

Report No.: AGC00302140301FE03 Page 1 of 59

FCC Test Report

Report No.: AGC00302140301FE03

FCC ID : 2AB22ROVERBEATST12

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: wireless mobile speaker

BRAND NAME : ETEKCITY

MODEL NAME : ROVERBEATS T12

CLIENT : Etekcity Corporation

DATE OF ISSUE : Mar.31, 2014

STANDARD(S) : FCC Part 15 Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 59

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Mar.31, 2014	Valid	Original Report

TABLE OF CONTENTS

1.	. VERIFICATION OF CONFORMITY	5
2.	. GENERAL INFORMATION	6
	2.1. PRODUCT DESCRIPTION	6
	2.2. TABLE OF CARRIER FREQUENCYS	6
	2.3. RECEIVER INPUT BANDWIDTH	7
	2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
	2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
	2.6. RELATED SUBMITTAL(S) / GRANT (S)	8
	2.7. TEST METHODOLOGY	8
	2.8. SPECIAL ACCESSORIES	8
	2.9. EQUIPMENT MODIFICATIONS	8
3.	. MEASUREMENT UNCERTAINTY	9
4.	. DESCRIPTION OF TEST MODES	9
5.	. SYSTEM TEST CONFIGURATION	10
	5.1. CONFIGURATION OF EUT SYSTEM	
	5.2. EQUIPMENT USED IN EUT SYSTEM	10
	5.3. SUMMARY OF TEST RESULTS	
	. TEST FACILITY	
7.	. PEAK OUTPUT POWER	
	7.1. MEASUREMENT PROCEDURE	
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	7.3. LIMITS AND MEASUREMENT RESULT	
8.	. 20DB BANDWIDTH	_
	8.1. MEASUREMENT PROCEDURE	
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	8.3. LIMITS AND MEASUREMENT RESULTS	_
9.	. CONDUCTED SPURIOUS EMISSION	
	9.1. MEASUREMENT PROCEDURE	
	9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	9.3. MEASUREMENT EQUIPMENT USED	
	9.4. LIMITS AND MEASUREMENT RESULT	
1(0. RADIATED EMISSION	
	10.1. MEASUREMENT PROCEDURE	
	10.2. TEST SETUP	
	10.3. TEST RESULT	33

11. BAND EDGE EMISSION	37
11.1. MEASUREMENT PROCEDURE	37
11.2. TEST SET-UP	37
11.3. TEST RESULT	38
12. NUMBER OF HOPPING FREQUENCY	42
12.1. MEASUREMENT PROCEDURE	42
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	42
12.3. MEASUREMENT EQUIPMENT USED	42
12.4. LIMITS AND MEASUREMENT RESULT	42
13. TIME OF OCCUPANCY (DWELL TIME)	43
13.1. MEASUREMENT PROCEDURE	43
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	43
13.3. MEASUREMENT EQUIPMENT USED	43
13.4. LIMITS AND MEASUREMENT RESULT	43
14. FREQUENCY SEPARATION	46
14.1. MEASUREMENT PROCEDURE	46
14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	46
14.3. MEASUREMENT EQUIPMENT USED	46
14.4. LIMITS AND MEASUREMENT RESULT	
15. FCC LINE CONDUCTED EMISSION TEST	48
15.1. LIMITS OF LINE CONDUCTED EMISSION TEST	48
15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	48
15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	49
15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	49
15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	50
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	52
APPENDIX B: PHOTOGRAPHS OF EUT	54

Page 5 of 59

1. VERIFICATION OF CONFORMITY

Applicant	Etekcity Corporation		
Address	2310 SE DELAWARE AVE SUITE G #243, ANKENY, IA 50021, United States		
Manufacturer	Zhongshan New Point Electron Technology Co.,Ltd.		
Address	NO.8, Zhongsheng Street, Shiqi District, Zhongshan, Guangdong, China.		
Product Designation	vireless mobile speaker		
Brand Name	ETEKCITY		
Test Model	ROVERBEATS T12		
Date of test	Mar.26, 2014 to Mar.27, 2014		
Deviation	None		
Condition of Test Sample	Normal		
Report Template	AGCRT-US-BR/RF (2013-03-01)		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Prepared By

Water Zuo Mar.31, 2014

Checked By

Forrest Lei Mar.31, 2014

Authorized By

Solger Zhang Mar.31, 2014

Page 6 of 59

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is "wireless mobile speaker" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	-6.39dBm(Max)
Bluetooth Version	V 3.0
Modulation	GFSK, π /4-DQPSK, 8DPSK
Number of channels	79
Hardware Version	QD0068
Software Version	T12BOX V1.0
Antenna Designation	PCB Antenna
Antenna Gain	2.0dBi
Power Supply	DC3.7V by Battery

Note: The USB port only used for charging and can't be used to transfer data with PC.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
	0	2402MHZ	
	1	2403MHZ	
	:	:	
	38	2440 MHZ	
2400~2483.5MHZ	39	2441 MHZ	
	40	2442 MHZ	
	:	:	
	77	2479 MHZ	
	78	2480 MHZ	

Page 7 of 59

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits), 4LSB's (4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

Page 8 of 59

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AB22ROVERBEATST12** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 59

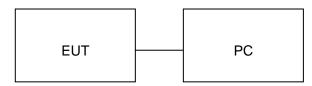
3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 2.75dB Radiated measurement: +/- 3.2dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	WORST
1	Low channel TX	
2	Middle channel TX	
3	High channel TX	
4	Normal Hopping+Charging	V

Note:


- 1. V means EMI worst mode.
- 2. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 10 of 59

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

Configure 2: (Control continuous TX)

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	Remark
1	wireless mobile speaker	ETEKCITY	ROVERBEATS T12	EUT
2	Battery	N/A	N/A	Accessory
3	PC	Dell	INSPIRON	A.E
4	Control box	N/A	N/A	A.E

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Peak Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Spurious Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Conduction Emission	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Frequency Separation	Compliant

Page 11 of 59

6. TEST FACILITY

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China		
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2003.		

ALL TEST EQUIPMENT LIST

Description	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Power Probe	R&S	NRP-Z23	100323	07/17/2013	07/16/2014
RF attenuator	N/A	RFA20db	68	N/A	N/A
Spectrum Analyzer	Agilent	E4440A	US41421290	07/17/2013	07/16/2014
Amplifier	EM	EM30180	0607030	02/28/2014	02/27/2015
Horn Antenna	EM	EM-AH-10180	67	04/20/2013	04/19/2014
Horn Antenna	A.H. Systems Inc.	SAS-574		07/17/2013	07/16/2014
EMI Test Receiver	Rohde & Schwarz	ESCI	100694	07/17/2013	07/16/2014
Bilogical Antenna	A.H. Systems Inc.	SAS-521-4	26	06/07/2013	06/06/2014
LISN	R&S	ESH3-Z5	8389791009	07/17/2013	07/16/2014
Loop Antenna	Daze	ZN30900N	SEL0097	07/17/2013	07/16/2014
Isolation Transformer	LETEAC	LTBK		07/17/2013	07/16/2014

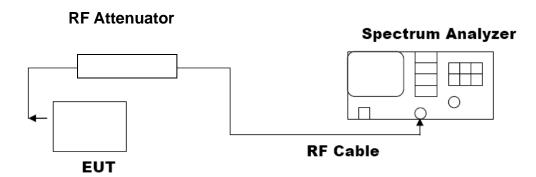
Page 12 of 59

7. PEAK OUTPUT POWER

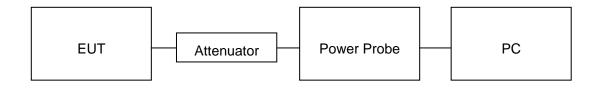
7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 4. RBW > the 20 dB bandwidth of the emission being measured, VBW ≥ RBW.
- 5. Record the maximum power from the Spectrum Analyzer.

