

Test Report

Report No.: MTi210309017-01E1

Date of issue: Apr. 01, 2021

Applicant: Etekcity Corporation

Product name: Smart Body Weight Scale

Model(s): ESB4074C

FCC ID: 2AB22-ESB4074C

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted:
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization;
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GENEF	RAL DESCRIPTION	5
	1.1 FEA	TURE OF EQUIPMENT UNDER TEST (EUT)	5
	1.2 OPE	ERATION CHANNEL LIST	5
	1.3 TEST	T Frequency Channel	6
	1.4 EU7	T OPERATION MODE	6
	1.5 ANG	CILLARY EQUIPMENT LIST	6
2	SUMN	MARY OF TEST RESULT	6
3	TEST F	ACILITIES AND ACCREDITATIONS	7
	3.1 TES	T LABORATORY	7
	3.2 ENV	/IRONMENTAL CONDITIONS	7
	3.3 ME	ASUREMENT UNCERTAINTY	7
	3.4 TES	T SOFTWARE	7
4	LIST O	PF TEST EQUIPMENT	8
5	TEST R	RESULT	9
	5.1 ANT	TENNA REQUIREMENT	Q
	5.1.1	Standard requirement	
	5.1.2	EUT Antenna	
		POWER LINE CONDUCTED EMISSION	
	5.2.1	Limits	10
	5.2.2	Test setup	
	5.2.3	Test procedure	11
	5.2.4	Test results	11
	5.3 FIEL	LD STRENGTH OF FUNDAMENTAL	12
	5.3.1	Limits	
	5.3.2	Test Method	
	5.3.3	Test Result	13
	5.4 200	DB AND 99% BANDWIDTH	
	5.4.1	Limits	
	5.4.2	Test method	
	5.4.3	Test result	20
	5.5 RAD	DIATED SPURIOUS EMISSION	22
	5.5.1	Limit	22
	5.5.2	Test method	22
	5.5.3	Band edge-radiated	32
Pŀ	HOTOGRAI	PHS OF THE TEST SETUP	36
DL	HOTOGRAI	DUS OF THE FIIT	27

- Page 4 of 37 - Report No.: MTi210309017-01E1

TEST RESULT CERTIFICATION				
Applicant's name:	: Etekcity Corporation			
Address	1202 N Miller St. Suite A, Anaheim, CA 92806, U.S.A			
Manufacturer's Name:	Guangdon	g Welland Technology Co., Ltd.		
Address:		ike East Road, Minying Science & Technology Park, ngshan, Guangdong, China		
Product description				
Product name:	Smart Bod	y Weight Scale		
Trademark:	ETEKCITY	,		
Model Name:	ESB40740			
Serial Model	N/A			
Standards:	FCC Part	15.249		
Test procedure:	ANSI C63.	53.10-2013		
Date of Test				
Date (s) of performance of tests	S:	Mar. 13, 2021 ~Mar. 29, 2021		
Test Result	:	Pass		
	test (EUT)	ted by Shenzhen Microtest Co., Ltd. and the test results is in compliance with the FCC requirements. And it is fied in the report.		
Testing Engineer	:	Danny An		
		(Danny Xu)		
Technical Manager	:	Leo Su(Leo Su)		
Authorized Signatory	:	Tom Xue (Tom Xue)		

1 General description

1.1 Feature of equipment under test (EUT)

Equipment:	Smart Body Weight Scale		
Trade Name:	ESB4074C		
Model Name:	N/A		
Serial Model:	N/A		
Model Difference:	N/A		
Operation Frequency:	2402- 2480MHz		
Modulation Type:	GFSK		
Antenna Type:	PCB antenna		
Antenna Gain:	0dBi		
Max. Field Strength:	97.75dBuV/m		
Power Source:	DC 3V from battery		
Battery:	DC 1.5V*2 cell "AAA" alkaline battery		
Hardware version:	V1.0		
Software version:	V1.0		
Serial number:	MTi210309017-01S1		

1.2 Operation channel list

Channel No.	Frequency (MHz)
1	2402
2	2426
3	2480

1.3 Test Frequency Channel

Channel	Frequency(MHz)		
Low	2402		
Middle	2426		
High	2480		

1.4 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement.

