MPE REPORT

FCC ID: 2AB22-ESWL03

Date of issue: Jan. 21, 2019

MTi190114E079
Smart WiFi Light Switch
ESWL03
Etekcity Corporation
1202 N Miller St. Suite A, Anaheim, CA 92806, USA
Jan. 07, 2019 to Jan. 21, 2019

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Micr©test 微测检测

TEST RESULT CERTIFICATION						
Applicant's name:	Etekcity Corporation					
Address:	1202 N Miller St. Suite A, Anaheim, CA 92806, USA					
Manufacture's name:	Dongguan Raiwee Electronic Technology Co., Ltd					
Address:	Building 11, Antouling, Industry Avenue, Qinghu Village, Qishi Town, Dongguan, Guangdong, China					
Product name:	Smart WiFi Light Switch					
Trademark:	ETEKCITY					
Model name:	ESWL03					
Series model:	N/A					
Difference in series models:	N/A					
RF Exposure Procedures:	KDB 447498 D01 v06					

This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:

Demim

Demi Mu

Jan. 21, 2019

Blue. Zheng

Blue Zheng

Jan. 21, 2019

shatt chen

Smith Chen

Jan. 21, 2019

Reviewed by:

Approved by:

1. RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposure									
0.3-3.0	614	1.63	*100	6					
3.0-30	1842/1	4.89/1	*900/f ²	6					
30-300	61.4	0.163	1.0	6					
300-1,500			f/300	6					
1,500-100,000			5	6					
	(B) Limits for Gener	ral Population/Uncontrolled	Exposure						
0.3-1.34	614	1.63	*100	30					
1.34-30	824/1	2.19/1	*180/f ²	30					
30-300	27.5	0.073	0.2	30					
300-1,500			f/1500	30					
1,500-100,000			1.0	30					

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

Friis transmission formula: $Pd=(Pout^{*}G) \setminus (4^{*}pi^{*}R^{2})$

Where

Pd= Power density in mW/cm2

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.14115926

R= distance between observation point and center of the radiator in cm(20cm)

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

- Page 4of 4-

Measurement Result

Operation Frequency: WIFI 802.11b/g/n20:2412~2462MHz

Power density limited: 1mW/ cm²

Antenna Type: Spring antenna Antenna gain: 2.28dBi

R=20cm

mW=10^(dBm/10)

Antenna gain Numeric=10^(dBi/10)= 10^(2.28/10)=1.69

2. SAR Test Exclucsion Thresholds

Bluetooth DTS:

Channel	Channel		Tune- up power		Max	Antenna	Evaluation result at 20cm	Power density Limits
Freq. modulation (MHz)		(dDm)	(dDm)	tune	-up power	Gain	Power	
		(dBm)	(dBm)	(dBm)	(mW)	Numeric	density(mW/cm2)	(mW/cm2)
		Ant A	Ant A	Ant A	Ant A	Ant A	Ant A	
2412		12.92	12±1	13	19.952623	1.69	0.00671	1
2437	802.11b	12.88	12±1	13	19.952623	1.69	0.00671	1
2462		13.07	12±1	13	19.952623	1.69	0.00671	1
2412		11.36	12±1	13	19.952623	1.69	0.00671	1
2437	802.11g	12.25	12±1	13	19.952623	1.69	0.00671	1
2462		12.01	12±1	13	19.952623	1.69	0.00671	1
2412	802.11n H20	11.28	12±1	13	19.952623	1.69	0.00671	1
2437		12.40	12±1	13	19.952623	1.69	0.00671	1
2462		12.14	12±1	13	19.952623	1.69	0.00671	1

Conclusion:

For the max result: $0.00671 \le 1.0$ for 1g SAR, No SAR is required.

----END OF REPORT----