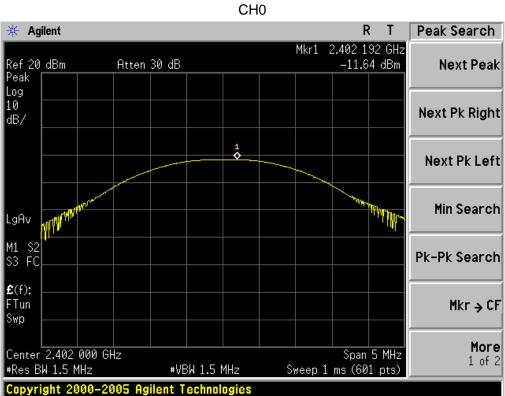

For average power test:

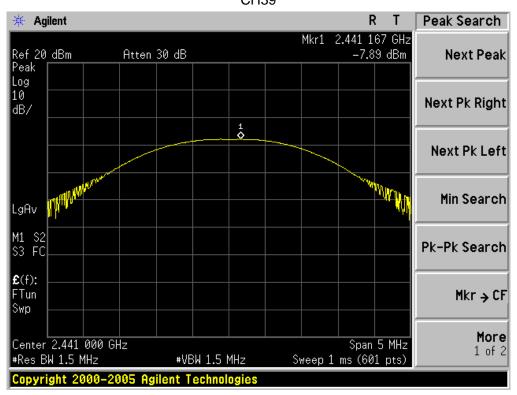
- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to power probe through an RF attenuator.
- 3. Connect the power probe to the PC.
- 4. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 5. Record the maximum power from the software.
- 6. The maximum peak power shall be less 125mW (21dBm).


Note: The EUT was tested according to DA000705 for compliance to FCC 47CFR 15.247 requirements.

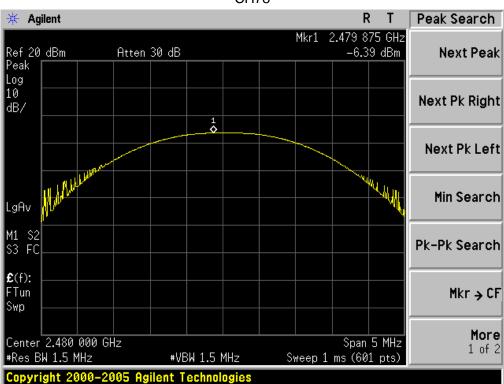
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

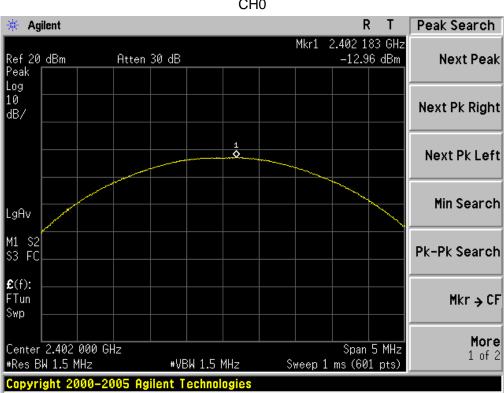

AVERAGE POWER SETUP

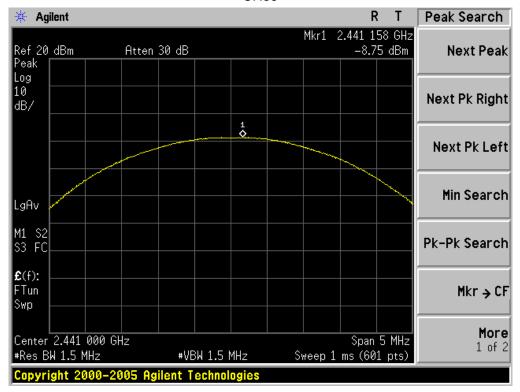

Page 13 of 59

7.3. LIMITS AND MEASUREMENT RESULT

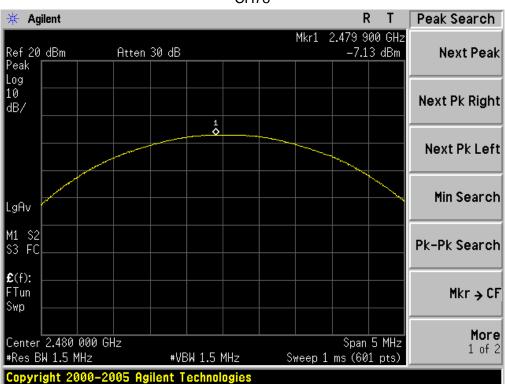

	PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION					
Frequency (GHz)	Pass or Fail					
2.402	-13.56	-11.64	21	Pass		
2.441	-9.84	-7.89	21	Pass		
2.480	-8.35	-6.39	21	Pass		

CH39

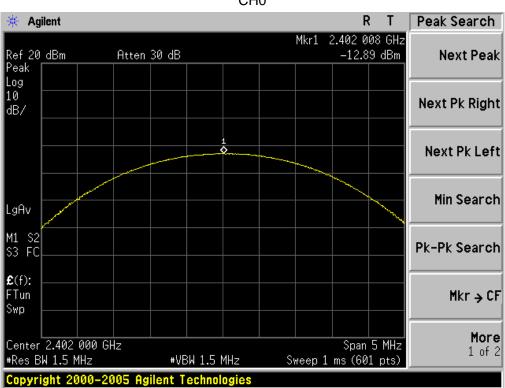

CH78


Report No.: AGC00302140301FE03 Page 15 of 59

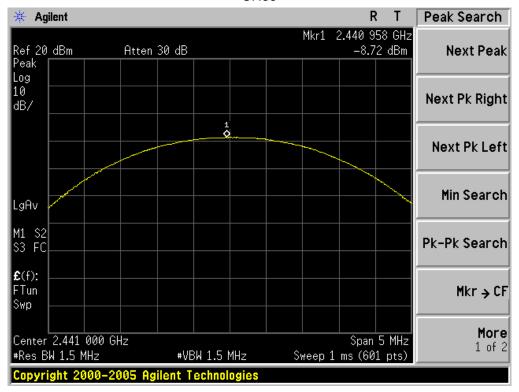
PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION								
Frequency (GHz) Average Power (dBm) Peak Power (dBm) Applicable Limits (dBm) Pass or Fail								
2.402	-14.81	-12.96	21	Pass				
2.441	-10.69	-8.75	21	Pass				
2.480	-9.09	-7.13	21	Pass				


CH₀

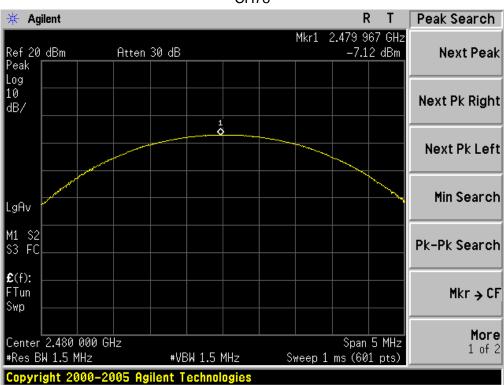
CH39


CH78

Page 17 of 59


	PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8-DPSK MODULATION							
Frequency (GHz) Average Power (dBm) Peak Power (dBm) Applicable Limits Pass or Fail								
2.402	-14.84	-12.89	21	Pass				
2.441	-10.56	-8.72	21	Pass				
2.480	-9.03	-7.12	21	Pass				