1.5 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	
/	/	/	/	

2 Summary of Test Result

Test procedures according to the technical standards:

Item	FCC Part No.	Description of Test	Result
1	FCC Part15.203	Antenna Requirement	Pass
2	FCC Part15.207	AC power line conducted emission	Pass
3	FCC Part15.249(a)	Field strength of fundamental	Pass
4	FCC Part 15.215	20dB and 99% Bandwidth	Pass
5	FCC Part15.249(d)	Radiated spurious emission	Pass

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd		
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.		
FCC Registration No.	448573		

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

RF frequency	1 x 10-7		
RF power, conducted	± 1 dB		
Conducted emission(150kHz~30MHz)	± 2.5 dB		
Radiated emission(30MHz~1GHz)	± 4.2 dB		
Radiated emission (above 1GHz)	± 4.3 dB		
Temperature	±1 degree		
Humidity	± 5 %		

3.4 Test software

Software Name	Manufacturer	Model	Version
Bluetooth and WiFi Test System	Shenzhen JS tonscend co,.ltd	JS1120-3	2.5.77.0418

Report No.: MTi20092410-10E1

4 List of test equipment

Equipme nt No.	Equipment Name	Manufact urer	Model	Serial No.	Calibration date	Due date	
MTI-E043	EMI Test Receiver	Rohde≻ hwarz	ESCI7	101166	2020/06/04	2021/06/03	
MTI-E044	TRILOG Broadband Antenna	schwarab eck	VULB 9163	9163-133 8	2020/06/05	2021/06/04	
MTI-E047	Amplifier	Hewlett-P ackard	8447F	3113A061 50	2020/06/04	2021/06/03	
MTI-E089	ESG Vector Signal Generator	Agilent	N5182A	MY49060 455	2020/06/03	2021/06/02	
MTI-E058	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051 240	2020/07/03	2021/07/04	
MTI-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2020/06/04	2021/06/03	
MTI-E066	MXA Signal Analyzer	Agilent	N9020A	MY50143 483	2020/06/04	2021/06/03	
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2020/06/04	2021/06/03	
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2020/06/04	2021/06/03	
MTI-E045	Double Ridged Broadband Horn Antenna	schwarab eck	BBHA 9120 D	9120D-22 78	2020/06/05	2021/06/04	
MTI-E021	EMI Test Receiver	Rohde≻ hwarz	ESCS30	100210	2020/06/04	2021/06/03	
MTI-E022	Pulse Limiter	Schwarzb eck	VSTD 9561-F	00679	2020/06/03	2021/06/02	
MTI-E023	Artificial mains network	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2020/06/04	2021/06/03	
MTI-E046	Active Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2020/06/05	2021/06/04	
MTI-E048	Amplifier	Agilent	8449B	3008A024 00	2020/07/03	2021/07/04	
MTI-E072	Thermometer Clock Humidity Monitor	-	HTC-1	/	2020/06/07	2021/06/06	
N 4	Note that all offs the selections and the selections are the selections.						

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5 Test Result

5.1 Antenna requirement

5.1.1 Standard requirement

FCC PART 15.203;

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

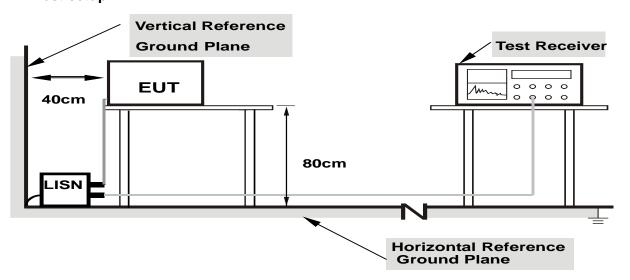
5.1.2 EUT Antenna

The antenna is an PCB antenna, which was permanently affixed to the device and un-replaced, complies with 15.203. In addition, the maximum antenna gain is 0dBi.

5.2 AC power line conducted emission

5.2.1 Limits

FCC §15.207;


For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 ^{note2}	56 - 46 ^{note2}
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note1: The tighter limit applies at the band edges.

Note2: The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.2.3 Test procedure

a. EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b. The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- c. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment's powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- d. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- e. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f. LISN at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item –EUT Test Photos.

5.2.4 Test results

Note: The device is a DC power supply and does not apply to conducted emissions.

5.3 Field strength of fundamental

5.3.1 Limits

FCC §15.249(a);

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector

		Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Frequency	Field Strength(dBuv/m)	Detector
Fundamental	114	PK
Fundamental	94	AV
Harmonic emissions	74	PK
Harmonic emissions	54	AV

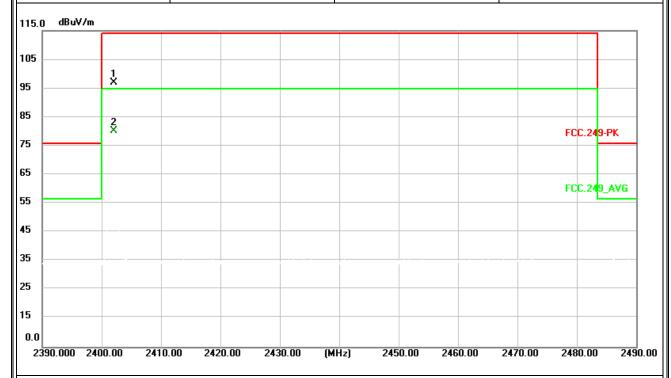
Note: 50mV/m=50000uv/m

20*log(50000uV/m)=94dBuv/m

PK limit reference 15.249(e)

