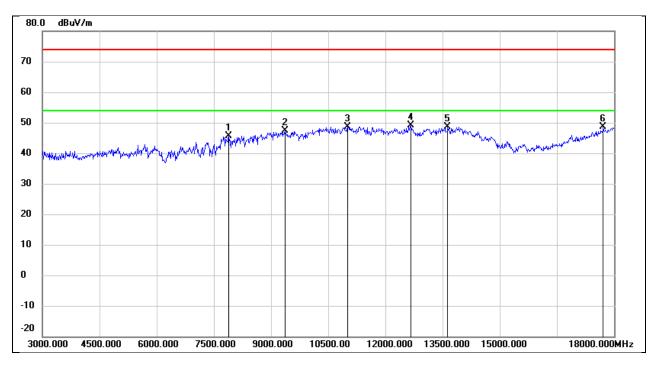
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	43.83	0.61	44.44	74.00	-29.56	peak
2	8955.000	37.40	10.56	47.96	74.00	-26.04	peak
3	9765.000	37.95	11.44	49.39	74.00	-24.61	peak
4	11775.000	32.19	17.56	49.75	74.00	-24.25	peak
5	13920.000	26.25	22.71	48.96	74.00	-25.04	peak
6	18000.000	22.79	26.83	49.62	74.00	-24.38	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

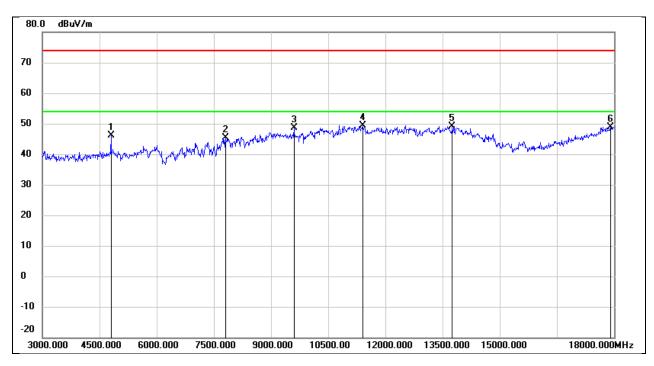
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	48.10	0.61	48.71	74.00	-25.29	peak
2	9765.000	36.90	11.44	48.34	74.00	-25.66	peak
3	11070.000	33.96	15.08	49.04	74.00	-24.96	peak
4	12705.000	30.43	18.66	49.09	74.00	-24.91	peak
5	13350.000	28.41	21.12	49.53	74.00	-24.47	peak
6	17970.000	23.06	26.72	49.78	74.00	-24.22	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

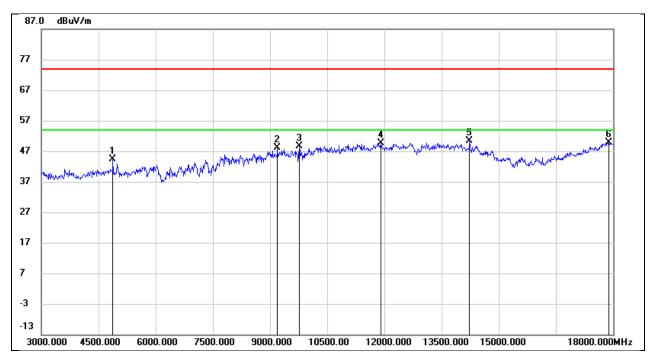
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	45.13	0.74	45.87	74.00	-28.13	peak
2	9915.000	38.76	12.08	50.84	74.00	-23.16	peak
3	11055.000	34.69	15.04	49.73	74.00	-24.27	peak
4	12660.000	31.22	18.49	49.71	74.00	-24.29	peak
5	13995.000	26.06	22.76	48.82	74.00	-25.18	peak
6	17985.000	22.50	26.77	49.27	74.00	-24.73	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

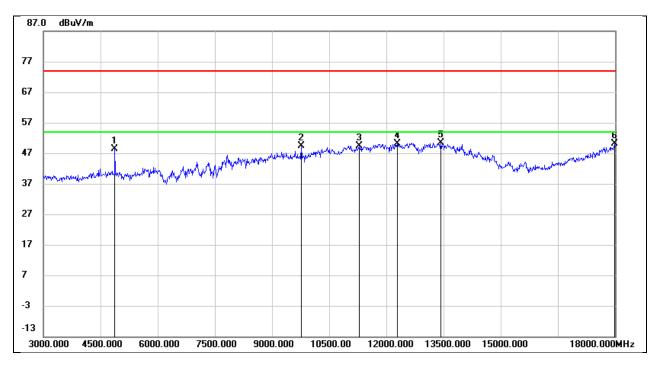
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	47.94	0.74	48.68	74.00	-25.32	peak
2	9915.000	38.59	12.08	50.67	74.00	-23.33	peak
3	11865.000	31.23	17.91	49.14	74.00	-24.86	peak
4	12660.000	30.59	18.49	49.08	74.00	-24.92	peak
5	13530.000	27.65	21.68	49.33	74.00	-24.67	peak
6	18000.000	22.99	26.83	49.82	74.00	-24.18	peak


Test Mode:	П/4DQPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

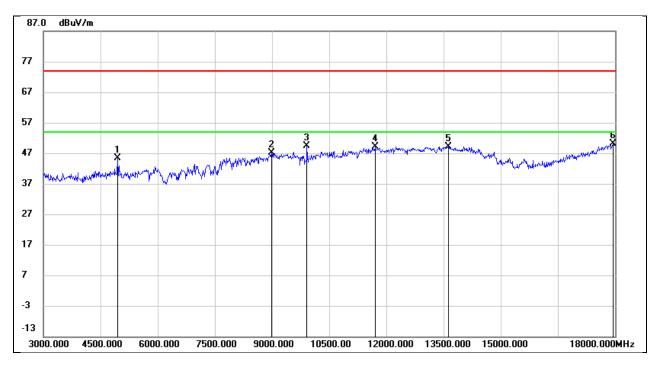
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7890.000	38.34	7.29	45.63	74.00	-28.37	peak
2	9360.000	36.98	10.36	47.34	74.00	-26.66	peak
3	11010.000	33.68	14.94	48.62	74.00	-25.38	peak
4	12675.000	30.54	18.54	49.08	74.00	-24.92	peak
5	13635.000	26.79	21.83	48.62	74.00	-25.38	peak
6	17715.000	23.33	25.31	48.64	74.00	-25.36	peak


Test Mode:	П/4DQPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

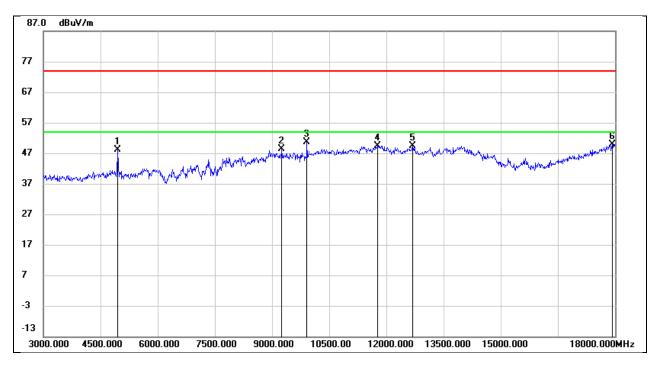
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	45.62	0.46	46.08	74.00	-27.92	peak
2	7800.000	37.90	7.54	45.44	74.00	-28.56	peak
3	9600.000	37.52	11.06	48.58	74.00	-25.42	peak
4	11400.000	32.88	16.54	49.42	74.00	-24.58	peak
5	13755.000	26.79	22.42	49.21	74.00	-24.79	peak
6	17910.000	22.50	26.50	49.00	74.00	-25.00	peak


Test Mode:	П/4DQPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	43.74	0.61	44.35	74.00	-29.65	peak
2	9195.000	38.18	10.03	48.21	74.00	-25.79	peak
3	9765.000	37.22	11.44	48.66	74.00	-25.34	peak
4	11910.000	31.62	18.11	49.73	74.00	-24.27	peak
5	14235.000	28.42	21.95	50.37	74.00	-23.63	peak
6	17895.000	23.41	26.44	49.85	74.00	-24.15	peak