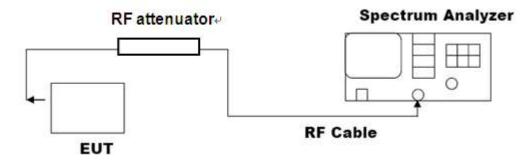
CH0



Page 18 of 59

CH39

CH78

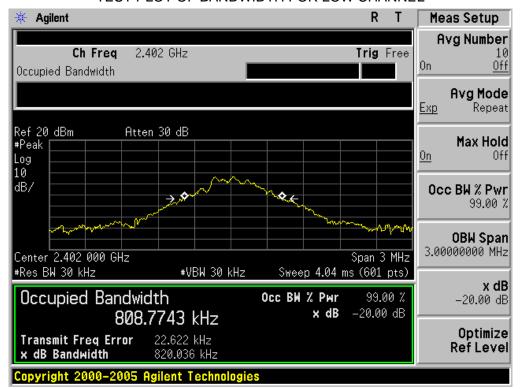

Page 19 of 59

8. 20DB BANDWIDTH

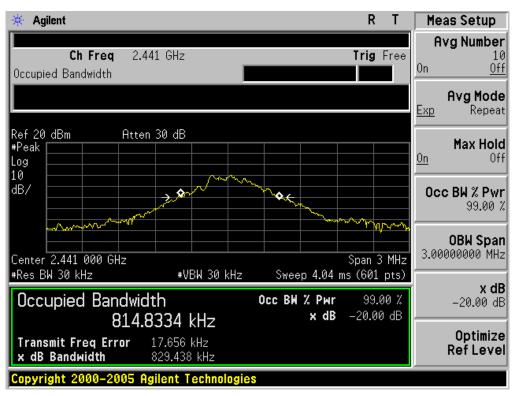
8.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW; Sweep = auto; Detector function = peak
- 5. Set SPA Trace 1 Max hold, then View.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

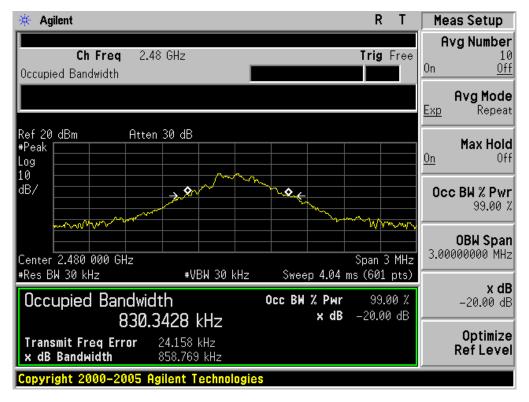


8.3. LIMITS AND MEASUREMENT RESULTS


BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESUL						
Measurement Result						
Applicable Limits	Test Da	Criteria				
	Low Channel	0.820	PASS			
N/A	Middle Channel	0.829	PASS			
	High Channel	0.859	PASS			

Page 20 of 59

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

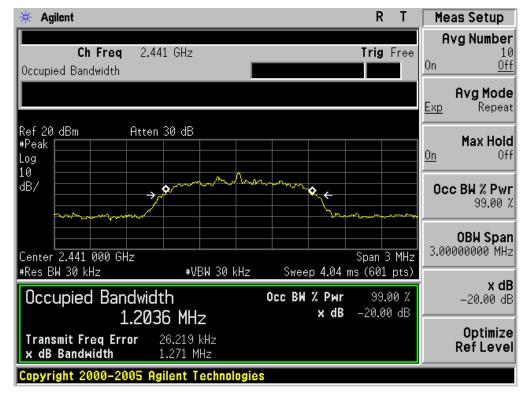


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

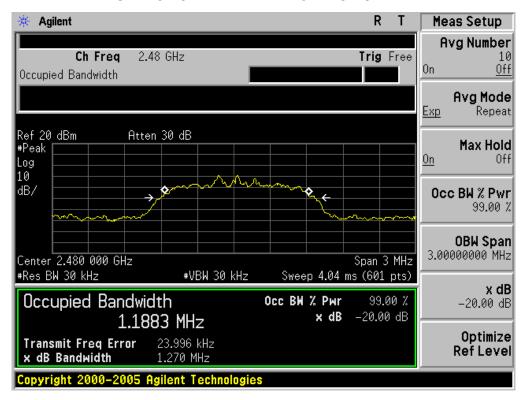
Page 21 of 59

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Report No.: AGC00302140301FE03 Page 22 of 59


BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESUL						
A mulicable Limite	Measurement Result					
Applicable Limits	Test Da	Criteria				
	Low Channel	1.263	PASS			
N/A	Middle Channel	1.271	PASS			
	High Channel	1.270	PASS			

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

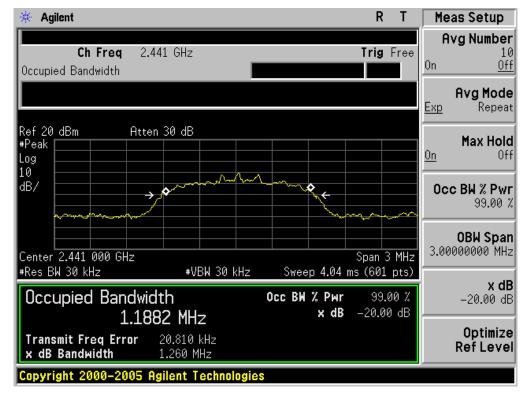


Page 23 of 59

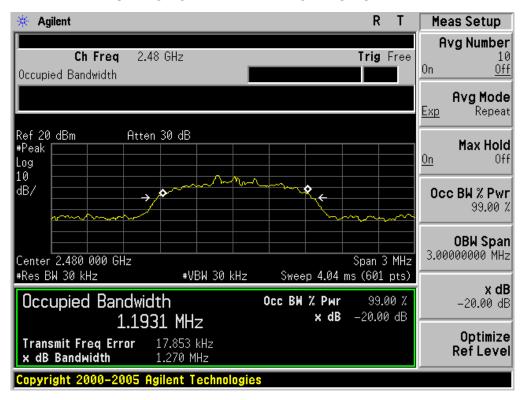
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Report No.: AGC00302140301FE03 Page 24 of 59


BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESUL						
Applicable Limite		Measurement Result				
Applicable Limits	Test Da	Criteria				
	Low Channel	1.263	PASS			
N/A	Middle Channel	1.260	PASS			
	High Channel	1.270	PASS			

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



Page 25 of 59

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 26 of 59

9. CONDUCTED SPURIOUS EMISSION

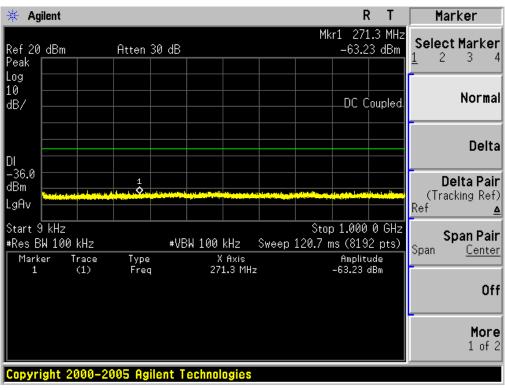
9.1. MEASUREMENT PROCEDURE

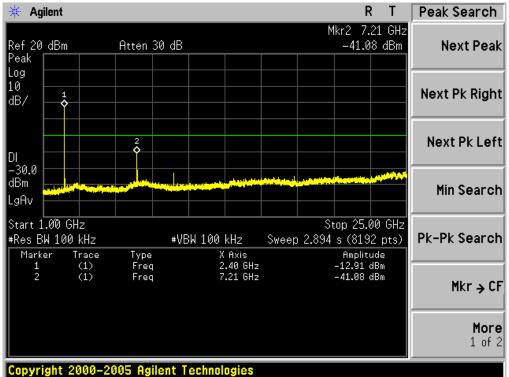
- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 4. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 5. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