5.3.2 Test Method

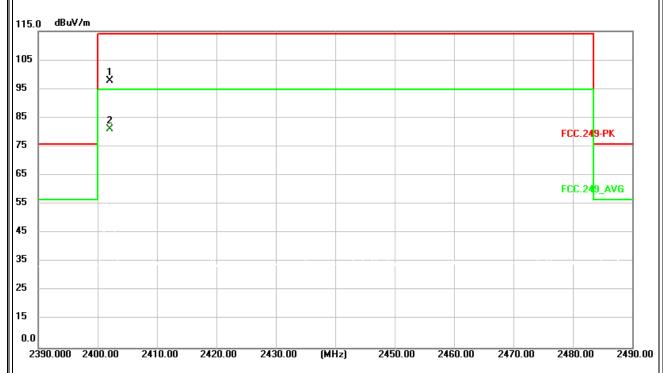
- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range below 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyser settings:


Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

5.3.3 Test Result

EUT:	Smart Body Weight Scale	Model Name:	ESB4074C
Pressure:	101kPa	Polarization:	Horizontal
Test voltage:	DC 3V from battery	Test Mode:	TX-2402MHz



No.	Mk.	Freq.	Reading Level		Measure- ment		Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2	402.000	104.08	-8.00	96.08	114.0	-17.92	peak
2	* 2	402.000	86.66	-8.00	78.66	94.00	-15.34	AVG

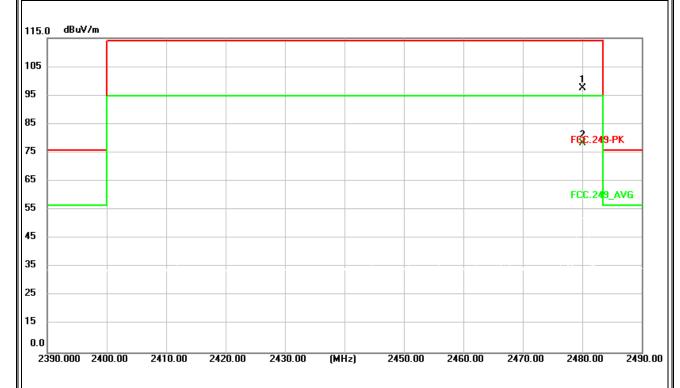
ale Model Name: ESB4074C

EUT:	Smart Body Weight Scale	Model Name:	ESB4074C
Pressure:	101kPa	Polarization:	Vertical
Test voltage:	DC 3V from battery	Test Mode:	TX-2402MHz

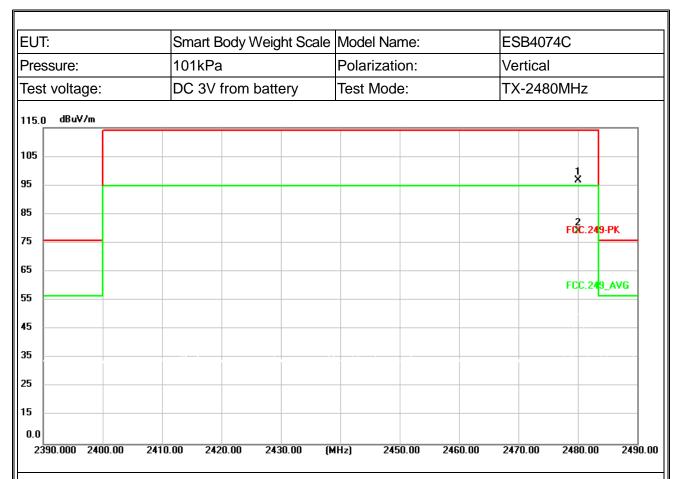
No. I	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	24	402.000	105.13	-8.00	97.75		-16.25	peak
2	* 24	402.000	87.46	-8.00	79.46	94.00	-14.54	AVG

EUT:	Smart Body Wei	ght Scale Mo	odel Name:	ESB40	74C
Pressure:	101kPa	Po	larization:	Horizontal	
Test voltage:	DC 3V from bat	tery Te	st Mode:	TX-242	26MHz
115.0 dBuV/m					
105					
95	1 X				
85					
75	ž				FCC.249-PK
65					
55					FCC.24 <mark>9_AVG</mark>
45					
35					
25					
15					
0.0					

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2426.000	105.44	-7.99	97.45	114.0	-16.55	peak
2 *	2426.000	85.72	-7.99	77.73	94.00	-16.27	AVG


EUT:	Smart Body Weight	Scale Model Name:	ESB4074C
Pressure:	101kPa	Polarization:	Vertical
Test voltage:	DC 3V from battery	Test Mode:	TX-2426MHz
115.0 dBuV/m		•	
105			
95	1 X		
85			
75	2×		FCC.24 <mark>9-PK</mark>
55			FCC.249_AVG
55			PGC.243_AVG
45			
35			
25			
0.0			