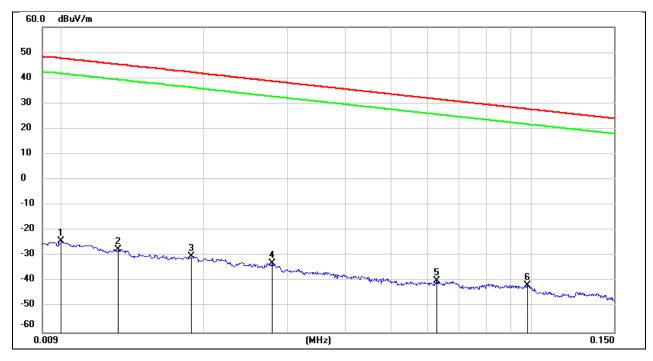

Test Mode:	П/4DQPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.67	0.61	48.28	74.00	-25.72	peak
2	9765.000	37.94	11.44	49.38	74.00	-24.62	peak
3	11280.000	33.61	15.84	49.45	74.00	-24.55	peak
4	12285.000	31.43	18.60	50.03	74.00	-23.97	peak
5	13425.000	28.77	21.52	50.29	74.00	-23.71	peak
6	17985.000	23.32	26.77	50.09	74.00	-23.91	peak


Test Mode:	П/4DQPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	44.65	0.74	45.39	74.00	-28.61	peak
2	8985.000	36.09	10.97	47.06	74.00	-26.94	peak
3	9915.000	37.33	12.08	49.41	74.00	-24.59	peak
4	11700.000	31.70	17.32	49.02	74.00	-24.98	peak
5	13635.000	27.41	21.83	49.24	74.00	-24.76	peak
6	17955.000	23.45	26.66	50.11	74.00	-23.89	peak

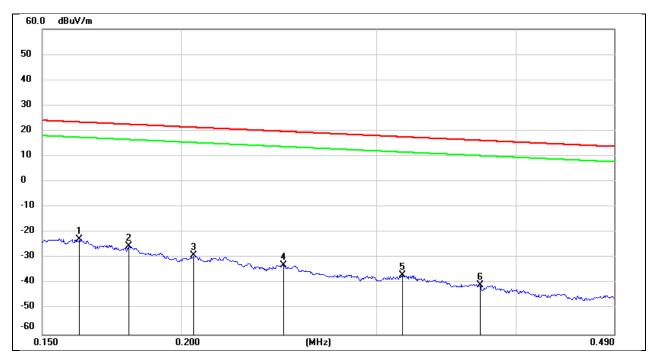
Test Mode:	П/4DQPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	47.35	0.74	48.09	74.00	-25.91	peak
2	9255.000	38.21	10.14	48.35	74.00	-25.65	peak
3	9915.000	38.44	12.08	50.52	74.00	-23.48	peak
4	11760.000	31.97	17.51	49.48	74.00	-24.52	peak
5	12690.000	30.85	18.60	49.45	74.00	-24.55	peak
6	17925.000	23.31	26.55	49.86	74.00	-24.14	peak

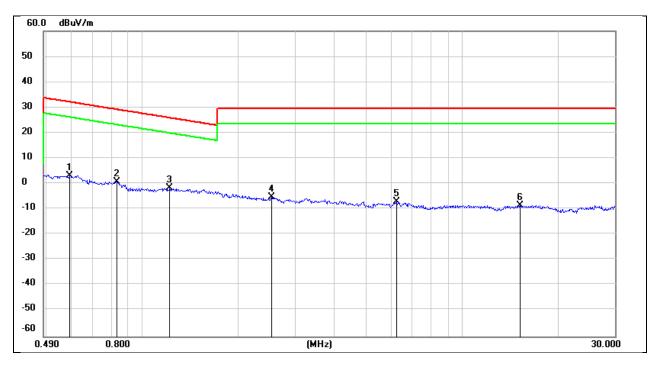
8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz



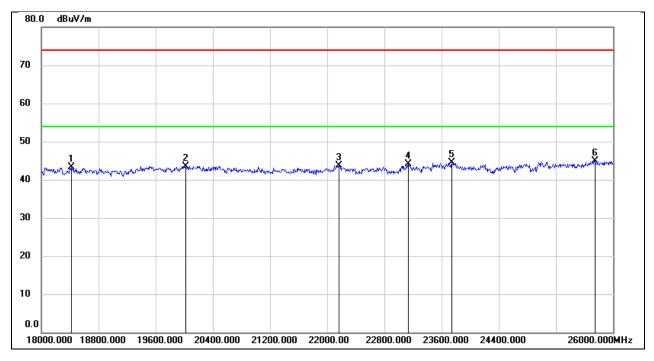
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	77.22	-101.40	-24.18	47.60	-75.68	-3.90	-71.78	peak
2	0.0131	73.97	-101.38	-27.41	45.25	-78.91	-6.25	-72.66	peak
3	0.0188	71.14	-101.35	-30.21	42.12	-81.71	-9.38	-72.33	peak
4	0.0279	68.67	-101.38	-32.71	38.69	-84.21	-12.81	-71.40	peak
5	0.0627	61.65	-101.53	-39.88	31.66	-91.38	-19.84	-71.54	peak
6	0.0981	60.27	-101.78	-41.51	27.77	-93.01	-23.73	-69.28	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

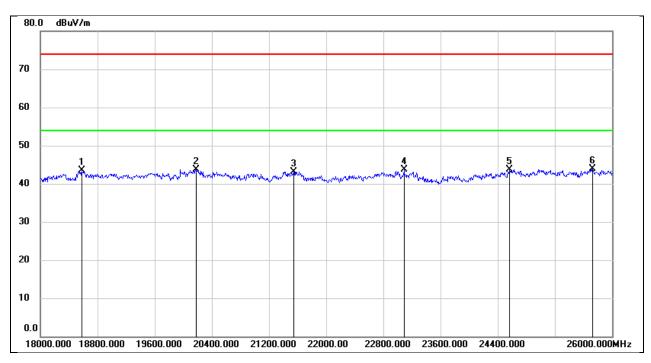
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1621	78.92	-101.65	-22.73	23.41	-74.23	-28.09	-46.14	peak
2	0.1794	76.27	-101.68	-25.41	22.53	-76.91	-28.97	-47.94	peak
3	0.2053	72.79	-101.73	-28.94	21.35	-80.44	-30.15	-50.29	peak
4	0.2472	68.95	-101.80	-32.85	19.74	-84.35	-31.76	-52.59	peak
5	0.3163	65.20	-101.87	-36.67	17.60	-88.17	-33.90	-54.27	peak
6	0.3714	61.28	-101.93	-40.65	16.20	-92.15	-35.30	-56.85	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz


No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5917	65.24	-62.08	3.16	32.16	-48.34	-19.34	-29.00	peak
2	0.8296	62.94	-62.17	0.77	29.23	-50.73	-22.27	-28.46	peak
3	1.2157	60.47	-62.17	-1.70	25.91	-53.20	-25.59	-27.61	peak
4	2.5301	56.32	-61.69	-5.37	29.54	-56.87	-21.96	-34.91	peak
5	6.2445	54.13	-61.32	-7.19	29.54	-58.69	-21.96	-36.73	peak
6	15.1859	52.55	-61.01	-8.46	29.54	-59.96	-21.96	-38.00	peak

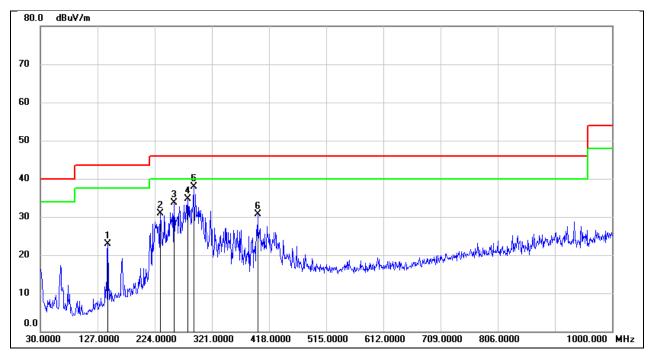
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)

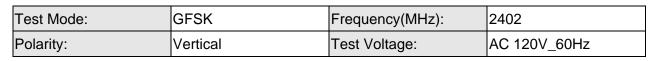

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

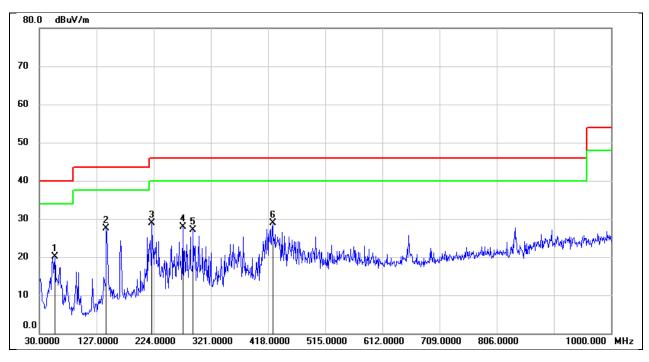
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18416.000	48.73	-5.35	43.38	74.00	-30.62	peak
2	20016.000	49.06	-5.47	43.59	74.00	-30.41	peak
3	22160.000	48.08	-4.31	43.77	74.00	-30.23	peak
4	23136.000	47.43	-3.40	44.03	74.00	-29.97	peak
5	23744.000	47.65	-3.20	44.45	74.00	-29.55	peak
6	25744.000	45.50	-0.64	44.86	74.00	-29.14	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	AC 120V_60Hz