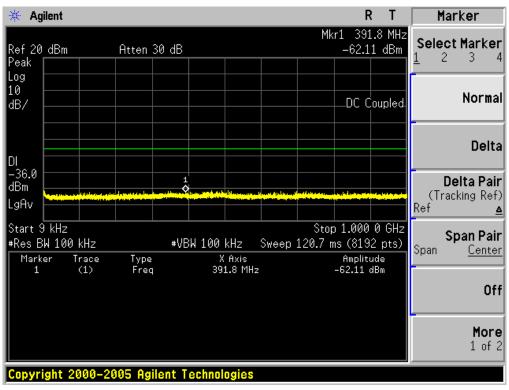
9.3. MEASUREMENT EQUIPMENT USED

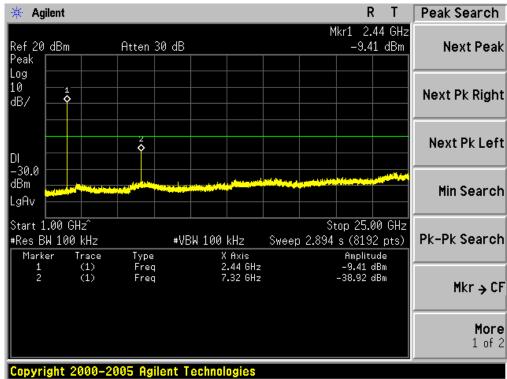

The same as described in section 6


9.4. LIMITS AND MEASUREMENT RESULT

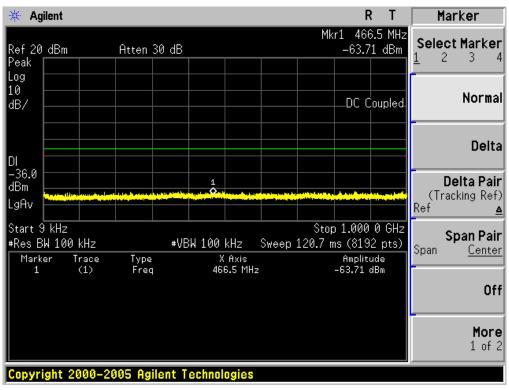
LIMITS AND MEASUREMENT RESULT						
Applicable Limite	Measurement Result					
Applicable Limits	Test Data	Criteria				
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit					
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS				
intentional radiator is operating, the radio frequency	Channel					
power that is produce by the intentional radiator						
shall be at least 20 dB below that in 100KHz						
bandwidth within the band that contains the highest						
level of the desired power.	At least -20dBc than the limit	DACC				
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS				
restricted bands, as defined in §15.205(a), must also						
comply with the radiated emission limits specified						
in§15.209(a))						

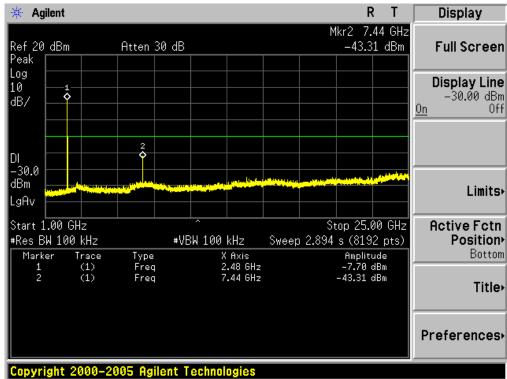
Page 27 of 59


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL



Page 28 of 59


TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL



Page 29 of 59

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

Page 30 of 59

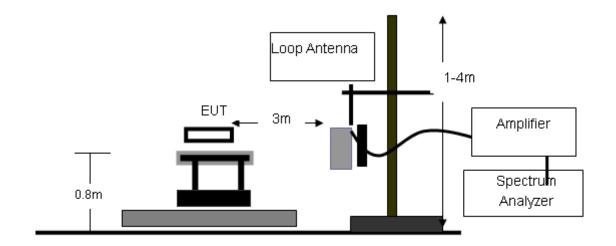
10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

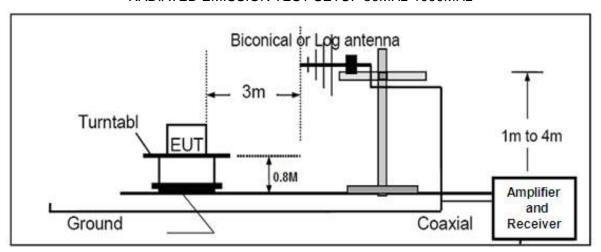
- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report No.: AGC00302140301FE03 Page 31 of 59

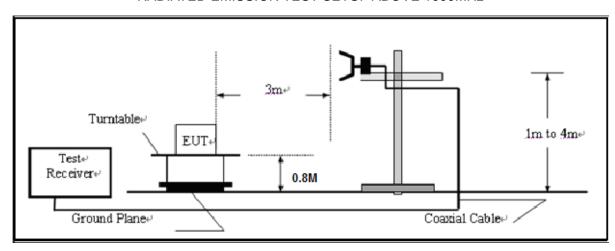
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/1MHz for Peak, 1MHz/10Hz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP


Page 32 of 59

10.2. TEST SETUP

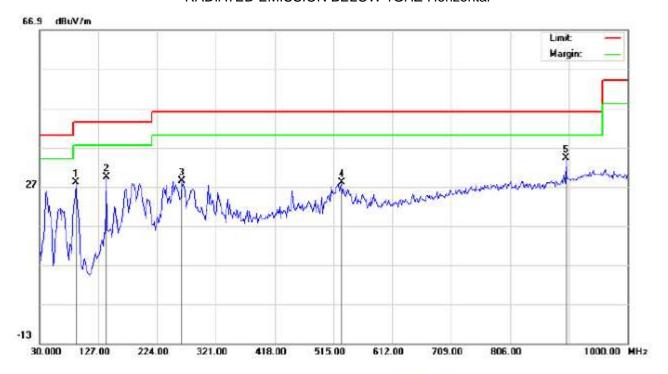

RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Temperature: 26

Humidity: 60 %


Page 33 of 59

10.3. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ-Horizontal

Site: site #1

Limit: FCC Class B 3M Radiation

EUT:wireless mobile speaker

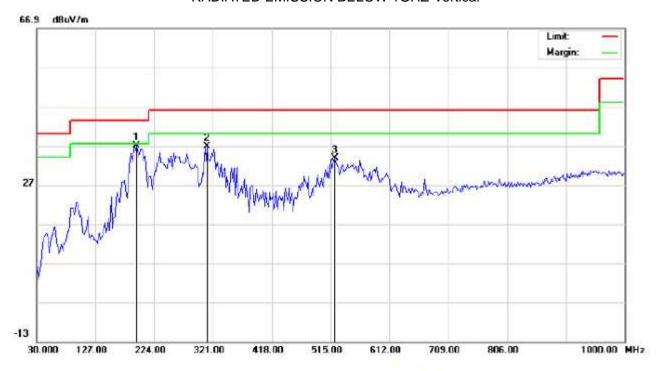
M/N:ROVERBEATS T12

Mode: Normal Hopping+Charging

Note:

No.	Mk	Freq.	Freq. Reading Factor Measurement Limit O	Over	Detector	~(BB) - 기계	Antenna Table ector Height Degree cm degree		Comment		
	[15] W 2000 - 1 - 1000 - 1 - 1000	dB/m	dBuV/m	dBu∀/m	dB			degree			
1		89.8167	22.60	5.31	27.91	43.50	-15.59	peak			
2		139.9333	14.26	15.17	29.43	43.50	-14.07	peak			
3		264.4166	14.11	14.34	28.45	46.00	-17.55	peak			
4		527.9333	6.19	21.88	28.07	46.00	-17.93	peak			
5		898 1500	5.65	28.56	34 21	46.00	-11 79	neak			

Power:


Distance:

Polarization: Horizontal

RESULT: PASS

Page 34 of 59

RADIATED EMISSION BELOW 1GHZ-Vertical

Site: site #1

Limit: FCC Class B 3M Radiation

EUT:wireless mobile speaker

M/N:ROVERBEATS T12

Mode: Normal Hopping+Charging

Note: BT

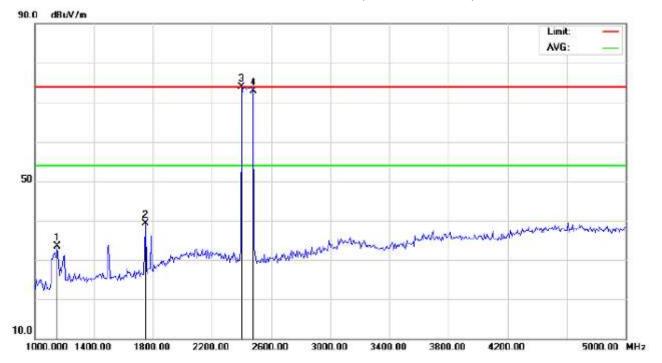
Polarization:	Vertical	Temperature: 26			
Power:		Humidity: 60 %			

Distance:

No.	Mk	Freq.	q. Reading Factor Measurement Limit Over Detect	Detector	Antenna Height	Table Degree	Comment				
	MHz dBuV di	dB/m	dBuV/m	dBuV/m	dB		cm	degree			
1	*	194.9000	25.30	11.76	37.06	43.50	-6.44	peak			
2		311.3000	20.67	16.16	36.83	46.00	-9.17	peak			
3		521.4667	12.12	21.71	33.83	46.00	-12.17	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.


2. The "Factor" value can be calculated automatically by software of measurement system.

Temperature: 26

Humidity: 60 %

Page 35 of 59

RADIATED EMISSION ABOVE 1GHZ (1-10th Harmonics) -Horizontal

Site: site #1

Limit: FCC Class B 3M Radiation above 1GHZ(PK)

EUT:wireless mobile speaker

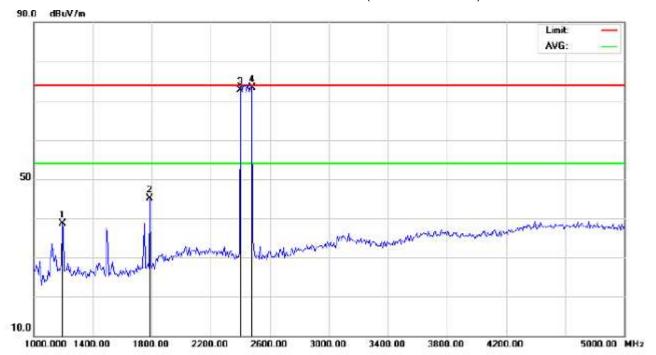
M/N:ROVERBEATS T12

Mode: Normal Hopping+Charging

Note:

No. Mk Freq.	Mk	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	A STATE OF THE STA	Comment	
		MHz	MHz	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Marie M. Wall 1984 to 1	cm
	1153.333	49.06	-15.53	33.53	74.00	-40.47	peak				
	1746.667	52.03	-12.78	39.25	74.00	-34.75	peak				
*	2402.000	83.50	-9.68	73.82	74.00	-0.18	peak				
0.—3	2480.000	82.54	-9.59	72.95	74.00	-1.05	peak				
	*	MHz 1153.333 1746.667 * 2402.000	MHz dBuV 1153.333 49.06 1746.667 52.03 * 2402.000 83.50	MHz dBuV dB/m 1153.333 49.06 -15.53 1746.667 52.03 -12.78 * 2402.000 83.50 -9.68	MHz dBu√ dB/m dBu√/m 1153.333 49.06 -15.53 33.53 1746.667 52.03 -12.78 39.25 * 2402.000 83.50 -9.68 73.82	MHz dBuV dB/m dBuV/m dBuV/m 1153.333 49.06 -15.53 33.53 74.00 1746.667 52.03 -12.78 39.25 74.00 * 2402.000 83.50 -9.68 73.82 74.00	MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB 1153.333 49.06 -15.53 33.53 74.00 -40.47 1746.667 52.03 -12.78 39.25 74.00 -34.75 * 2402.000 83.50 -9.68 73.82 74.00 -0.18	MHz dBuV dB/m dBuV/m dBuV/m dB 1153.333 49.06 -15.53 33.53 74.00 -40.47 peak 1746.667 52.03 -12.78 39.25 74.00 -34.75 peak * 2402.000 83.50 -9.68 73.82 74.00 -0.18 peak	MHz dBuV dB/m dBuV/m dB Detector Height 1153.333 49.06 -15.53 33.53 74.00 -40.47 peak 1746.667 52.03 -12.78 39.25 74.00 -34.75 peak * 2402.000 83.50 -9.68 73.82 74.00 -0.18 peak	MHz dBuV dB/m dBuV/m dB Detector Height Degree 1153.333 49.06 -15.53 33.53 74.00 -40.47 peak 1746.667 52.03 -12.78 39.25 74.00 -34.75 peak * 2402.000 83.50 -9.68 73.82 74.00 -0.18 peak	

Power:


Distance:

Polarization: Horizontal

RESULT: PASS

Page 36 of 59

RADIATED EMISSION ABOVE 1GHZ (1-10th Harmonics) -Vertical

Site: site #1 Polarization: Temperature: 26 Vertical Limit: FCC Class B 3M Radiation above 1GHZ(PK) Power: Humidity: 60 %

EUT:wireless mobile speaker

Distance:

M/N:ROVERBEATS T12

Mode: Normal Hopping+Charging

Note:

Mk	Freq.	Reading dBuV	Factor dB/m	Measurement dBuV/m	Limit dBu\//m	N.	Detector		C 2000 C	Comment
(3)										
	1193.333	54.25	-15.51	38.74	74.00	-35.26	peak			
	1786.667	57.55	-12.36	45.19	74.00	-28.81	peak			
	2402.000	82.32	-9.68	72.64	74.00	-1.36	peak			
*	2480.000	82.82	-9.59	73.23	74.00	-0.77	peak			
	Mk	MHz 1193.333 1786.667 2402.000	MHz dBuV 1193.333 54.25 1786.667 57.55 2402.000 82.32	MHz dBuV dB/m 1193.333 54.25 -15.51 1786.667 57.55 -12.36 2402.000 82.32 -9.68	MHz dBu√ dB/m dBu√/m 1193.333 54.25 -15.51 38.74 1786.667 57.55 -12.36 45.19 2402.000 82.32 -9.68 72.64	MHz dBuV dB/m dBuV/m dBuV/m 1193.333 54.25 -15.51 38.74 74.00 1786.667 57.55 -12.36 45.19 74.00 2402.000 82.32 -9.68 72.64 74.00	MHz dBuV dB/m dBuV/m dBuV/m dB 1193.333 54.25 -15.51 38.74 74.00 -35.26 1786.667 57.55 -12.36 45.19 74.00 -28.81 2402.000 82.32 -9.68 72.64 74.00 -1.36	Mk Freq. Reading Factor Measurement Limit Over Detector MHz dBuV dBm dBuV/m dBuV/m dB Detector 1193.333 54.25 -15.51 38.74 74.00 -35.26 peak 1786.667 57.55 -12.36 45.19 74.00 -28.81 peak 2402.000 82.32 -9.68 72.64 74.00 -1.36 peak	Mk Freq. Reading Factor Measurement Limit Over Detector Height MHz dBuV dB/m dBuV/m dBuV/m dB Detector Height 1193.333 54.25 -15.51 38.74 74.00 -35.26 peak 1786.667 57.55 -12.36 45.19 74.00 -28.81 peak 2402.000 82.32 -9.68 72.64 74.00 -1.36 peak	Mk Freq. Reading Factor Measurement Limit Over Detector Height Degree MHz dBuV dB/m dBuV/m dB uV/m dB Detector Height Degree 1193.333 54.25 -15.51 38.74 74.00 -35.26 peak 1786.667 57.55 -12.36 45.19 74.00 -28.81 peak 2402.000 82.32 -9.68 72.64 74.00 -1.36 peak

RESULT: PASS

Note: 5~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain, Margin=Measurement-Limit.

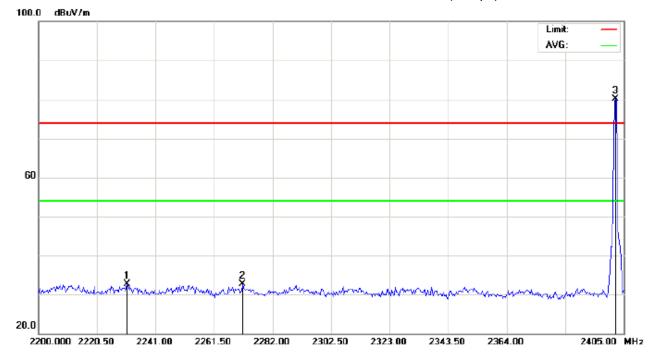
The "Factor" value can be calculated automatically by software of measurement system.

Page 37 of 59

11. BAND EDGE EMISSION

11.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set SPA Start or Stop Frequency = Operation Frequency, RBW>=1%span, VBW>=RBW
- 3. The band edges was measured and recorded.


11.2. TEST SET-UP

Radiated same as 10.2

Page 38 of 59

11.3. TEST RESULT

TEST PLOT OF BAND EDGE FOR LOW CHANNEL (3Mbps)-Horizontal

Site: site #1 Polarization: Horizontal Temperature: 26
Limit: FCC Class B 3M Radiation above 1GHZ(PK) Power: Humidity: 60 %

EUT:wireless mobile speaker

Distance:

M/N:ROVERBEATS T12


Mode: Low Channel TX

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu\//m	dBu∀/m	dB		cm	degree	
1		2231.092	42.64	-9.87	32.77	74.00	-41.23	peak			
2		2271.408	42.58	-9.82	32.76	74.00	-41.24	peak			
3	*	2402.000	89.69	-9.68	80.01	74.00	6.01	peak			

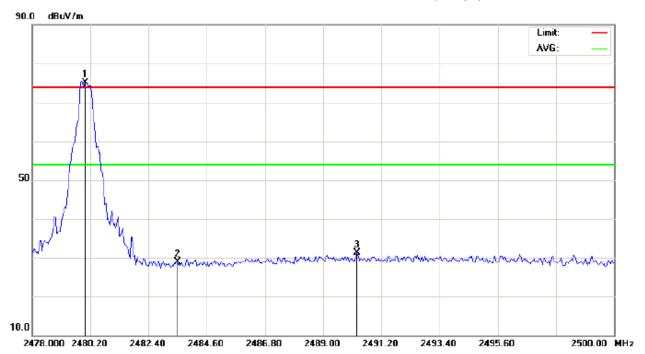
Page 39 of 59

TEST PLOT OF BAND EDGE FOR LOW CHANNEL (3Mbps)-Vertical

Site: site #1 Polarization: Vertical Temperature: 26 Humidity: 60 %

Limit: FCC Class B 3M Radiation above 1GHZ(PK) Power:

EUT:wireless mobile speaker Distance:


M/N:ROVERBEATS T12 Mode: Low Channel TX

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2226.992	43.15	-9.87	33.28	74.00	-40.72	peak			
2		2390.000	40.36	-9.69	30.67	74.00	-43.33	peak			
3	*	2402.000	83.58	-9.68	73.90	74.00	-0.10	peak			

Page 40 of 59

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (3Mbps)-Horizontal

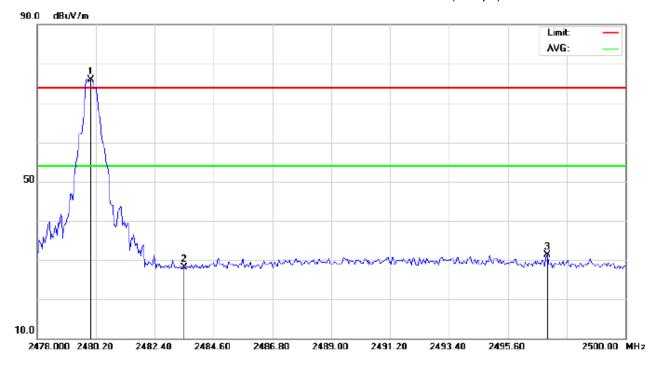
Site: site #1 Polarization: Horizontal Temperature: 26
Limit: FCC Class B 3M Radiation above 1GHZ(PK) Power: Humidity: 60 %

EUT:wireless mobile speaker

Distance:

M/N:ROVERBEATS T12 Mode: High Channel TX

Note:


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	2480.000	84.68	-9.59	75.09	74.00	1.09	peak			
2		2483.500	38.52	-9.59	28.93	74.00	-45.07	peak			
3		2490.283	40.91	-9.58	31.33	74.00	-42.67	peak			

Temperature: 26

Humidity: 60 %

Page 41 of 59

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (3Mbps)-Vertical

Site: site #1

Limit: FCC Class B 3M Radiation above 1GHZ(PK)

EUT:wireless mobile speaker

M/N:ROVERBEATS T12 Mode: High Channel TX

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	2480.000	85.48	-9.59	75.89	74.00	1.89	peak			
2		2483.500	37.74	-9.59	28.15	74.00	-45.85	peak			
3		2497.067	40.80	-9.57	31.23	74.00	-42.77	peak			

Power:

Distance:

Polarization: Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

Page 42 of 59

12. NUMBER OF HOPPING FREQUENCY

12.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=RBW.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

12.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Page 43 of 59

13. TIME OF OCCUPANCY (DWELL TIME)

13.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set Span = zero span, centered on a hoping channel
- 4. Set the spectrum analyzer as RBW=1MHz, VBW>=RBW, Span = 0 Hz

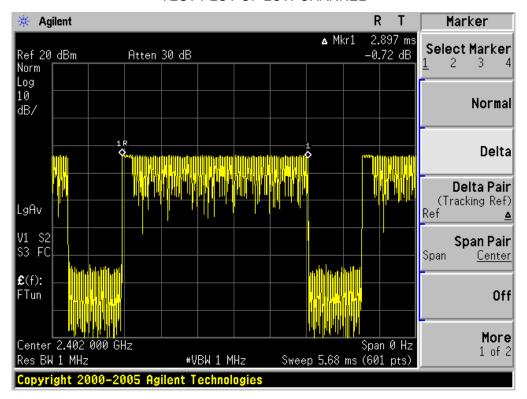
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