•	No.	Mk	c. Freq.			Measure- ment		Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
•	1		2426.000	104.32	-7.99	96.33	114.0	-17.67	peak
	2	*	2426.000	84.96	-7.99	76.97	94.00	-17.03	AVG


lodel Name. : ESB4074C

EUT:	Smart Body Weight Scale	Model Name. :	ESB4074C
Pressure:	101kPa	Polarization:	Horizontal
Test voltage:	DC 3V from battery	Test Mode:	TX-2480MHz

No. M	k. Freq.		Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1 *	2480.000	104.71	-7.96	96.75	114.0	-17.25	peak
2	2480.000	84.70	-7.96	76.74	94.00	-17.26	AVG

No. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1 :	2480.000	103.85	-7.96	95.89	114.0	-18.11	peak
2 *	2480.000	85.39	-7.96	77.43	94.00	-16.57	AVG

5.4 20dB and 99% bandwidth

5.4.1 Limits

FCC §15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.4.2 Test method

Use the following spectrum analyzer settings:

For 20 dB bandwidth

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥1% of the 20 dB bandwidth

VBW ≥RBW

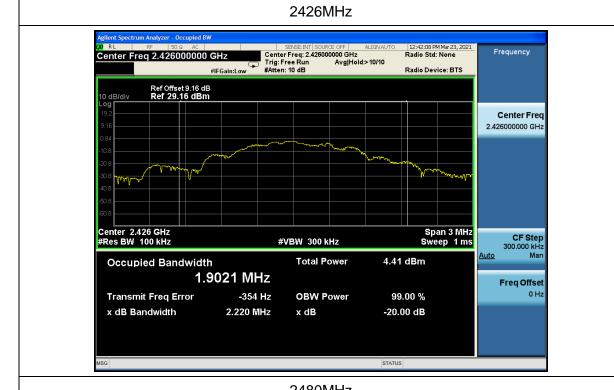
Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission

Report No.: MTi20092410-10E1



5.4.3 Test result

Frequency (MHz)	20dB bandwidth (MHz)
2402	2.175
2426	2.220
2480	2.550

Test plots

5.5 Radiated spurious emission

5.5.1 Limit

FCC PART 15.249(a);

Except as provided in paragraph (a) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field Strength of Fundamental (mV/m)	Field Strength of Harmonics (µV/m)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

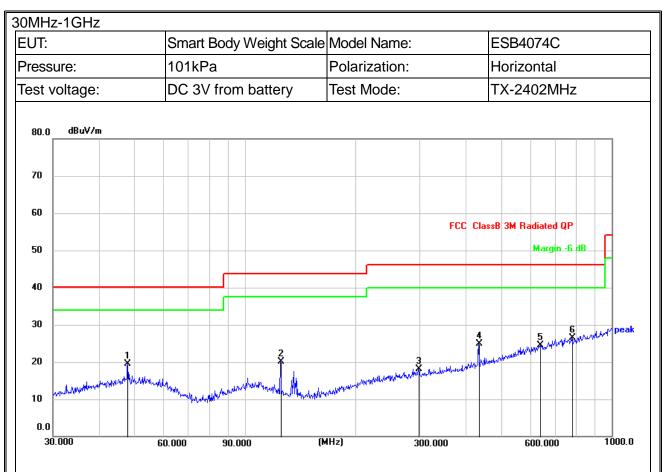
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.5.2 Test method

- a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyser settings:
 - Span = wide enough to fully capture the emission being measured
 - 2) RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz
 - 3) VBW ≥ RBW, Sweep = auto
 - 4) Detector function = peak
 - 5) Trace = max hold
- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

5.5.2.1Test Result

Below 30MHz


EUT:	Smart Body Weight Scale	Model name. :	ESB4074C
Pressure:	1010 hPa	Test voltage:	DC 3V from battery
Test mode:	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Pass
				Pass

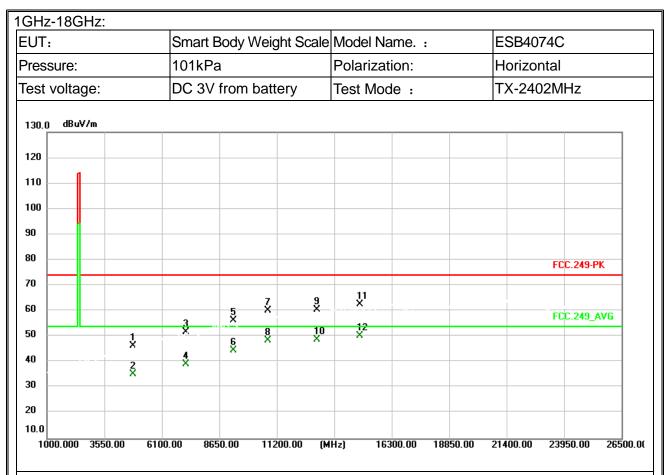
Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- Distance extrapolation factor =40 log (specific distance/test distance)(dB);
- 3. Limit line = specific limits (dBuV) + distance extrapolation factor.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.9940	31.26	-11.81	19.45	40.00	-20.55	QP
2	125.0066	34.33	-14.31	20.02	43.50	-23.48	QP
3	297.2241	26.89	-8.76	18.13	46.00	-27.87	QP
4	434.0651	31.59	-6.64	24.95	46.00	-21.05	QP
5	638.3686	27.19	-2.72	24.47	46.00	-21.53	QP
6 *	779.6068	26.84	-0.31	26.53	46.00	-19.47	QP