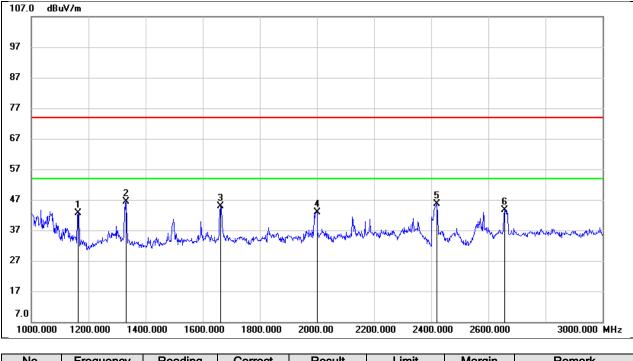


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18576.000	48.79	-5.30	43.49	74.00	-30.51	peak
2	20176.000	49.21	-5.56	43.65	74.00	-30.35	peak
3	21544.000	47.76	-4.63	43.13	74.00	-30.87	peak
4	23088.000	47.02	-3.41	43.61	74.00	-30.39	peak
5	24568.000	46.10	-2.33	43.77	74.00	-30.23	peak
6	25728.000	44.61	-0.72	43.89	74.00	-30.11	peak


8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	AC 120V_60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	144.4600	36.79	-13.84	22.95	43.50	-20.55	QP
2	233.7000	44.62	-13.76	30.86	46.00	-15.14	QP
3	256.9800	48.06	-14.36	33.70	46.00	-12.30	QP
4	280.2600	47.60	-12.93	34.67	46.00	-11.33	QP
5	289.9600	50.25	-12.31	37.94	46.00	-8.06	QP
6	398.6000	40.46	-9.72	30.74	46.00	-15.26	QP



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	56.1900	35.49	-15.38	20.11	40.00	-19.89	QP
2	143.4900	41.43	-13.89	27.54	43.50	-15.96	QP
3	221.0900	42.12	-13.14	28.98	46.00	-17.02	QP
4	273.4700	41.19	-13.33	27.86	46.00	-18.14	QP
5	290.9300	39.41	-12.26	27.15	46.00	-18.85	QP
6	425.7600	38.04	-9.22	28.82	46.00	-17.18	QP

8.7. SPURIOUS EMISSIONS FOR SIMULTANEOUS TRANSMISSION

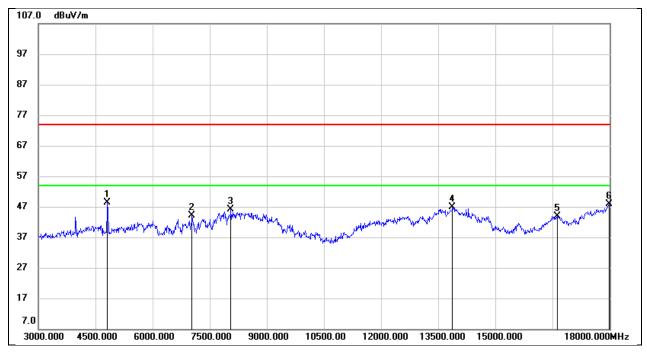
<u>SPURIOUS EMISSIONS (802.11n HT20 2.4GHz LOW CHANNEL & BLE 1M LOW CHANNEL</u> <u>& BT GFSK LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL</u>

<u>1-3 GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	55.70	-12.96	42.74	74.00	-31.26	peak
2	1332.000	58.88	-12.49	46.39	74.00	-27.61	peak
3	1662.000	55.69	-10.88	44.81	74.00	-29.19	peak
4	2000.000	53.02	-10.11	42.91	74.00	-31.09	peak
5	2412.000	53.14	-7.43	45.71	/	/	fundamental
6	2656.000	51.18	-7.43	43.75	74.00	-30.25	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

<u>3-18 GHz</u>

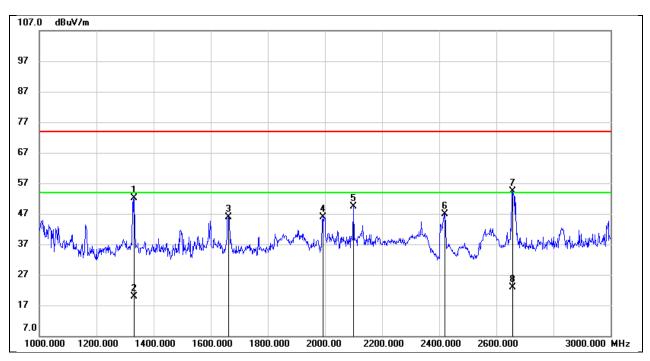
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	47.82	0.49	48.31	74.00	-25.69	peak
2	7035.000	36.82	7.28	44.10	74.00	-29.90	peak
3	8055.000	38.51	7.51	46.02	74.00	-27.98	peak
4	13875.000	24.09	22.68	46.77	74.00	-27.23	peak
5	16635.000	23.43	20.45	43.88	74.00	-30.12	peak
6	17985.000	21.18	26.77	47.95	74.00	-26.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.5.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

SPURIOUS EMISSIONS (802.11n HT20 2.4GHz LOW CHANNEL & BLE 1M LOW CHANNEL & BT GFSK LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

<u>1-3 GHz</u>

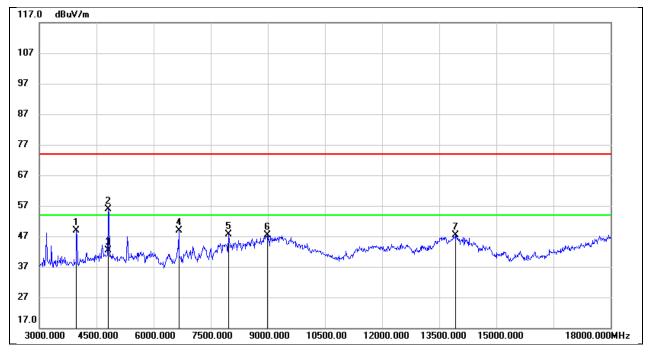
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1332.000	64.65	-12.49	52.16	74.00	-21.84	peak
2	1332.000	32.49	-12.49	20.00	54.00	-34.00	AVG
3	1662.000	56.85	-10.88	45.97	74.00	-28.03	peak
4	1992.000	55.92	-10.12	45.80	74.00	-28.20	peak
5	2100.000	58.96	-9.50	49.46	74.00	-24.54	peak
6	2412.000	54.36	-7.43	46.93	/	/	fundamental
7	2656.000	61.91	-7.43	54.48	74.00	-19.52	peak
8	2656.000	30.33	-7.43	22.90	54.00	-31.10	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.5.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

<u>3-18 GHz</u>

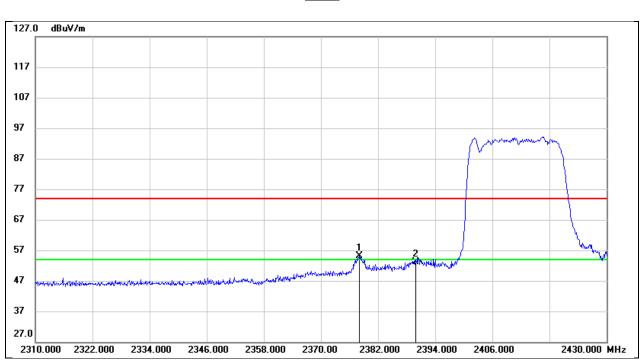
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.57	-2.79	48.78	74.00	-25.22	peak
2	4815.000	55.51	0.49	56.00	74.00	-18.00	peak
3	4815.000	41.81	0.49	42.30	54.00	-11.70	AVG
4	6660.000	44.01	4.95	48.96	74.00	-25.04	peak
5	7965.000	40.63	7.08	47.71	74.00	-26.29	peak
6	8985.000	36.34	10.97	47.31	74.00	-26.69	peak
7	13920.000	24.72	22.71	47.43	74.00	-26.57	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.5.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

RESTRICTED BANDEDGE (802.11n HT20 2.4GHz LOW CHANNEL & BLE 1M LOW CHANNEL & BT GFSK LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.040	22.36	32.86	55.22	74.00	-18.78	peak
2	2390.000	20.32	32.92	53.24	74.00	-20.76	peak