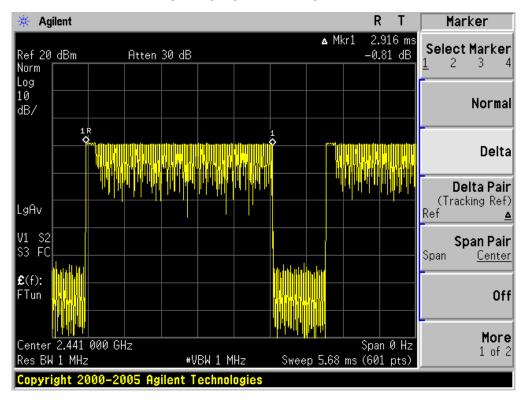
13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

13.4. LIMITS AND MEASUREMENT RESULT

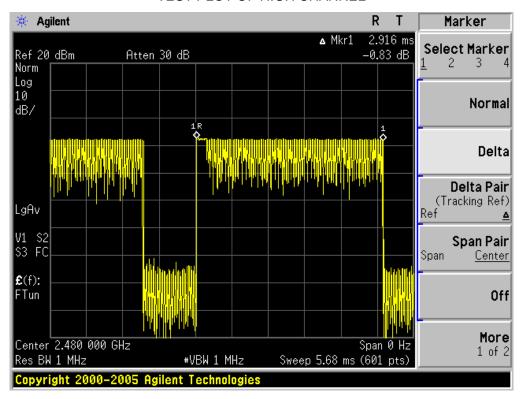

The Worst Case (3Mbps)

Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)
Low	2.897	31.6	309.01	400
Middle	2.916	31.6	311.04	400
High	2.916	31.6	311.04	400


Low Channel Time 2.897*(1600/6)/79*31.6=309.01ms Middle Channel Time 2.916*(1600/6)/79*31.6=311.04ms High Channel Time 2.916*(1600/6)/79*31.6=311.04ms

Page 44 of 59

TEST PLOT OF LOW CHANNEL



TEST PLOT OF MIDDLE CHANNEL

Page 45 of 59

TEST PLOT OF HIGH CHANNEL

Page 46 of 59

14. FREQUENCY SEPARATION

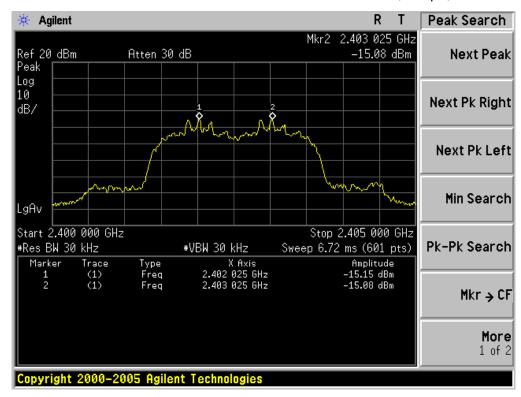
14.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

14.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6.3

14.4. LIMITS AND MEASUREMENT RESULT

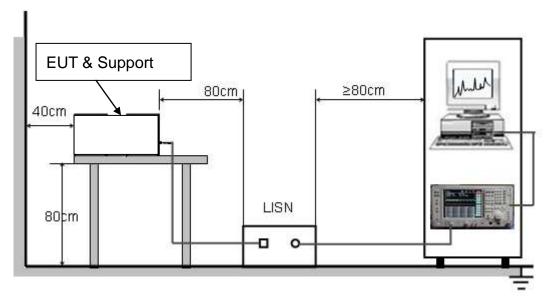
CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	Dage
CH00-CH01	1000	>=25 KHz or 2/3 20 dB BW	Pass

Page 47 of 59

TEST PLOT FOR FREQUENCY SEPARATION (3Mbps)

Page 48 of 59

15. FCC LINE CONDUCTED EMISSION TEST


15.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francisco	Maximum RF Line Voltage								
Frequency	Q.P.(dBuV)	Average(dBuV)							
150kHz~500kHz	66-56	56-46							
500kHz~5MHz	56	46							
5MHz~30MHz	60	50							

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Page 49 of 59

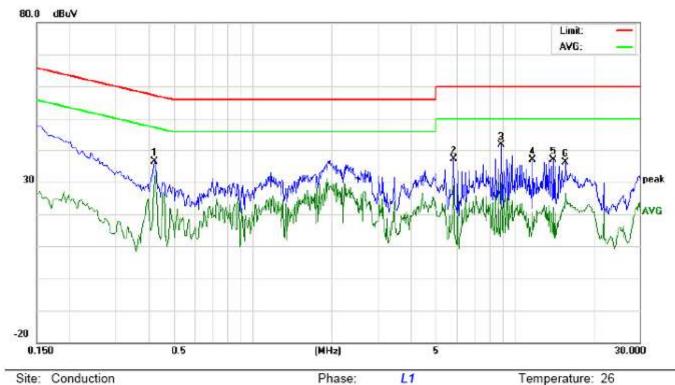
15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received 120V/60Hzpower by a LISN...
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Humidity: 60 %

Page 50 of 59

15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

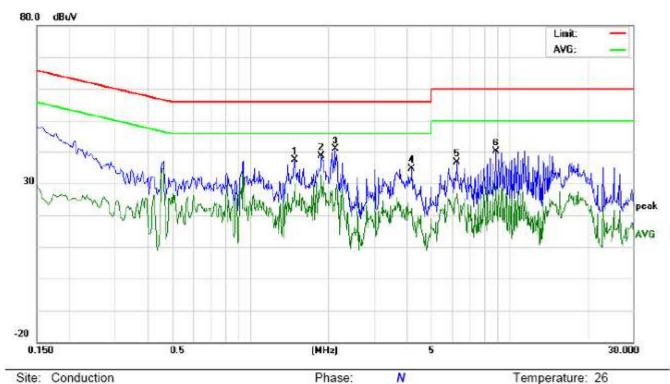
Site: Conduction

Limit: FCC Class B Conduction(QP)

EUT:wireless mobile speaker M/N:ROVERBEATS T12

Mode:Normal Hopping+Charging

Note:


No.	Freq. (MHz)	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment
1,5-7,7		Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.4220	26.08		21.46	10.35	36.43		31.81	57.41	47.41	-20.98	-15.60	Р	
2	5.8540	26.89	() ()	18.61	10.27	37.16		28.88	60.00	50.00	-22.84	-21.12	Р	
3	8.8900	31.47		19.39	10.24	41.71		29.63	60.00	50.00	-18.29	-20.37	Р	
4	11.7100	26.65		10.55	10.13	36.78		20.68	60.00	50.00	-23.22	-29.32	Р	
5	14.0940	26.74	3	11.91	10.12	36.86		22.03	60.00	50.00	-23.14	-27.97	Р	
6	15.6380	25.96		16.57	10.11	36.07		26.68	60.00	50.00	-23.93	-23.32	Р	

Power:

Humidity: 60 %

Page 51 of 59

Line Conducted Emission Test Line 2-N

Site: Conduction

Limit: FCC Class B Conduction(QP)

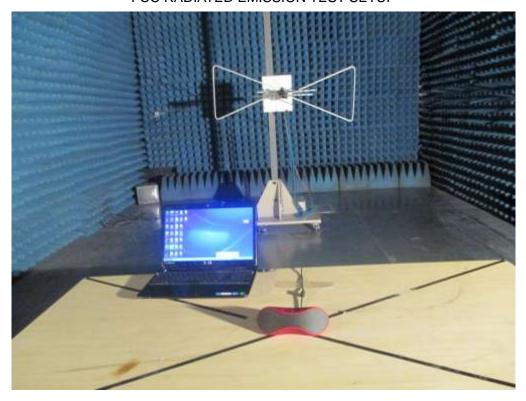
EUT:wireless mobile speaker M/N:ROVERBEATS T12

Mode: Normal Hopping+Charging

Note:

No.	Freq. (MHz)	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment
0.00703		Peak	QP	AVG	dΒ	Peak	QP	AVG	QP	AVG	QP	AVG	CASSE	N40900000000000000000000000000000000000
1	1.4900	27.00		16.59	10.38	37.38		26.97	56.00	46.00	-18.62	-19.03	Р	
2	1.8820	28.31		22.25	10.26	38.57		32.51	56.00	46.00	-17.43	-13.49	Р	
3	2.1220	30.51		13.19	10.27	40.78		23.46	56.00	46.00	-15.22	-22.54	Р	
4	4.2060	24.21		11.69	10.34	34.55	4: :	22.03	56.00	46.00	-21.45	-23.97	Р	
5	6.2819	26.29		15.11	10.29	36.58	0	25.40	60.00	50.00	-23.42	-24.60	Р	
6	8.8860	30.00		18.98	10.24	40.24		29.22	60.00	50.00	-19.76	-20.78	Р	

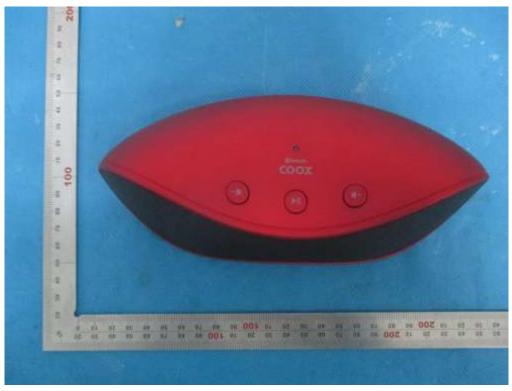
Power:

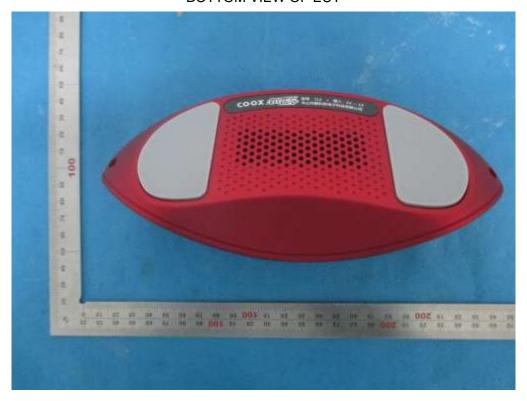

Page 52 of 59

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC LINE CONDUCTED EMISSION TEST SETUP

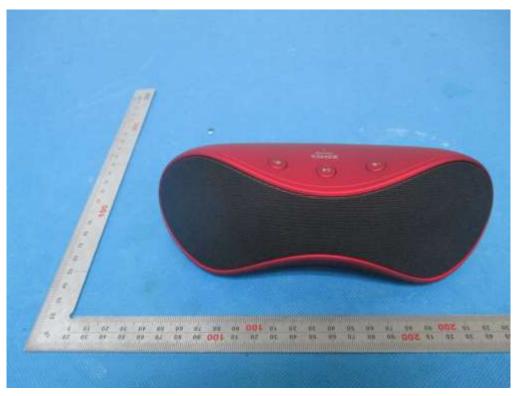
FCC RADIATED EMISSION TEST SETUP


Report No.: AGC00302140301FE03 Page 53 of 59


Page 54 of 59

APPENDIX B: PHOTOGRAPHS OF EUT

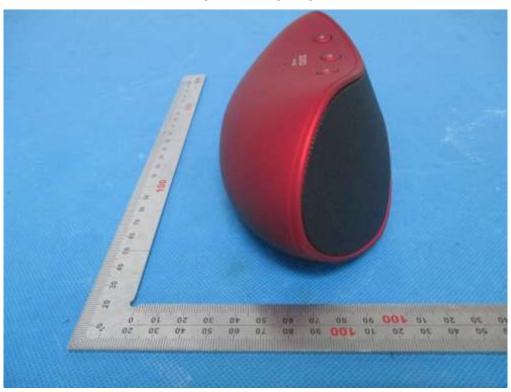
TOP VIEW OF EUT



BOTTOM VIEW OF EUT

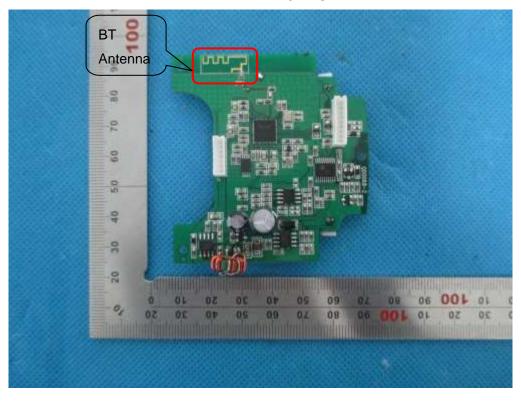
Page 55 of 59

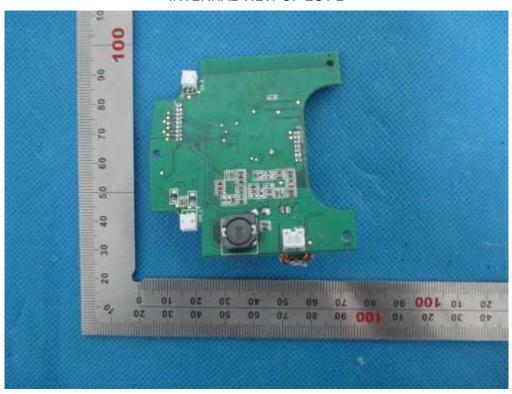
BACK VIEW OF EUT

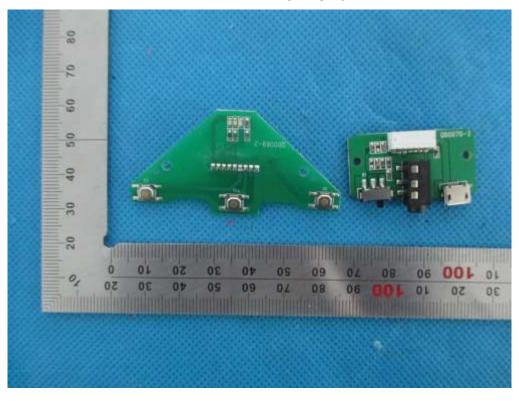


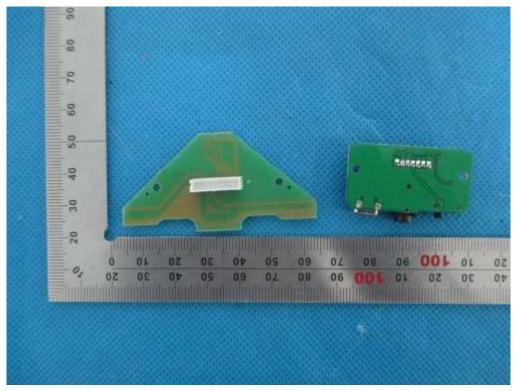
Page 56 of 59

LEFT VIEW OF EUT


RIGHT VIEW OF EUT


OPEN VIEW OF EUT


INTERNAL VIEW OF EUT-1


INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-4

----END OF REPORT----