Note:

- 1. Emission Level = Meter Reading + Factor, Margin= Emission Level- Limit, Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is GFSK CH1 2402 MHz.


UT:		Sm	Smart Body Weight Scale			Model Name:			E	ESB4074C								
ressure:		101kPa Polarization: Verti		101kPa Polarization: Vertical			101kPa Polarization: Vertical		101kPa Polarization: Vertical			Polarization:			Vertical			
est voltage		DC	3V 1	from	battery	Test	Test Mode: TX-2402MHz			<u>-</u>								
80.0 dBuV/i	m												_					
70																		
60								FCC	ClassE	3M Ra	diated QP							
50											Margin -6	dB	\blacksquare					
40													4					
30				_					4		5	6 X	_{≬m} 1 pea					
20	1 1			Ş			Mary Mary	at annual superior s	AND WAR	MANAGERIA	WAY SALL							
	HANDER OF THE STREET	Mondayer	halloopper	of replication	recording the confession which	phyllips program	NAME AND A STATE OF THE STATE O						-					
0.0 30.000		60.000		90.00	n (1	(Hz)		300.000			00.000	Ш	1000.					

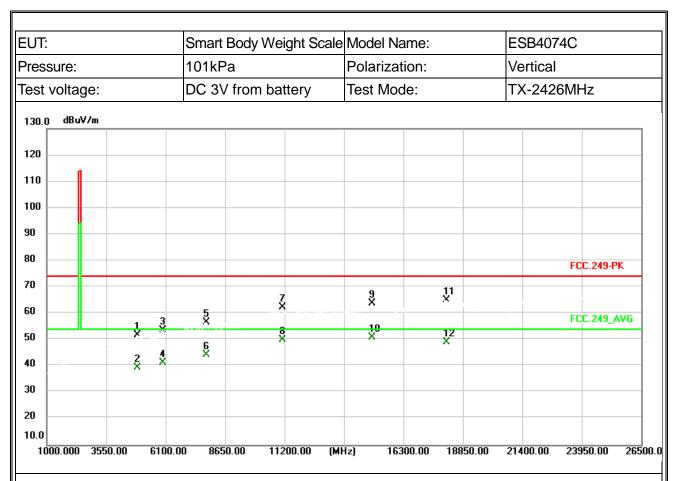
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	49.5328	27.22	-11.68	15.54	40.00	-24.46	QP
2	96.4362	27.67	-13.09	14.58	43.50	-28.92	QP
3	264.7457	25.95	-9.42	16.53	46.00	-29.47	QP
4	432.5457	30.80	-6.67	24.13	46.00	-21.87	QP
5	672.8444	26.96	-2.17	24.79	46.00	-21.21	QP
6 *	857.0247	27.37	1.13	28.50	46.00	-17.50	QP

Note:

- 1. Emission Level = Meter Reading + Factor, Margin= Emission Level- Limit, Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is GFSK CH1 2402 MHz.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.500	42.42	3.90	46.32	74.00	-27.68	peak
2		4804.500	31.31	3.90	35.21	54.00	-18.79	AVG
3		7171.000	42.54	9.41	51.95	74.00	-22.05	peak
4		7171.000	29.74	9.41	39.15	54.00	-14.85	AVG
5		9262.000	42.93	13.52	56.45	74.00	-17.55	peak
6		9262.000	30.99	13.52	44.51	54.00	-9.49	AVG
7		10817.50	41.48	18.85	60.33	74.00	-13.67	peak
8		10817.50	29.84	18.85	48.69	54.00	-5.31	AVG
9		12985.00	42.76	17.82	60.58	74.00	-13.42	peak
10		12985.00	31.17	17.82	48.99	54.00	-5.01	AVG
11		14897.50	44.75	17.82	62.57	74.00	-11.43	peak
12	*	14897.50	32.67	17.82	50.49	54.00	-3.51	AVG

EUT:			Smar	t Boo	dy Weig	ght Scale	Mode	l Name:	ESB407	'4C
Press	ure:		101k	101kPa			Polarization:		Vertical	
Test v	/oltage:		DC 3V from battery			ery	Test I	Mode:	TX-240	2MHz
130.0	dBuV/m									
120										
110										
100										
90										
80										FCC.249-PK
70					9 ×	11 X				
60 50		3	5	7 X		12				FCC.249_AVG
40		1 × ×	6 X	8 ×	10 ×	*				
30		2 × ×	^							
20										
10.0										