Note:

1. Measurement = Reading Level + Correct Factor.

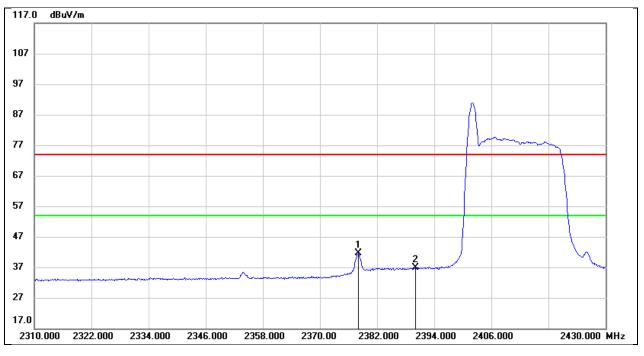
2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

<u>Peak</u>

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.040	8.71	32.86	41.57	54.00	-12.43	AVG
2	2390.000	3.96	32.92	36.88	54.00	-17.12	AVG

Note:

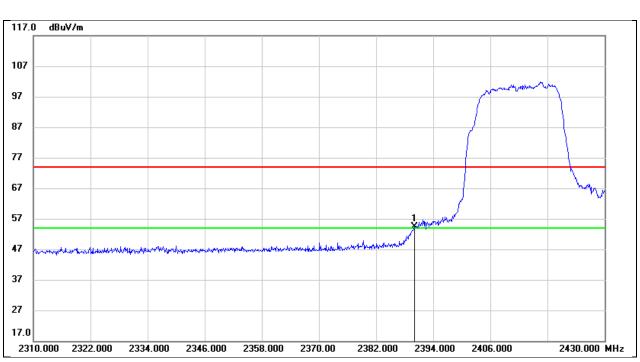
1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.


6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

RESTRICTED BANDEDGE (802.11n HT20 2.4GHz LOW CHANNEL & BLE 1M LOW CHANNEL & BT GFSK LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	21.52	32.92	54.44	74.00	-19.56	peak

Note:

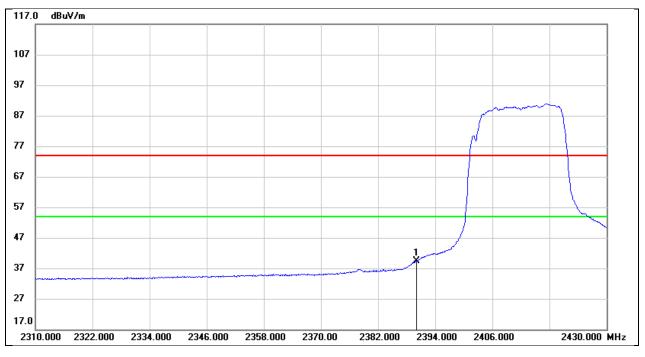
1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.


6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

<u>Peak</u>

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	6.45	32.92	39.37	54.00	-14.63	AVG

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

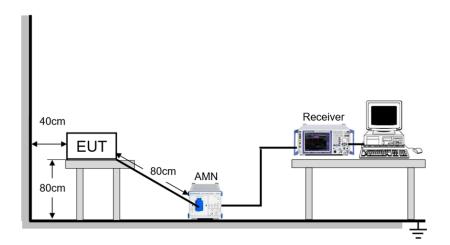
Pass

10. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a).

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

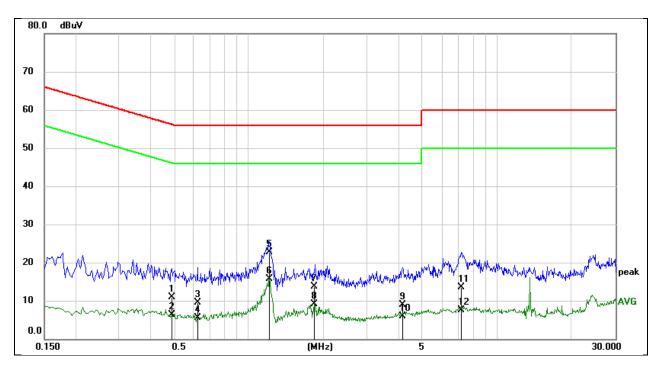
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz


TEST DATE / ENGINEER

Test Date April 18, 2024	Test By	Wite Chen
--------------------------	---------	-----------

TEST RESULTS

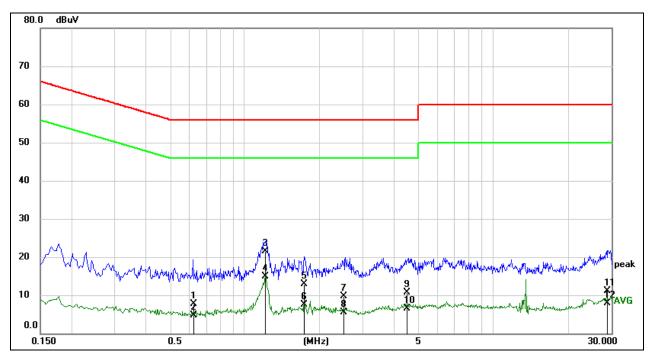
Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4937	0.77	10.04	10.81	56.11	-45.30	QP
2	0.4937	-3.75	10.04	6.29	46.11	-39.82	AVG
3	0.6258	-0.57	10.03	9.46	56.00	-46.54	QP
4	0.6258	-4.53	10.03	5.50	46.00	-40.50	AVG
5	1.2086	12.83	9.87	22.70	56.00	-33.30	QP
6	1.2086	5.83	9.87	15.70	46.00	-30.30	AVG
7	1.8307	3.75	10.01	13.76	56.00	-42.24	QP
8	1.8307	-0.88	10.01	9.13	46.00	-36.87	AVG
9	4.1479	-1.43	10.33	8.90	56.00	-47.10	QP
10	4.1479	-4.34	10.33	5.99	46.00	-40.01	AVG
11	7.1889	3.02	10.43	13.45	60.00	-46.55	QP
12	7.1889	-2.85	10.43	7.58	50.00	-42.42	AVG

Note:

1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

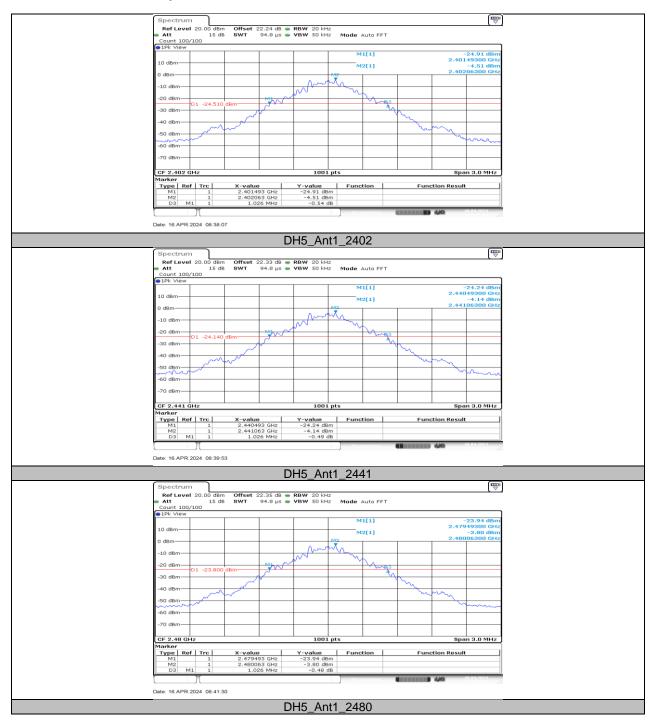
Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Neutral		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.6221	-2.30	10.03	7.73	56.00	-48.27	QP
2	0.6221	-5.37	10.03	4.66	46.00	-41.34	AVG
3	1.2074	11.68	9.87	21.55	56.00	-34.45	QP
4	1.2074	4.99	9.87	14.86	46.00	-31.14	AVG
5	1.7448	2.87	9.99	12.86	56.00	-43.14	QP
6	1.7448	-2.48	9.99	7.51	46.00	-38.49	AVG
7	2.5215	-0.32	10.12	9.80	56.00	-46.20	QP
8	2.5215	-4.55	10.12	5.57	46.00	-40.43	AVG
9	4.4987	0.26	10.35	10.61	56.00	-45.39	QP
10	4.4987	-3.82	10.35	6.53	46.00	-39.47	AVG
11	28.9482	0.04	11.12	11.16	60.00	-48.84	QP
12	28.9482	-3.23	11.12	7.89	50.00	-42.11	AVG

