

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

RF Exposure Evaluation Report

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Sunny Deng Jutter

Applicant's name...... LEEDARSON LIGHTING CO., LTD.

Zhangzhou, Fujian, China

Test specification/ Standard...........: 47 CFR Part 1.1307

47 CFR Part 2.1093

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Smart LED Lamp

Trade Mark LEEDARSON

Manufacturer...... 1:LEEDARSON LIGHTING CO., LTD.

 ${\tt 2:LEEDARSON\ IOT\ TECHNOLOGY\ (THAILAND)\ CO.,\ LTD.}$

Model/Type reference...... 12CFA1960WRGB01

Listed Models: 13aFS-A800SG-G1T-xx, 12CFA1960WRGBxx

13aFS-ST800SG-G1T-xx, 12CFST1960RGBxx 13aFA-G800SG-G1T-xx, 12CFG2560WRGBxx

(Where "y" may be "A" to "Z", which designates for different enclosure pattern design; "xx" may be "00" to "99", which designates for different beam angle, color of eyelet contact,

different package of style and CCT.)

Modulation Type.....: GFSK

Operation Frequency...... From 2402MHz to 2480MHz

Hardware Version..... wifi 2.4G+ble 4.2

Software Version...... Hubspace

Rating...... 120V, 60Hz, 117mA, 8.5W

Result..... PASS

Report No.: MTEB23060137-H Page 2 of 7

TEST REPORT

Equipment under Test : Smart LED Lamp

Model /Type : 12CFA1960WRGB01

Listed Models 13aFS-A800SG-G1T-xx, 12CFA1960WRGBxx

13aFS-ST800SG-G1T-xx, 12CFST1960RGBxx 13aFA-G800SG-G1T-xx, 12CFG2560WRGBxx

(Where "y" may be "A" to "Z", which designates for different enclosure pattern design; "xx" may be "00" to "99", which designates for different beam angle, color of eyelet contact,

different package of style and CCT.)

Remark Their electrical circuit design, layout components used and

internal wiring are identical, Only the beam angle, color of eyelet

contact, package of style and CCT are different.

Applicant : LEEDARSON LIGHTING CO., LTD.

Address : Xingda Road, Xingtai Industrial Zone, Changtai County,

Zhangzhou, Fujian, China

Manufacturer(1) : LEEDARSON LIGHTING CO., LTD.

Address(1) : Xingtai Industrial Zone, Economic Development Zone,

Changtai County, Zhangzhou City, Fujian Province, P.R.China

Manufacturer(2) : LEEDARSON IOT TECHNOLOGY (THAILAND) CO., LTD.

Address(2) : 71, Moo5, Wellgrow Industrial Easte. Bang Samak, Bang

Pakong District, Chachoengsao 24130

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MTEB23060137-H Page 3 of 7

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2023.06.12	Initial Issue	Alisa Luo

Report No.: MTEB23060137-H Page 4 of 7

2. SAR Evaluation

2.1 RF Exposure Compliance Requirement

2.1.1Standard Requirement

According to §1.1307(e)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

KDB447498 D01: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

2.1.2 Limits

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposure	es	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/1 61.4	1.63 4.89/1 0.163	*(100) *(900/12) 1.0 t/300	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614 824/1 27.5	1.63 2.19/1 0.073	*(100) *(180/r²) 0.2 1/1500 1.0	30 30 30 30 30

F= Frequency in MHz Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*Pi*R 2)

Where Pd = power density in mW/cm2 Pout = output power to antenna in mW G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Report No.: MTEB23060137-H Page 5 of 7

2.1.3 EUT RF Exposure

Measurement Data

BLE

GFSK							
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power				
rest charmer	(dBm)	(dBm)	(dBm)				
Lowest(2402MHz)	7.892	7.892 ± 1	8.892				
Middle(2441MHz)	9.276	9.276±1	10.276				
Highest(2480MHz)	9.165	9.165±1	10.165				

Worst case: GFSK								
Channel	Maximum Peak Conducted Output Power (dBm)	Maximum Peak Conducted Output Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result		
Highest(2441 MHz)	10.276	10.65	-3.45	0.0009	1.0	Pass		

Note: 1) Refer to report MTEB23060137-R1 for EUT test Max Conducted average Output Power value. Note: 2) Pd = (Pout*G)/(4* Pi * R2)=(10.65*0.45)/(4*3.1416*202)=0.0009 Note: 3)EUT's Bluetooth module is more than 20cm away from the human body.

Report No.: MTEB23060137-H Page 6 of 7

WIFI 2.4G

Antenna Gain: -3.45dBi

IEEE for 802.11b mode							
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power				
	(dBm)		(dBm)				
Lowest(2412MHz)	19.40	19.40±1	20.40				
Middle(2437MHz)	19.67	19.67±1	20.67				
Highest(2462MHz)	20.55	20.55±1	21.55				

IEEE for 802.11g mode							
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power				
	(dBm) (dBm)		(dBm)				
Lowest(2412MHz)	15.15	15.15±1	16.15				
Middle(2437MHz)	16.05	16.05±1	17.05				
Highest(2462MHz)	16.93	16.93±1	17.93				

IEEE for 802.11n(HT20) mode							
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power				
	(dBm) (dBm)		(dBm)				
Lowest(2412MHz)	13.81	13.81±1	14.81				
Middle(2437MHz)	14.48	14.48±1	15.48				
Highest(2462MHz)	15.49	15.49±1	16.49				

IEEE for 802.11n(HT40) mode						
Test channel	Maximum tune-up Power					
	(dBm)	Tune up tolerance (dBm)	(dBm)			
Lowest(2412MHz)	13.31	13.31±1	14.31			
Middle(2437MHz)	13.60	13.60±1	14.60			
Highest(2452MHz)	14.23	14.23±1	15.23			

Report No.: MTEB23060137-H Page 7 of 7

	Worst case: 802.11b mode								
Channel	Maximum Peak Conducted Output Power (dBm)	Maximum Peak Conducted Output Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result			
Highest(2462MH z)	21.55	142.89	-3.45	0.012	1.0	Pass			

Note: 1	I) Refer to rep	ort MTEB23060137-R2 for	EUT test Max Conducted	average Output Power value

Note: 2) Pd = (Pout*G)/(4* Pi * R2)=(142.89*0.45)/(4*3.1416*202)=0.012 Note: 3)EUT's Bluetooth module is more than 20cm away from the human body.

THE	END C)F REP	ORT	