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	42.92	3.90	46.82	74.00	-27.18	peak
2		4804.000	30.31	3.90	34.21	54.00	-19.79	AVG
3		5462.500	45.37	5.56	50.93	74.00	-23.07	peak
4		5462.500	32.65	5.56	38.21	54.00	-15.79	AVG
5		6661.000	44.36	8.78	53.14	74.00	-20.86	peak
6		6661.000	31.45	8.78	40.23	54.00	-13.77	AVG
7		8420.500	44.73	10.31	55.04	74.00	-18.96	peak
8		8420.500	33.04	10.31	43.35	54.00	-10.65	AVG
9		9593.500	45.10	14.61	59.71	74.00	-14.29	peak
10		9593.500	33.37	14.61	47.98	54.00	-6.02	AVG
11		11812.00	43.29	18.13	61.42	74.00	-12.58	peak
12	*	11812.00	32.34	18.13	50.47	54.00	-3.53	AVG

EUT:	Smart Boo	dy Weight Scale	Model Name:	ESB4074C
Pressure:	101kPa		Polarization:	Horizontal
Test voltage:	DC 3V fro	m battery	Test Mode:	TX-2426MHz
130.0 dBuV/m	·			
120				
110				
100				
90				
80				
70				FCC.249-PK
60	_	7 9 ×	11 ×	
E0	3 ×		12 X	FCC.249_AVG
40	4 ×	8 10 × ×	^	
30 Z	×			
20				
10.0				

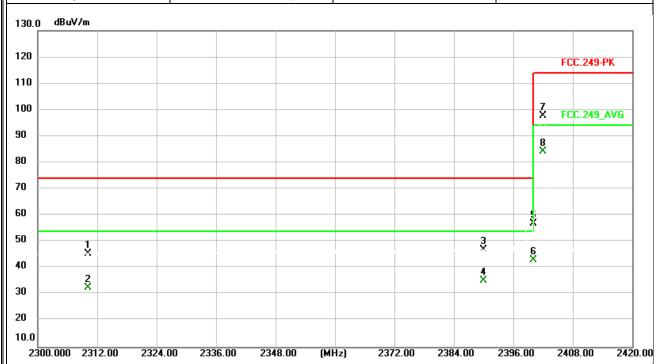
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4852.500	41.91	4.41	46.32	74.00	-27.68	peak
2		4852.500	30.80	4.41	35.21	54.00	-18.79	AVG
3		7216.000	42.60	9.35	51.95	74.00	-22.05	peak
4		7216.000	29.80	9.35	39.15	54.00	-14.85	AVG
5		9260.000	42.94	13.51	56.45	74.00	-17.55	peak
6		9260.000	31.00	13.51	44.51	54.00	-9.49	AVG
7		10801.50	41.58	18.75	60.33	74.00	-13.67	peak
8		10801.50	29.94	18.75	48.69	54.00	-5.31	AVG
9		12915.00	42.86	17.72	60.58	74.00	-13.42	peak
10		12915.00	31.27	17.72	48.99	54.00	-5.01	AVG
11		14797.50	44.45	18.12	62.57	74.00	-11.43	peak
12	*	14797.50	32.37	18.12	50.49	54.00	-3.51	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4	852.000	47.35	4.41	51.76	74.00	-22.24	peak
2	4	852.000	35.21	4.41	39.62	54.00	-14.38	AVG
3	5	972.500	46.79	6.92	53.71	74.00	-20.29	peak
4	5	972.500	34.40	6.92	41.32	54.00	-12.68	AVG
5	7	859.500	47.82	8.82	56.64	74.00	-17.36	peak
6	7	859.500	35.39	8.82	44.21	54.00	-9.79	AVG
7	1	1098.00	42.49	19.71	62.20	74.00	-11.80	peak
8	1	1098.00	30.41	19.71	50.12	54.00	-3.88	AVG
9	1	4948.50	46.20	17.68	63.88	74.00	-10.12	peak
10	* 1	4948.50	33.18	17.68	50.86	54.00	-3.14	AVG
11	1	8161.50	99.55	-34.49	65.06	74.00	-8.94	peak
12	1	8161.50	83.62	-34.49	49.13	54.00	-4.87	AVG