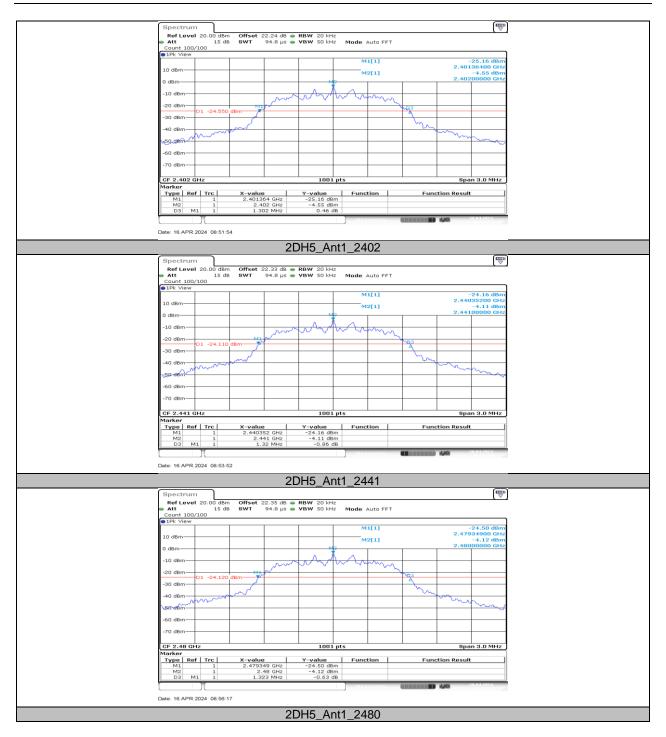
Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

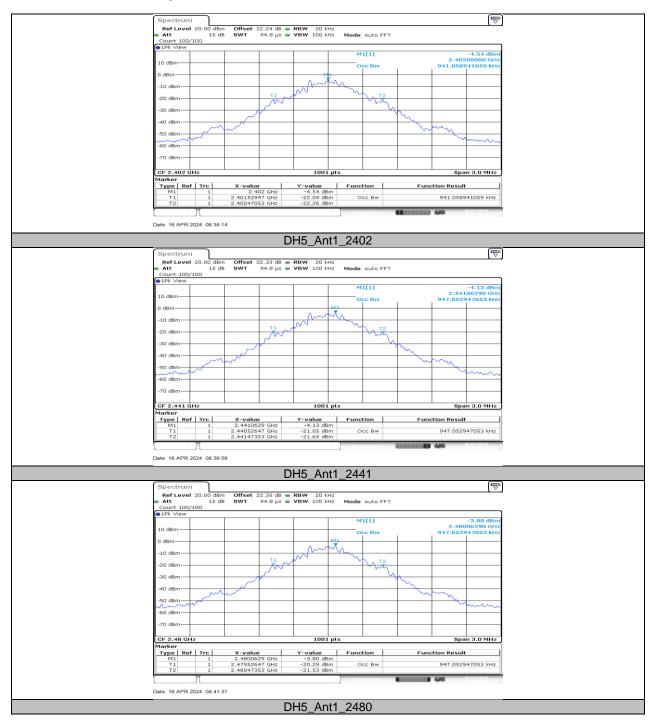
Note: All the modes have been tested, only the worst data was recorded in the report.


11. TEST DATA

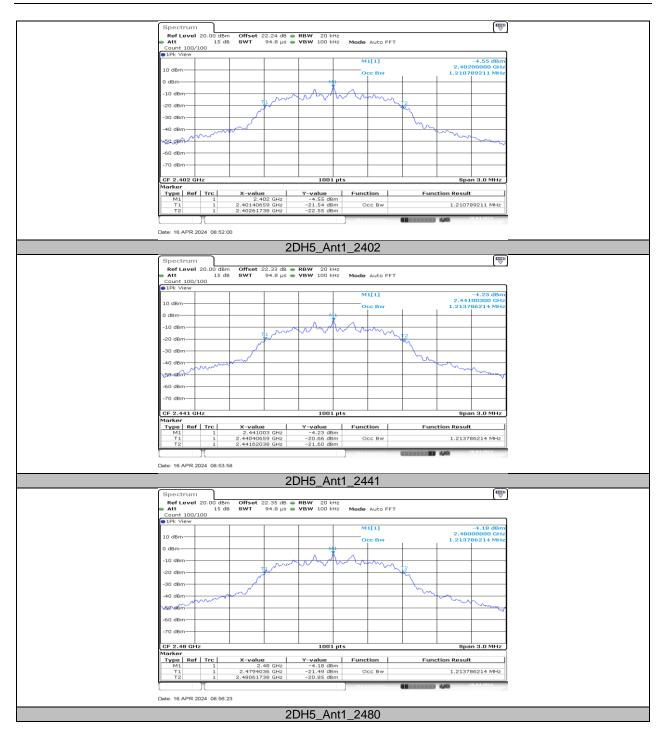
11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
	2402	1.03	2401.49	2402.52	PASS	
DH5	Ant1	2441	1.03	2440.49	2441.52	PASS
		2480	1.03	2479.49	2480.52	PASS
		2402	1.30	2401.36	2402.67	PASS
2DH5	Ant1	2441	1.32	2440.35	2441.67	PASS
		2480	1.32	2479.35	2480.67	PASS

11.1.2. Test Graphs



11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.941	2401.5295	2402.4705	PASS
DH5	Ant1	2441	0.947	2440.5265	2441.4735	PASS
		2480	0.947	2479.5265	2480.4735	PASS
		2402	1.211	2401.4066	2402.6174	PASS
2DH5	Ant1	2441	1.214	2440.4066	2441.6204	PASS
		2480	1.214	2479.4036	2480.6174	PASS

11.2.2. Test Graphs

11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result

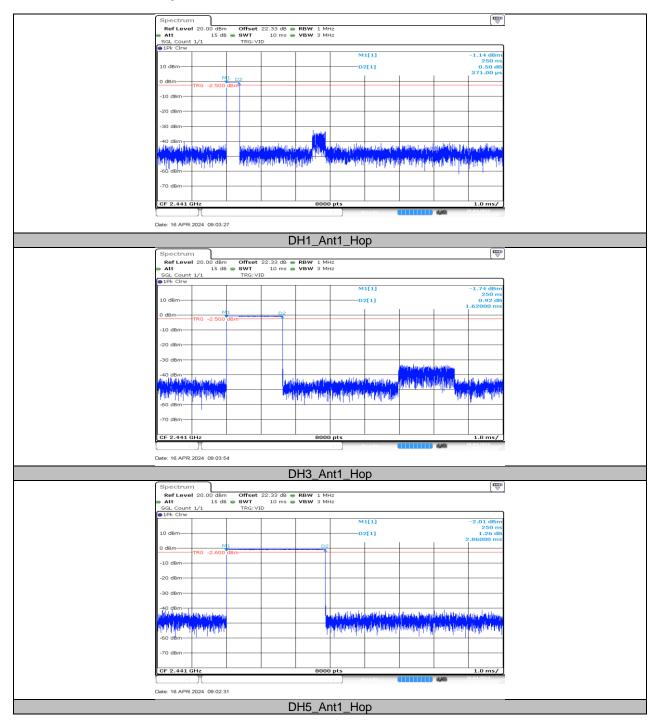
Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	0.81	≤20.97	PASS
DH5	Ant1	2441	1.33	≤20.97	PASS
		2480	1.43	≤20.97	PASS
		2402	1.36	≤20.97	PASS
2DH5	2DH5 Ant1	2441	1.61	≤20.97	PASS
		2480	1.96	≤20.97	PASS

11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

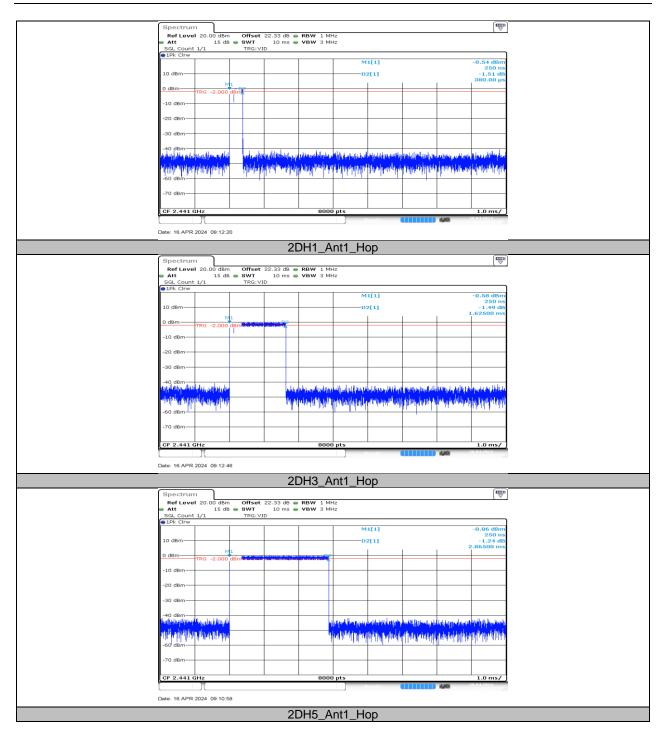
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.084	≥1.030	PASS
2DH5	Ant1	Нор	1.136	≥0.880	PASS