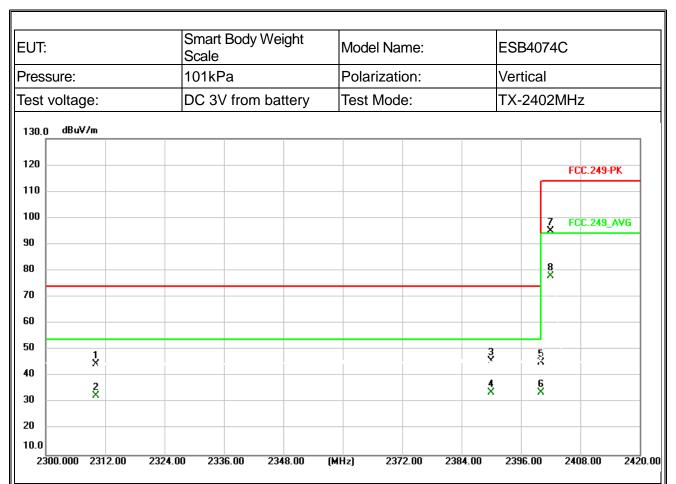
EUT:				Smart	Body Wei	ght Scale	Model Nan	n:	ESE	34074C	
Press	sure:		101kPa Polarization: Horizontal			101kPa Po					
Test v	voltaç	ge:		DC 3\	from bat	tery	Test Mode):	TX-	2480MHz	7
130.0	dBu\	//m									
120											
110											
100											
90											
80										F	CC.249-PK
70							9				
60				2	5 ×	¥	9 11 X X	ļ		 	CC.249_AVG
50			1 X	X	6 X	8 X	10 I2 × ×				
40			2 X	*	×						
30			×								
20											
10.0											950.00 265

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.500	43.17	5.62	48.79	74.00	-25.21	peak
2		4960.500	28.83	5.62	34.45	54.00	-19.55	AVG
3		6839.500	42.68	9.24	51.92	74.00	-22.08	peak
4		6839.500	30.88	9.24	40.12	54.00	-13.88	AVG
5		9083.500	42.62	12.85	55.47	74.00	-18.53	peak
6		9083.500	31.77	12.85	44.62	54.00	-9.38	AVG
7		12296.50	41.07	17.29	58.36	74.00	-15.64	peak
8		12296.50	29.13	17.29	46.42	54.00	-7.58	AVG
9		14132.50	43.34	18.85	62.19	74.00	-11.81	peak
10		14132.50	29.94	18.85	48.79	54.00	-5.21	AVG
11		15229.00	44.29	16.47	60.76	74.00	-13.24	peak
12	*	15229.00	32.96	16.47	49.43	54.00	-4.57	AVG

EUT:			Smart E	Body Wei	ght Sca	e Mode	Name:	ESB40)74C	
Pressi	ure:		101kPa			Polari	zation:	Vertica	al	
Test v	oltage:		DC 3V from battery		Test N	/lode:	TX-2480MHz			
130.0	dBuV/m									
120										
110	1									
100										
90										
80									FC	C.249-PK
70					g .1	,1 ,1				
60			5	ž					FC	C.249_AVG
50		1 × ×	İ	8 X	10 ×	2				
40		2 X								
30										
20										

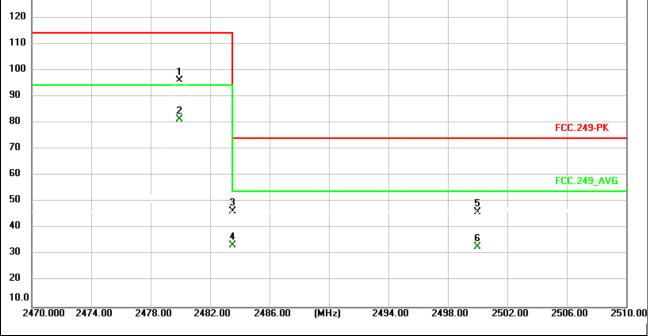

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.500	42.87	5.62	48.49	74.00	-25.51	peak
2		4960.500	30.59	5.62	36.21	54.00	-17.79	AVG
3		5539.000	45.06	5.57	50.63	74.00	-23.37	peak
4		5539.000	32.75	5.57	38.32	54.00	-15.68	AVG
5		7451.500	45.11	9.02	54.13	74.00	-19.87	peak
6		7451.500	34.19	9.02	43.21	54.00	-10.79	AVG
7		8395.000	47.38	10.22	57.60	74.00	-16.40	peak
8		8395.000	34.98	10.22	45.20	54.00	-8.80	AVG
9		11098.00	41.25	19.71	60.96	74.00	-13.04	peak
10		11098.00	28.39	19.71	48.10	54.00	-5.90	AVG
11		12551.50	45.32	17.22	62.54	74.00	-11.46	peak
12	*	12551.50	33.21	17.22	50.43	54.00	-3.57	AVG

5.5.3 Band edge-radiated


All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Body Weight Scale	Model Name:	ESB4074C
Pressure:	101kPa	Polarization:	Horizontal
Test voltage:	DC 3V from battery	Test Mode:	TX-2402MHz