11.4.2. Test Graphs

Spectrum						
Ref Level 20	.00 dBm Offset 2	2.33 dB 👄 RBW 300	<hz< th=""><th></th><th>\bigtriangledown</th><th></th></hz<>		\bigtriangledown	
Att	30 dB SWT	6.3 µs 👄 VBW 11		т		
Count 100/100 Pk View	1					
			M1[1]		-0.71 dBm	
10 dBm			D2[1]		2.44184783 GHz -0.02 dB	
			M1		1.08406 MHz	
0 dBm	-				D2	
-10 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-60 UBIII						
-70 dBm						
Start 2.4395 0	GHz	69	pts		Stop 2.4435 GHz	
			Moasuring		16.04.2024	
Date: 16.APR.2024	09:01:16					
		DH5_A	nt1_Hop			
Spectrum						
Ref Level 20	.00 dBm Offset 2	2.33 dB 👄 RBW 300	<hz< td=""><td></td><td></td><td></td></hz<>			
Ref Level 20 Att	30 dB SWT	2.33 dB e RBW 300 6.3 µs e VBW 11		т		
Ref Level 20 Att Count 100/100	30 dB SWT			т		
Ref Level 20 Att	30 dB SWT			т	-0.69 dBm	
Ref Level 20 Att Count 100/100	30 dB SWT		MHZ Mode Auto FF	т	-0.69 dBm 2.44185942 GHz	
Ref Level 20 Att Count 100/100 PlPk View	30 dB SWT		M12 Mode Auto FF	т	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 PlPk View	30 dB SWT		MHZ Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm -10 dBm -20 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm -10 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 ● 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm -10 dBm -20 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 ● 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB SWT		M12 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB SWT		MH2 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB SWT		MH2 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	30 dB SWT		MH2 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	30 db. SWT	6.3 µs • VBW 1 1	MH2 Mode Auto FF	T	-0.69 dBm 2.44185942 GHz 0.03 dB 1.13623 MHz	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 db. SWT	6.3 µs • VBW 1 1	Made Auto FF		-0.69 dBm 2.44105942 GHz 0.03 dB 1.13623 MHz 02 2 2 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 5 4 5	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 db SWT	6.3 µs • VBW 1 1	Made Auto FF		-0.69 dBm 2.44105942 GHz 0.03 dB 1.13623 MHz 02 2 2 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 5 4 5	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	30 db SWT	6.3 µs • VBW 1 I	Made Auto FF M1[1] D2[1] M3 D2[1] M3 D2[1] M3 D2[1] M3 D2[1] M4 D2[1] M4 D2[1] M4 D4		-0.69 dBm 2.44105942 GHz 0.03 dB 1.13623 MHz 02 2 2 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 5 4 5	
Ref Level 20 Att Count 100/100 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	30 db SWT	6.3 µs • VBW 1 I	Made Auto FF		-0.69 dBm 2.44105942 GHz 0.03 dB 1.13623 MHz 02 2 2 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 5 4 5	


11.5. APPENDIX E: TIME OF OCCUPANCY 11.5.1. Test Result

	FHSS Mode									
TestMode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict				
DH1	Ant1	Нор	0.371	0.119	<=0.4	PASS				
DH3	Ant1	Нор	1.62	0.259	<=0.4	PASS				
DH5	Ant1	Нор	2.86	0.305	<=0.4	PASS				
2DH1	Ant1	Нор	0.38	0.122	<=0.4	PASS				
2DH3	Ant1	Нор	1.625	0.260	<=0.4	PASS				
2DH5	Ant1	Нор	2.865	0.306	<=0.4	PASS				


	AFHSS Mode									
TestMode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict				
DH1	Ant1	Нор	0.371	0.059	<=0.4	PASS				
DH3	Ant1	Нор	1.62	0.130	<=0.4	PASS				
DH5	Ant1	Нор	2.86	0.153	<=0.4	PASS				
2DH1	Ant1	Нор	0.38	0.061	<=0.4	PASS				
2DH3	Ant1	Нор	1.625	0.130	<=0.4	PASS				
2DH5	Ant1	Нор	2.865	0.153	<=0.4	PASS				

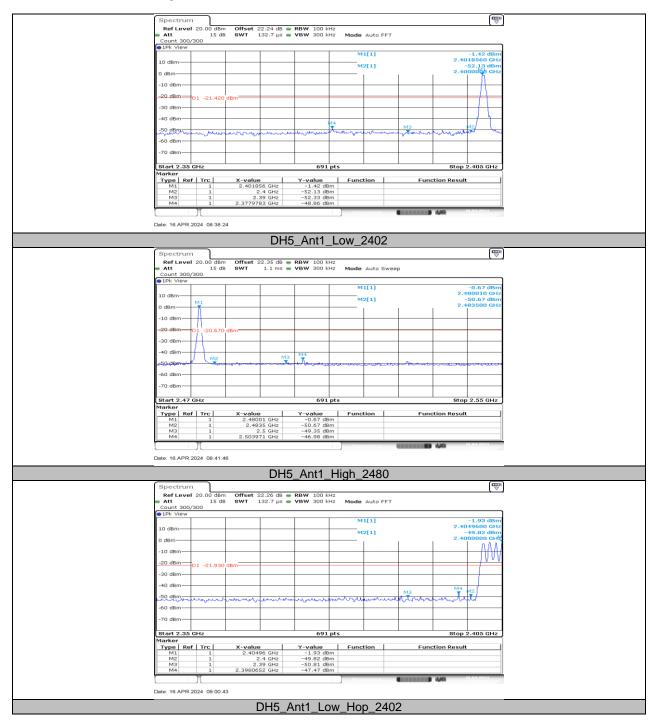
11.5.2. Test Graphs

11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

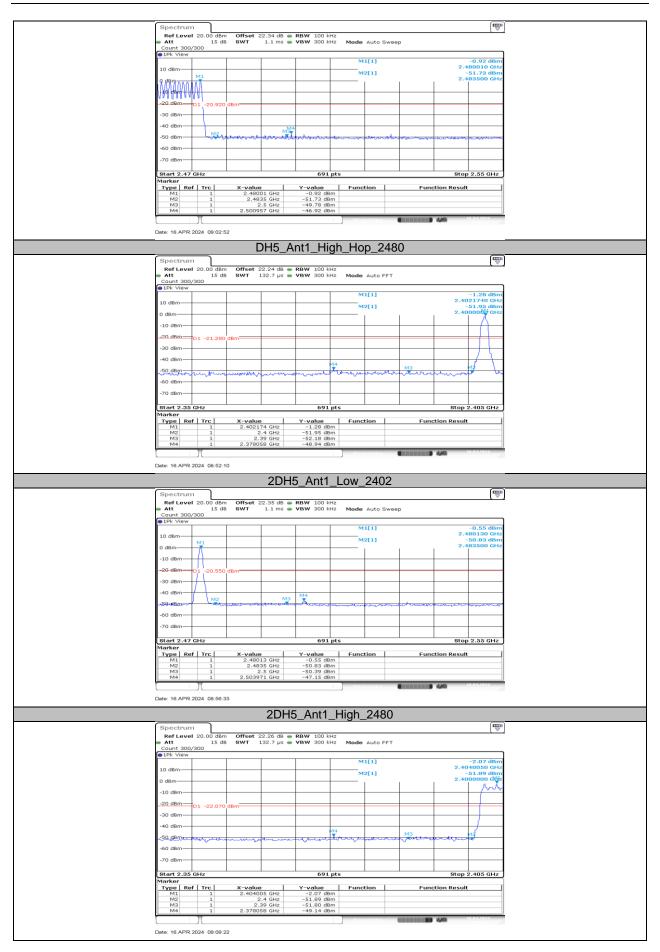
Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS

11.6.2. Test Graphs

Spectrum	. 1)
	20.00 dBm	Offset 2	2.24 dB 👄	RBW 100 ki	łz					1
Att	15 dB			VBW 300 ki		Auto Sweep	D			
Count 1000 1Pk View	0/1000									1
10 dBm										
10 UBIII										
0 dBm										
100000	88800868	YRADAGAA	NAAAAAAA	AAAAAAAA	VAAAAAAA	ARAAAAAA.	AAAAAAA	NAAAAAAA	140404	
-10 BBW	<u>UNVRUMA</u>	YUHNUN	<u>INNININI</u>	HAARAAA	RIMBIR	nwinny	NWW	HRAADAA		
8-1.4.	l nal nan 1 i	41164118	88080908	folloo.	000.0110	Antistan.	10,000,000			
-20 dBm										
-30 dBm										
40 dBm-										
									l l.	
⊌50 dBm									(\/ 4	
-60 dBm										
-70 dBm										
CF 2.4417	5 GHz			691	pts				83.5 MHz	
	Л				Mo.e	saria a		444	6.04.2024	
Date: 16.APR.	2024 09:01:41	1								
			D	H5_Ar	it1 Ho	D				
Spectrum)
	20.00 dBm	Offset 2	2.24 dB 👄	PPW 100 k	17					1
Att	15 dB			VBW 300 ki		Auto Swee	-			
Att Count 1000	15 dB					Auto Sweep	o			1
Att	15 dB					Auto Swee;	>]
Count 1000	15 dB					Auto Swee				
Att Count 1000	15 dB					Auto Swee;				
Att Count 1000 IPk View 10 dBm-	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode					
Att Count 1000 IPk View 10 dBm-	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	WM	
Att Count 1000 IPk View 10 dBm-	15 dB	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	www	
Att Count 1000 1Pk View 10 dBm 0 dBm 	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	WW	
Att Count 1000 IPk View 10 dBm 0 dBm AMAMM	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	Why	
Att Count 1000 IPk View 10 dBm dBm .20 dBm .20 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	Why	
Att Count 1000 1Pk View 10 dBm 0 dBm 	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	Why	
Att Count 1000 IPk View 10 dBm dBm .20 dBm .20 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	Why	
Att Count 1000 Other Other	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	Why	
Att Count 1000 IPk View 10 dBm 0 dBm -20 dBm -80 dBm -80 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode				Why	
Att Count 1000 Other Other	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			ww	WMy	
Att Count 1000 O IPk View 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -50 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode			www	WM	
Att Count 1000 O IPk View 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -50 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode				WM L	
Att Count 100 10 dBm 10 dBm 0 dBm 20 dBm 20 dBm -30 dBm -50 dBm -60 dBm	15 dB 0/1000	SWT	1 ms 👄	VBW 300 ki	12 Mode					
Att Count 100 10 dBm 10 dBm 0 dBm 20 dBm 20 dBm -30 dBm -50 dBm -60 dBm	15 db 	SWT	1 ms 👄	VBW 300 ki	42 Mode			Span	B3.5 MHz	
● Att Count 1000 ● 1Pk View 10 dBm → 0 dBm → 0 dBm → 20 dBm → 30 dBm → 50 dBm → -70 dBm	15 db 	SWT	1 ms 👄		42 Mode			Span		
● Att Count 1000 ● 1Pk View 10 dBm → 0 dBm → 0 dBm → 20 dBm → 30 dBm → 50 dBm → -70 dBm	15 db 15 db 15 db 10 10 10 10 10 10 10 10 10 10	wr Wr/Wl	1 ms 👄		42 Mode			Span		
Att Count 100 DR View 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -70 dBm -70 dBm	15 db 15 db 15 db 10 10 10 10 10 10 10 10 10 10	wr Wr/Wl		691	tz Mode			Span		
Att Count 100 DR View 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -70 dBm -70 dBm	15 db 15 db 15 db 10 10 10 10 10 10 10 10 10 10	wr Wr/Wl			tz Mode			Span		

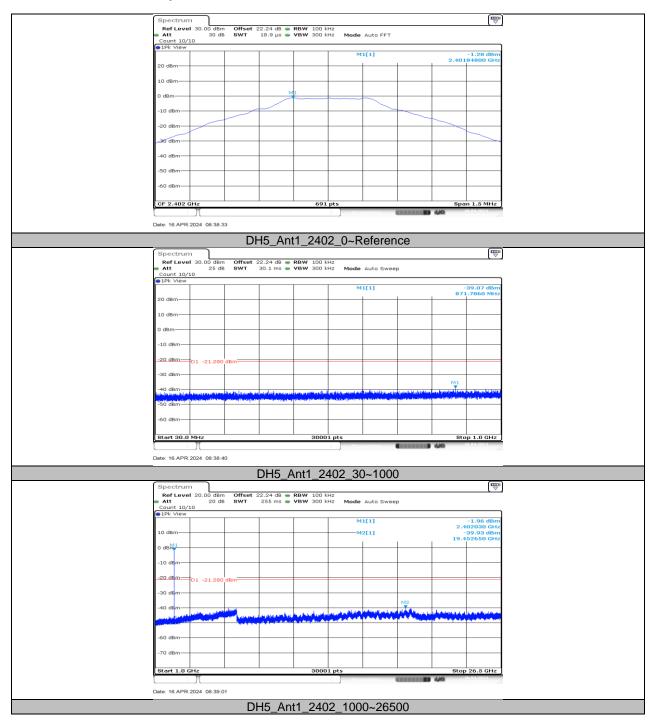


11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result

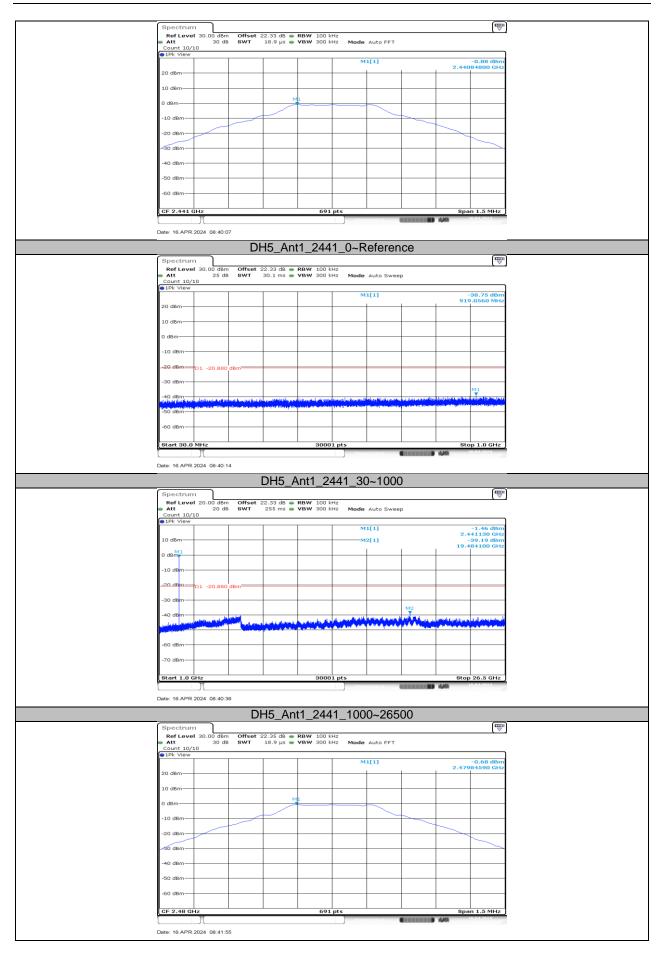

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	-1.42	-48.86	≤-21.42	PASS
DH5	Ant1	High	2480	-0.67	-46.98	≤-20.67	PASS
DHD	Anti	Low	Hop_2402	-1.93	-47.47	≤-21.93	PASS
		High	Hop_2480	-0.92	-46.92	≤-20.92	PASS
		Low	2402	-1.28	-48.94	≤-21.28	PASS
2DH5	Ant1	High	2480	-0.55	-47.15	≤-20.55	PASS
2005	Anti	Low	Hop_2402	-2.07	-49.14	≤-22.07	PASS
		High	Hop_2480	-0.61	-48.3	≤-20.61	PASS