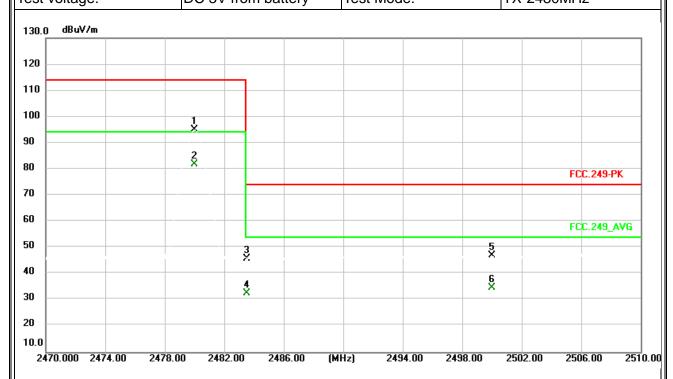
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	49.23	-3.61	45.62	74.00	-28.38	peak
2		2310.000	36.17	-3.61	32.56	54.00	-21.44	AVG
3		2390.000	49.94	-2.93	47.01	74.00	-26.99	peak
4		2390.000	38.19	-2.93	35.26	54.00	-18.74	AVG
5		2400.000	59.81	-2.84	56.97	74.00	-17.03	peak
6		2400.000	46.05	-2.84	43.21	54.00	-10.79	AVG
7		2402.000	100.51	-2.84	97.67	114.0	-16.33	peak
8	*	2402.000	87.07	-2.84	84.23	94.00	-9.77	AVG



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.20	-3.61	44.59	74.00	-29.41	peak
2		2310.000	36.30	-3.61	32.69	54.00	-21.31	AVG
3		2390.000	48.71	-2.93	45.78	74.00	-28.22	peak
4		2390.000	36.82	-2.93	33.89	54.00	-20.11	AVG
5		2400.000	48.20	-2.84	45.36	74.00	-28.64	peak
6		2400.000	36.73	-2.84	33.89	54.00	-20.11	AVG
7		2402.000	97.93	-2.84	95.09	114.0	-18.91	peak
8	*	2402.000	80.73	-2.84	77.89	94.00	-16.11	AVG

of 37 - Report No.: MTi210309017-01E1

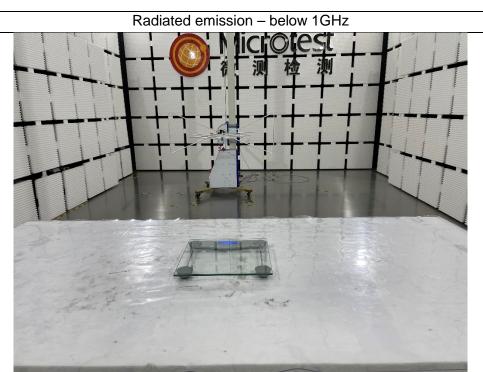
EUT:	Smart Body Weight Scale 101kPa DC 3V from battery		Model Name:	ESB4074C		
Pressure:			Polarization:	Horizontal TX-2480MHz		
Test voltage:			Test Mode:			
110						
100	1 ×					
90						
80	2 X			FCC.249-PK		

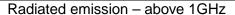

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2479.960	99.00	-2.92	96.08	114.0	-17.92	peak
2	*	2479.960	84.04	-2.92	81.12	94.00	-12.88	AVG
3		2483.500	49.50	-2.93	46.57	74.00	-27.43	peak
4		2483.500	36.40	-2.93	33.47	54.00	-20.53	AVG
5		2500.000	49.16	-2.94	46.22	74.00	-27.78	peak
6		2500.000	35.83	-2.94	32.89	54.00	-21.11	AVG

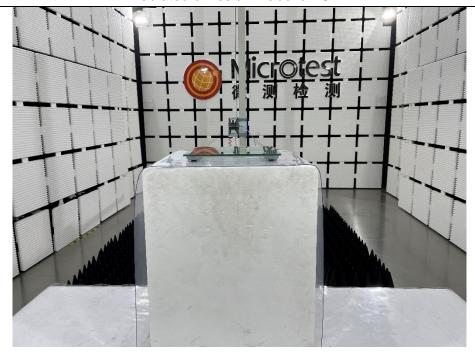
EUT: Smart Body Weight Scale Model Name: ESB4074C

Pressure: 101kPa Polarization: Vertical

Test voltage: DC 3V from battery Test Mode: TX-2480MHz


No.	MI	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2480.000	98.04	-2.92	95.12	114.0	-18.88	peak
2	*	2480.000	84.67	-2.92	81.75		-12.25	AVG
3		2483.500	48.63	-2.93	45.70	74.00	-28.30	peak
4		2483.500	35.52	-2.93	32.59	54.00	-21.41	AVG
5		2500.000	49.89	-2.94	46.95	74.00	-27.05	peak
6		2500.000	37.63	-2.94	34.69	54.00	-19.31	AVG


Note:


- 1.All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
- 2.Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor.

Photographs of the Test Setup

Photographs of the EUT See the APPENDIX 1- EUT PHOTO.				
	-END OF REPORT			