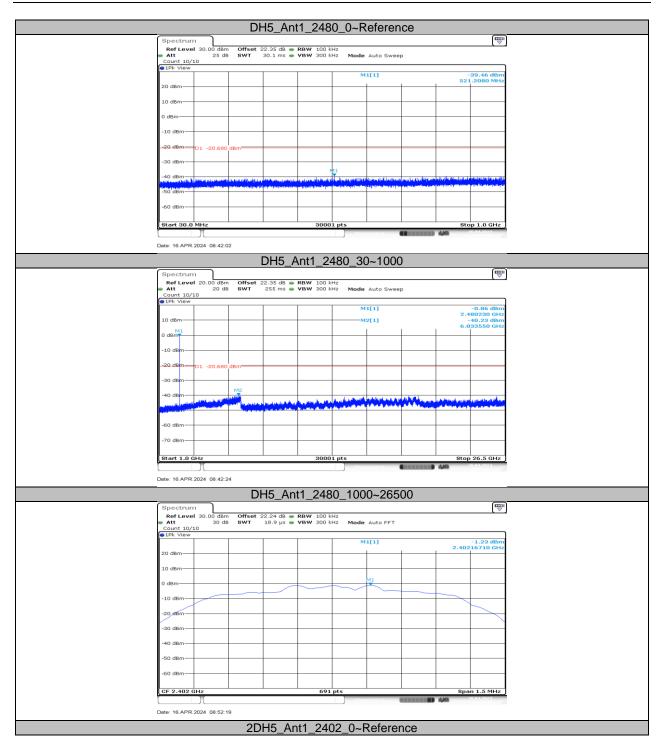
11.7.2. Test Graphs

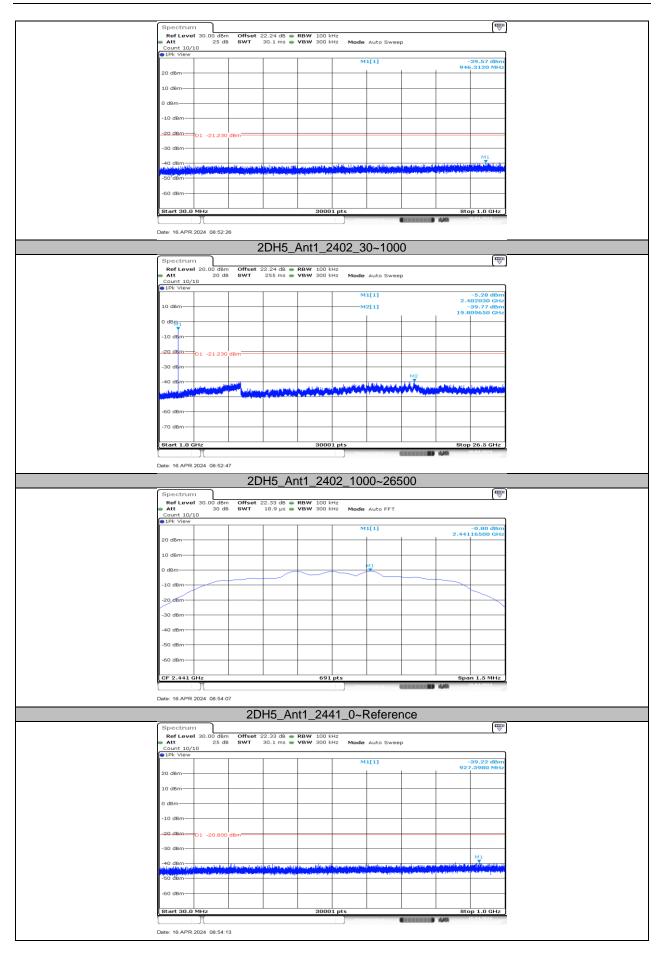
	2DH	5_Ant1_Lov	v_Hop_24	02	
Spectrum					
Ref Level 3	20.00 dBm Offset 22.34 d	B 👄 RBW 100 kHz		(*	1
- Att	15 dB SWT 1.1 m	ep			
Count 300/30 Pk View	30				
The Alem			M1[1]	-0.61 dBm	
10 dBm				2.473180 GHz	
M1			M2[1]	-49.70 dBm	
. dette	4			2.483500 GHz	
-10 dBm	7				
00.40-					
20 dBmD	1 -20.610 dBm				
-30 dBm					
-40 dBm					
	M2 ^{M4}	мз			
-50 dBm		- Contraction -		Contraction and a contraction of the contraction of	
-60 dBm					
-70 dBm					
Start 2.47 G	12	691 pts		Stop 2.55 GHz	
Marker	12	091 pts		500 2.00 GHz	
Type Ref		Y-value	Function	Function Result	
M1 M2	1 2.47318 GHz 1 2.4835 GHz				
M2 M3	1 2.4835 GHz 1 2.5 GHz				
M4	1 2.485188 GHz				
			Measuring	444 House and the second	
Date: 16.APR.20	24 09:11:17				
	2DH5	5_Ant1_Higl	h_Hop_24	80	

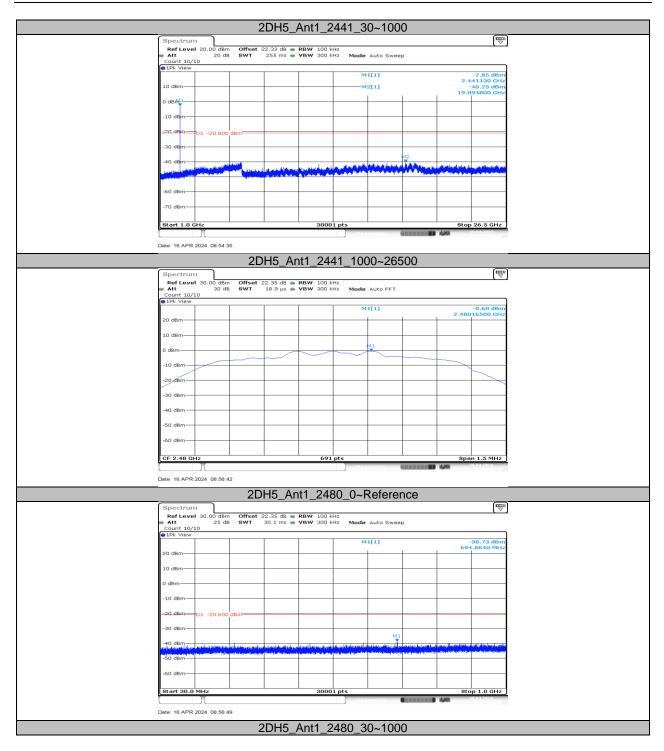


11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result


Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	-1.28		PASS
		2402	30~1000	-39.07	≤-21.28	PASS
			1000~26500	-39.93	≤-21.28	PASS
			Reference	-0.88		PASS
DH5	Ant1	2441	30~1000	-38.75	≤-20.88	PASS
			1000~26500	-39.19	≤-20.88	PASS
			Reference	-0.68		PASS
		2480	30~1000	-39.46	≤-20.68	PASS
			1000~26500	-40.23	≤-20.68	PASS
			Reference	-1.23		PASS
		2402	30~1000	-39.57	≤-21.23	PASS
			1000~26500	-39.77	≤-21.23	PASS
			Reference	-0.80		PASS
2DH5	Ant1	2441	30~1000	-39.22	≤-20.8	PASS
			1000~26500	-40.25	≤-20.8	PASS
			Reference	-0.60		PASS
		2480	30~1000	-38.73	≤-20.6	PASS
			1000~26500	-39.41	≤-20.6	PASS


11.8.2. Test Graphs





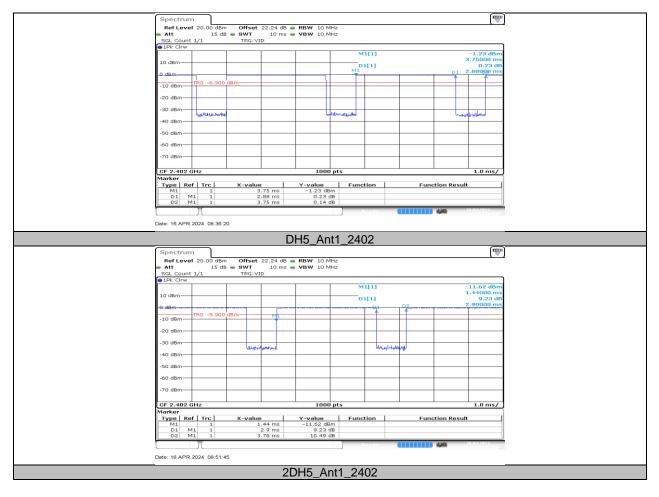
Spectrum (♥) Ref Level 20.00 dBm Offset 22.35 dB ● RBW 100 kHz
Att 20 dB SWT 255 ms VBW 300 kHz Mode Auto Sweep
Count 10/10
TPK VI6W M1[1] -3.55 dBm
2.480230 GHz
10 dBm M2[1]39.41 dBm 19.80500 GHz
0 d8/64
-10 dBm
-20.48m 01 -20.600 dBm
-30 dBm
-40 dBm
-60 dBm-
-70 dBm-
Start 1.0 GHz 30001 pts Stop 26.5 GHz
Date: 16.APR.2024 08:57:10
2DH5 Ant1 2480 1000~26500

11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.88	3.75	0.7680	76.80	1.15	0.35	1
2DH5	2.9	3.76	0.7713	77.13	1.13	0.34	1

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT