

RADIO TEST REPORT FCC ID: 2AB22-C151R

Product: Portable Bluetooth Speaker Trade Mark: Etekcity Model No.: EBK-C151-KUSR Family Model: N/A Report No.: S21101302602001 Issue Date: Oct 30. 2021

Prepared for

Etekcity Corporation

1202 N Miller St Suite A, ANAHEIM, California 92806, United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 T	TEST RESULT CERTIFICATION	3
2 S	SUMMARY OF TEST RESULTS	4
3 F	FACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	
4 6	GENERAL DESCRIPTION OF EUT	
5 D	DESCRIPTION OF TEST MODES	8
6 S	ETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.2	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 T		
7.1	CONDUCTED EMISSIONS TEST	
7.2	RADIATED SPURIOUS EMISSION	
7.3 7.4	NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT	
7.4	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
7.6	20DB BANDWIDTH TEST	
7.7	PEAK OUTPUT POWER	
7.8	CONDUCTED BAND EDGE MEASUREMENT.	
7.9	SPURIOUS RF CONDUCTED EMISSION	
7.10		
7.11	I FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8 T	TEST RESULTS	
8.1	Dwell Time	
8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8.3	OCCUPIED CHANNEL BANDWIDTH	
8.4	CARRIER FREQUENCIES SEPARATION	55
8.5	NUMBER OF HOPPING CHANNEL	60
8.6	BAND EDGE	
8.7	CONDUCTED RF SPURIOUS EMISSION	74

1 TEST RESULT CERTIFICATION

Applicant's name:	Etekcity Corporation
Address:	1202 N Miller St Suite A, ANAHEIM, California 92806, United States
Manufacturer's Name:	Shenzhen See Me Here Electronic Co.,Ltd.
Address:	Building B, TongFuYu Industrial Park, HangKong Road No.32, Bao'an District,Shenzhen,China
Product description	
Product name:	Portable Bluetooth Speaker
Model and/or type reference:	EBK-C151-KUSR
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Oct 13, 2021 ~Oct 30, 2021
Testing Engineer	: Mukzi Lee
	(Mukzi Lee)
	Alex
Authorized Signatory	:(Alex Li)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Portable Bluetooth Speaker	
Trade Mark	Etekcity	
FCC ID	2AB22-C151R	
Model No.	EBK-C151-KUSR	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCBAntenna	
Antenna Gain	2 dBi	
Power supply	DC 3.7V from battery or DC 5V from usb type-c port.	
Battery	DC 3.7V, 3000mAh	
Adapter	N/A	
HW Version	V1.6	
SW Version	V1.3	
Series No.	S211013026002	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01 Revision History			
Report No.	Version	Description	Issued Date
S21101302602001	Rev.01	Initial issue of report	Oct 30, 2021

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode	Final Test Mode Description			
Mode 1 normal link mode				
Note: AQ assessible a Quadrate di Esclaria da sete da sedence increa astro da secon				

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

NTEK JLW Certificate #4298.01	Report No.: S2110130260200
6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode	
C-1 AE-1 Adapter Adapter	
For Radiated Test Cases	
For Conducted Test Cases	
Measurement Instrument EUT	
Note: 1. The temporary antenna connector is soldered on the PCB board in and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged.	order to perform conducted test

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A F	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	estequipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.11.19	2021.11.18	1 year
Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.11.19	2021.11.18	1 year
Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.08.06	2022.08.05	3 year
High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
	Kind of EquipmentSpectrum AnalyzerSpectrum AnalyzerSpectrum AnalyzerSpectrum Constal SwitchBilog Antenna50Ω Coaxial SwitchHorn AntennaBroadband Horn AntennaBroadband Horn AntennaPower MeterTest Cable (9KHz-30MHz)Test Cable (30MHz-1GHz)High Test Cable(1G-40G Hz)High Test Cable(1G-40G Hz)Filtertemporary antenna connector	Kind of EquipmentManufacturerSpectrum AnalyzerAglientSpectrum AnalyzerAgilentSpectrum AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ50Ω Coaxial SwitchAnritsuHorn AntennaEMBroadband Horn AntennaSCHWARZBE CKAnaljfierEMCActive Loop AntennaSCHWARZBE CKPower MeterDARETest Cable (9KHz-30MHz)N/ATest Cable (30MHz-1GHz)N/AHigh Test Cable(1G-40G Hz)N/AFilterTRILTHICtemporary antenna connectorNTS	Kind of EquipmentManufacturerType No.Spectrum AnalyzerAglientE4407BSpectrum AnalyzerAgilentN9020ASpectrum AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018 0Broadband Horn AntennaSCHWARZBE CKBBHA 9170AmplifierEMCEMC051835 SEActive Loop AntennaSCHWARZBE CKFMZB 1519 BPower MeterDARERPR3006WTest Cable (9KHz-30MHz)N/AR-01Test Cable (30MHz-1GHz)N/AR-02High Test Cable(1G-40G Hz)N/AR-03High Test Cable(1G-40G Hz)N/AR-04High Test Cable(1G-40G Hz)N/AR-04High Test Cable(1G-40G Hz)N/AR-04FilterTRILTHIC2400MHz	Kind of EquipmentManufacturerType No.Serial No.Spectrum AnalyzerAglientE4407BMY45108040Spectrum AnalyzerAglientN9020AMY49100060Spectrum AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018 02011071402Broadband Horn AntennaSCHWARZBE CKBBHA 9170803AmplifierEMCEMC051835 SE980246Active Loop AntennaSCHWARZBE CKFMZB 1519 B055Power MeterDARERPR3006W15100041SN 084Test Cable (30MHz-1GHz)N/AR-01N/AHigh Test Cable(1G-40G Hz)N/AR-03N/AHigh Test Cable(1G-40G Hz)N/AR-04N/AFilterTRILTHIC2400MHz29temporary antenna connectorNTSR001N/A	Kind of EquipmentManufacturerType No.Serial No.Last calibrationSpectrum AnalyzerAglientE4407BMY451080402021.04.27Spectrum AnalyzerAglientN9020AMY491000602021.07.01Spectrum AnalyzerR&SFSV401014172021.07.01Spectrum AnalyzerR&SESPI71013182021.04.27Bilog AntennaTESEQCBL6111D312162021.03.2950Q Coaxial SwitchAnritsuMP59B62009837052020.05.11Horn AntennaEMEM-AH-1018 020110714022021.03.29Broadband Horn AntennaCKBBHA 91708032020.11.19AmplifierEMCEMC051835 SE9802462021.07.01Active Loop AntennaSCHWARZBE CKFMZB 1519 B0552020.11.19Power MeterDARERPR3006W15100041SN 0842021.07.01Test Cable (9KHz-30MHz)N/AR-01N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Te	Kind of EquipmentManufacturerType No.Serial No.Last calibrationCalibrated untilSpectrum AnalyzerAglientE4407BMY451080402021.04.272022.04.26Spectrum AnalyzerAglientN9020AMY491000602021.07.012022.06.30Spectrum AnalyzerR&SFSV401014172021.07.012022.06.30Test ReceiverR&SESPI71013182021.04.272022.04.26Bilog AntennaTESEQCBL6111D312162021.03.292022.03.2850Ω Coaxial SwitchAnritsuMP59B62009837052020.05.112023.05.10Horn AntennaEMEM-AH-1018 020110714022021.03.292022.03.28Broadband Horn AntennaEMCEMC051835 S9802462021.07.012022.06.30Active Loop AntennaSCHWARZBE CKFMZB 1519 B0552020.11.192021.11.18Power MeterDARERPR3006W15100041SN 0842021.07.012022.06.30Test Cable (9KHz-30MHz)N/AR-01N/A2019.08.062022.08.05High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.062022.08.05High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.062022.08.05High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.062022.08.05High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.062022.08.05High

ACCREDITED Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

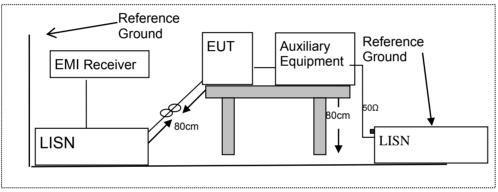
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

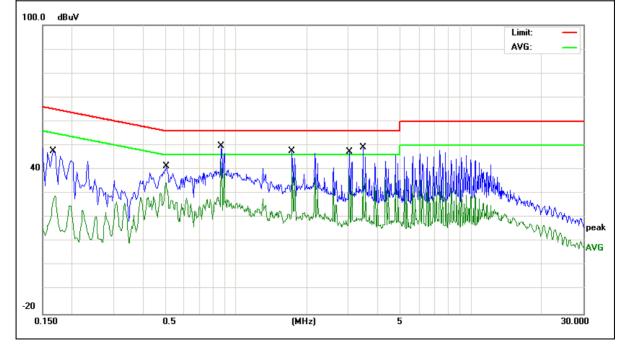
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

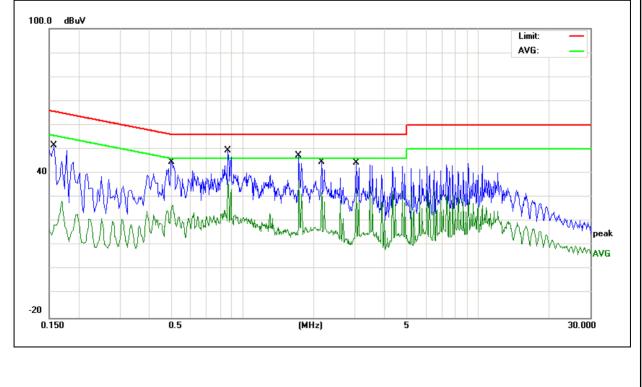

EUT:	Portable Bluetooth Speaker	Model Name :	EBK-C151-KUSR
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1660	37.82	9.70	47.52	65.15	-17.63	QP
0.1660	18.60	9.70	28.30	55.15	-26.85	AVG
0.5060	24.78	9.64	34.42	46.00	-11.58	AVG
0.5060	31.83	9.64	41.47	56.00	-14.53	QP
0.8659	39.91	9.74	49.65	56.00	-6.35	QP
0.8659	33.44	9.74	43.18	46.00	-2.82	AVG
1.7339	37.88	9.76	47.64	56.00	-8.36	QP
1.7339	31.09	9.76	40.85	46.00	-5.15	AVG
3.0299	37.67	9.72	47.39	56.00	-8.61	QP
3.0299	27.84	9.72	37.56	46.00	-8.44	AVG
3.4660	39.30	9.70	49.00	56.00	-7.00	QP
3.4660	27.93	9.70	37.63	46.00	-8.37	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Portable Bluetooth Speaker	Model Name :	EBK-C151-KUSR
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Durit
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	42.01	9.63	51.64	65.56	-13.92	QP
0.1580	9.06	9.63	18.69	55.56	-36.87	AVG
0.4979	34.84	9.74	44.58	56.03	-11.45	QP
0.4979	16.90	9.74	26.64	46.03	-19.39	AVG
0.8659	39.77	9.70	49.47	56.00	-6.53	QP
0.8659	27.80	9.70	37.50	46.00	-8.50	AVG
1.7339	37.53	9.69	47.22	56.00	-8.78	QP
1.7339	27.28	9.69	36.97	46.00	-9.03	AVG
2.1659	35.03	9.67	44.70	56.00	-11.30	QP
2.1659	22.51	9.67	32.18	46.00	-13.82	AVG
3.0339	34.54	9.72	44.26	56.00	-11.74	QP
3.0339	24.15	9.72	33.87	46.00	-12.13	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)				
Frequency(MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

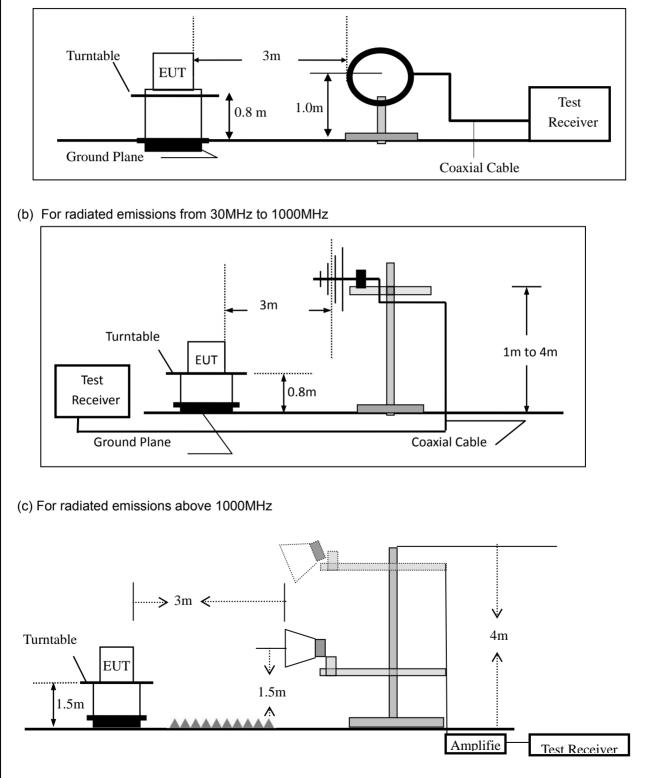
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测[®]


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

<u> </u>						
Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average					

Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

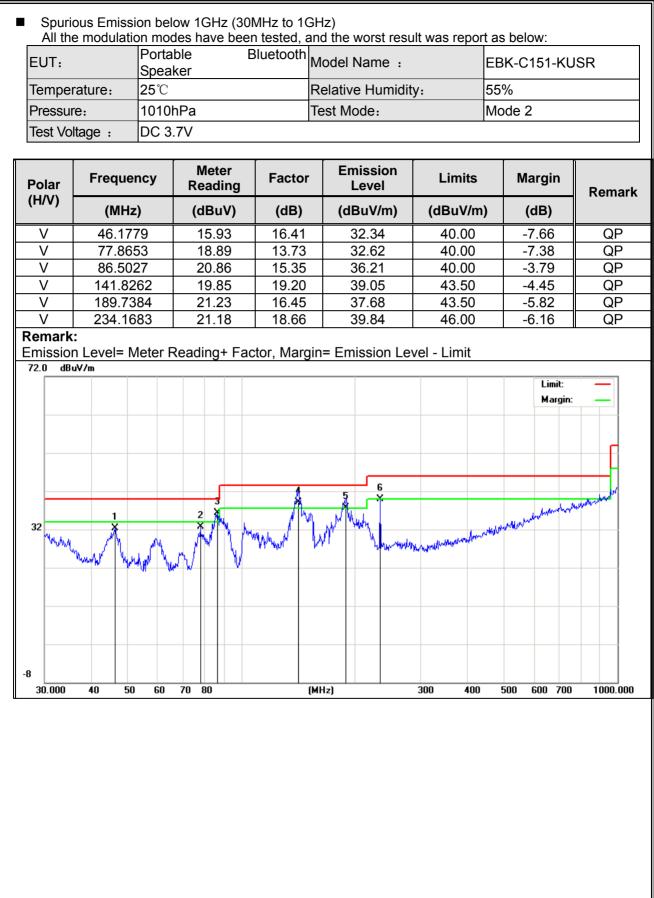
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Above 1000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

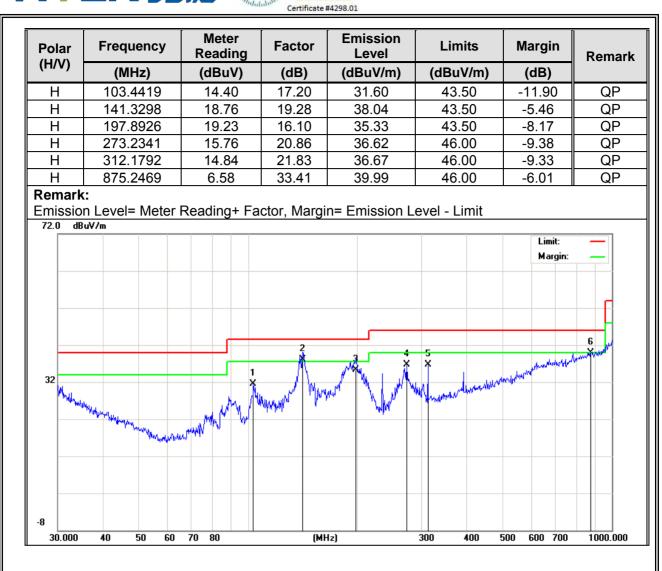
7.2.6 Test Results


Spurious Em	ission belov	v 30MHz ((9KHz to	30MHz)

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



R

ilac.

NTEK 北视

		sion Above Portable	<u>1GHz (10</u> Blu	Hz to etooth	250	iHZ)					
Speaker				Mod				K-C151-K	C151-KUSR		
Temperatu	ire:	20 ℃			Rela	elative Humidity: 48%					
Test Mode	:	Mode2/Mo	ode3/Mode	4	Tes	t By:		Muk	zi Lee		
All the mod	lulation r	nodes hav	e been tes	ted, ar	nd th	ne worst res	ult was	s repo	ort as belo	OW:	
Frequency	Read Level	Cable loss	Antenna Factor	Prear Fact		Emission Level	Limi	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB	i)	(dBµV/m)	(dBµV	′/m)	(dB)		
			Low Char	nel (24	102 N	/Hz)(GFSK)-	Above	1G			
4804	68.03	5.21	35.59	44.3	30	64.53	74.0	0	-9.47	Pk	Vertical
4804	49.67	5.21	35.59	44.3	30	46.17	54.0	0	-7.83	AV	Vertical
7206	69.52	6.48	36.27	44.6	i0	67.67	74.0	0	-6.33	Pk	Vertical
7206	49.16	6.48	36.27	44.6	i0	47.31	54.0	0	-6.69	AV	Vertical
4804	69.33	5.21	35.55	44.3	30	65.79	74.0	0	-8.21	Pk	Horizontal
4804	04 47.84 5.21 35.55 44.30 44.30		54.0	0	-9.70	AV	Horizontal				
7206	69.3	6.48	36.27	44.5	52	67.53	74.0	0	-6.47	Pk	Horizontal
7206	7206 47.27 6.48 36.27 44.52		45.50	54.0	0	-8.50	AV	Horizontal			
			Mid Chan	nel (24	41 N	41 MHz)(GFSK)Above 1G					
4882	69.15	5.21	35.66	44.2	20	65.82	74.0	0	-8.18	Pk	Vertical
4882	48.82	5.21	35.66	44.2	20	45.49	54.0	0	-8.51	AV	Vertical
7323	69.33	7.10	36.50	44.4	-3	68.50	74.0	0	-5.50	Pk	Vertical
7323	45.84	7.10	36.50	44.4	-3	45.01	54.0	0	-8.99	AV	Vertical
4882	69.25	5.21	35.66	44.2	20	65.92	74.0	0	-8.08	Pk	Horizontal
4882	46.57	5.21	35.66	44.2	20	43.24	54.0	0	-10.76	AV	Horizontal
7323	68.45	7.10	36.50	44.4	3	67.62	74.0	0	-6.38	Pk	Horizontal
7323	49.31	7.10	36.50	44.4	3	48.48	54.0	0	-5.52	AV	Horizontal
			High Chan	inel (24	80 N	/Hz)(GFSK)-	- Above	9 1 G			
4960	70.84	5.21	35.52	44.2	21	67.36	74.0	0	-6.64	Pk	Vertical
4960	49.02	5.21	35.52	44.2	21	45.54	54.0		-8.46	AV	Vertical
7440	68.24	7.10	36.53	44.6		67.27	74.0	0	-6.73	Pk	Vertical
7440	48.19	7.10	36.53	44.6	50	47.22	54.0	0	-6.78	AV	Vertical
4960	70.27	5.21	35.52	44.2	21	66.79	74.0	0	-7.21	Pk	Horizontal
4960	48.44	5.21	35.52	44.2	21	44.96	54.0	0	-9.04	AV	Horizontal
7440	69.74	7.10	36.53	44.6	60	68.77	74.0	0	-5.23	Pk	Horizontal
7440	48.35	7.10	36.53	44.6	i0	47.38	54.0	0	-6.62	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious	Emission i	n Restri	cted Band	2310-2	390MHz and	2483.	5-25(00MHz		
Εl	JT:	Portable I	Bluetoot	h Speaker	Mo	del No.:		EBK	-C151-KI	JSR	
Τe	emperature:	Re	Relative Humidity: 48%								
Τe	est Mode:	Mode2/ N	Te	st By:		Muk:	zi Lee				
A	II the modul	ation mod	es have	been test		the worst res	ult was	s rep	ort as be	low:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Factor		Limi	ts	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
				1	Mbps(G	SK)-Non-hop	ping				
	2310.00	68.35	2.97	27.80	43.80	55.32	74	ŀ	-18.68	Pk	Horizontal
	2310.00	48.46	2.97	27.80	43.80	35.43	54	ŀ	-18.57	AV	Horizontal
	2310.00	68.56	2.97	27.80	43.80	55.53	74		-18.47	Pk	Vertical
	2310.00	50.54	2.97	27.80	43.80	37.51	54	ŀ	-16.49	AV	Vertical
	2390.00	69.69	3.14	27.21	43.80	56.24	74		-17.76	Pk	Vertical
	2390.00	46.18	3.14	27.21	43.80	32.73	54	ŀ	-21.27	AV	Vertical
	2390.00	70.27	3.14	27.21	43.80	56.82	74	ŀ	-17.18	Pk	Horizontal
	2390.00	47.69	3.14	27.21	43.80	34.24	54		-19.76	AV	Horizontal
	2483.50	68.71	3.58	27.70	44.00	55.99	74	ŀ	-18.01	Pk	Vertical
	2483.50	46.77	3.58	27.70	44.00	34.05	54	ŀ	-19.95	AV	Vertical
	2483.50	68.47	3.58	27.70	44.00	55.75	74	ŀ	-18.25	Pk	Horizontal
	2483.50	47.85	3.58	27.70	44.00	35.13	54	ŀ	-18.87	AV	Horizontal
					1Mbps	GFSK)-hoppir	ng				
	2310.00	70.31	2.97	27.80	43.80	57.28	74		-16.72	Pk	Horizontal
	2310.00	50.44	2.97	27.80	43.80	37.41	54	ŀ	-16.59	AV	Horizontal
	2310.00	68.18	2.97	27.80	43.80	55.15	74		-18.85	Pk	Vertical
	2310.00	45.89	2.97	27.80	43.80	32.86	54		-21.14	AV	Vertical
	2390.00	70.3	3.14	27.21	43.80	56.85	74		-17.15	Pk	Vertical
	2390.00	46.66	3.14	27.21	43.80	33.21	54		-20.79	AV	Vertical
	2390.00	70.89	3.14	27.21	43.80	57.44	74	Ļ	-16.56	Pk	Horizontal
	2390.00	45.49	3.14	27.21	43.80	32.04	54		-21.96	AV	Horizontal
	2483.50	70.82	3.58	27.70	44.00	58.10	74	Ļ	-15.90	Pk	Vertical
	2483.50	45.21	3.58	27.70	44.00	32.49	54		-21.51	AV	Vertical
	2483.50	70.65	3.58	27.70	44.00	57.93	74	ļ	-16.07	Pk	Horizontal
	2483.50	47.72	3.58	27.70	44.00	35.00	54		-19.00	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz											
ΕL	EUT: Portable Bluetooth Speaker				Mode	lodel No.: EBK-C151-KUSR						
Те	mperature:	20 ℃				Relat	ive Humidit	y:	48%			
Те	st Mode:	Mode	2/ Mode	2 4		Test I	By:		Mukz	i Lee		
A	II the modula	ation mode	es have	been teste	ed, a	and the	e worst res	ult wa	is rep	ort as bel	ow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
	3260	68.36	4.04	29.57	44	4.70	57.27	7	'4	-16.73	Pk	Vertical
	3260	46.85	4.04	29.57	44	4.70	35.76	5	54	-18.24	AV	Vertical
	3260	69.5	4.04	29.57	44	4.70	58.41	7	'4	-15.59	Pk	Horizontal
	3260	47.46	4.04	29.57	44	4.70	36.37	5	54	-17.63	AV	Horizontal
	3332	68.4	4.26	29.87	44	4.40	58.13	7	'4	-15.87	Pk	Vertical
	3332	48.42	4.26	29.87	44	4.40	38.15	5	54	-15.85	AV	Vertical
	3332	70.69	4.26	29.87	44	4.40	60.42	7	'4	-13.58	Pk	Horizontal
	3332	50.68	4.26	29.87	44	4.40	40.41	5	64	-13.59	AV	Horizontal
	17797	55.01	10.99	43.95	43	3.50	66.45	7	'4	-7.55	Pk	Vertical
	17797	36.5	10.99	43.95	43	3.50	47.94	5	64	-6.06	AV	Vertical
	17788	48.84	11.81	43.69	44	4.60	59.74	7	'4	-14.26	Pk	Horizontal
	17788	32.78	11.81	43.69	44	4.60	43.68	5	54	-10.32	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR 48% Mukzi Lee
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR 48% Mukzi Lee
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Portable Bluetooth Speaker	Model No.:	EBK-C151-KUSR
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB Antenna (Gain: 2dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

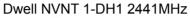
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

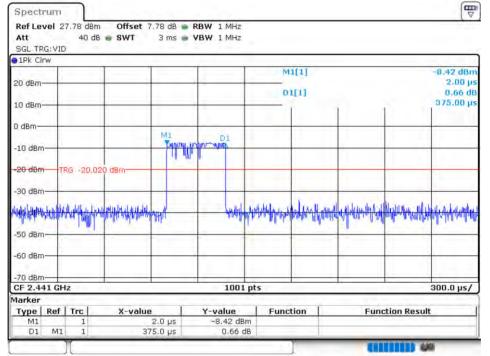
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

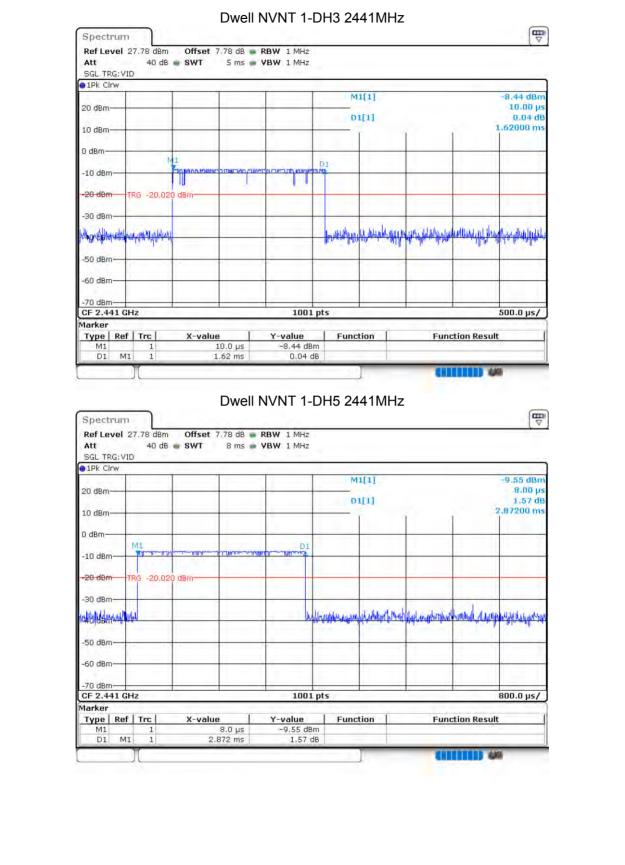
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

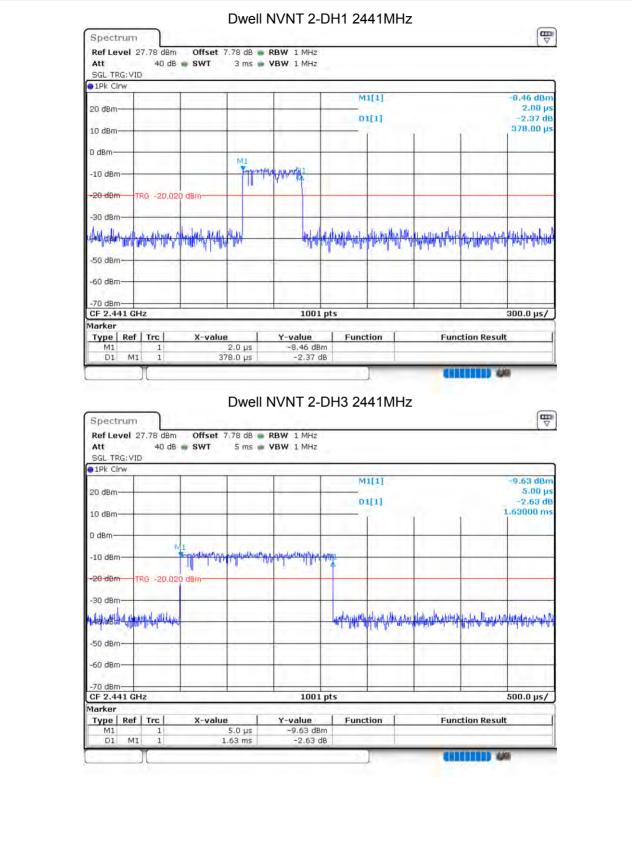


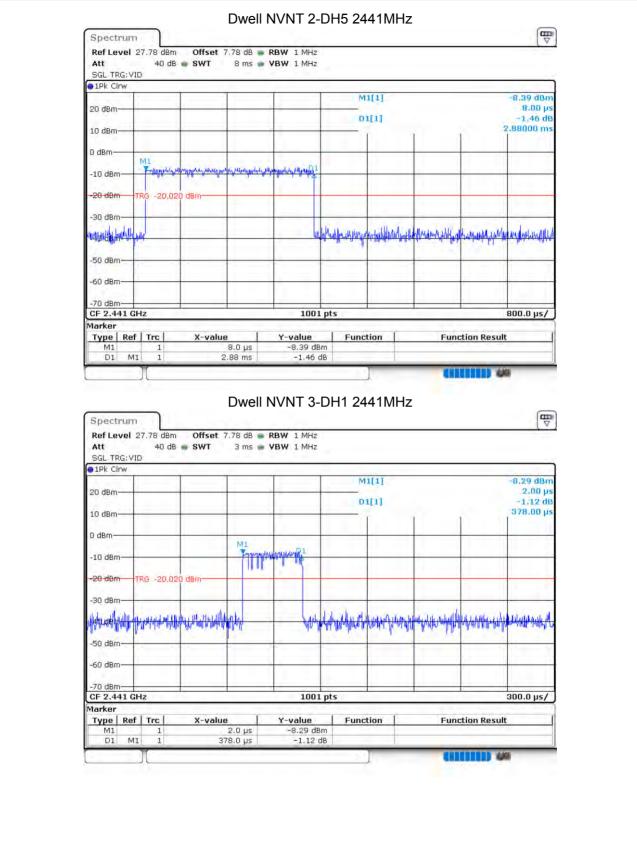

8 TEST RESULTS

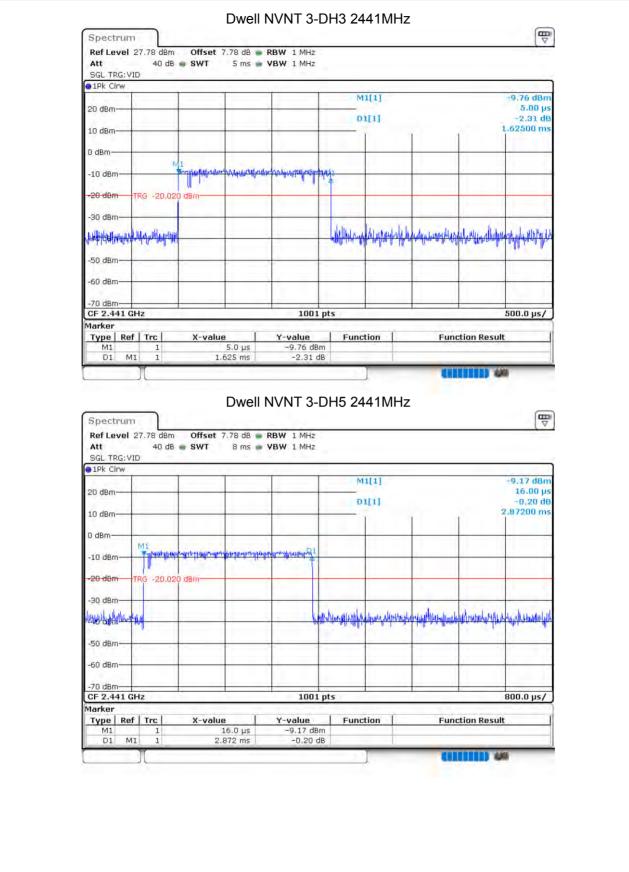
8.1 **DWELL TIME**

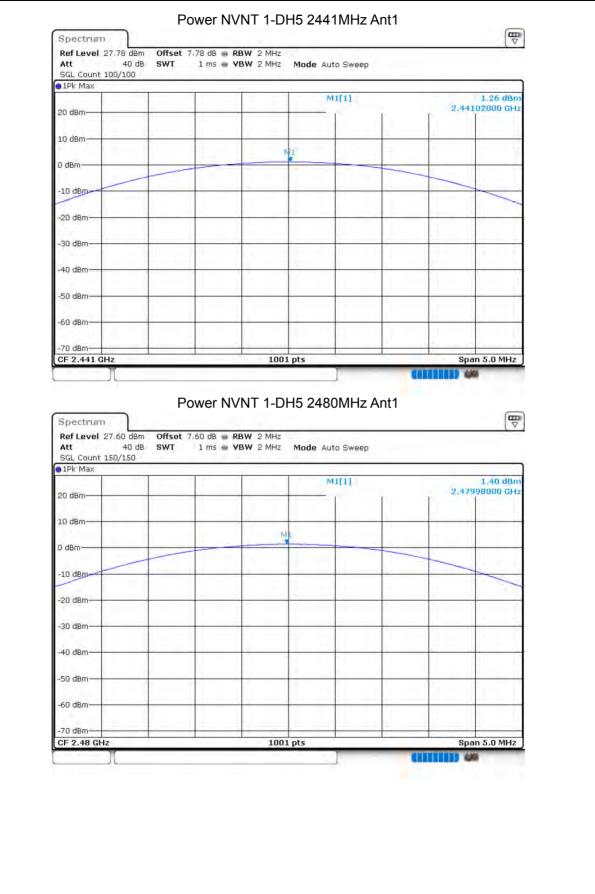

Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
MOUE	(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	
1-DH1	2441	0.375	120	31600	400	Pass
1-DH3	2441	1.62	259.2	31600	400	Pass
1-DH5	2441	2.872	306.347	31600	400	Pass
2-DH1	2441	0.378	120.96	31600	400	Pass
2-DH3	2441	1.63	260.8	31600	400	Pass
2-DH5	2441	2.88	307.2	31600	400	Pass
3-DH1	2441	0.378	120.96	31600	400	Pass
3-DH3	2441	1.625	260	31600	400	Pass
3-DH5	2441	2.872	306.347	31600	400	Pass
	1-DH3 1-DH5 2-DH1 2-DH3 2-DH5 3-DH1 3-DH3	Mode (MHz) 1-DH1 2441 1-DH3 2441 1-DH5 2441 2-DH1 2441 2-DH3 2441 2-DH5 2441 3-DH1 2441 3-DH3 2441	Mode(MHz)Time (ms)1-DH124410.3751-DH324411.621-DH524412.8722-DH124410.3782-DH324411.632-DH524412.883-DH124410.3783-DH324411.625	Mode(MHz)Time (ms)Time (ms)1-DH124410.3751201-DH324411.62259.21-DH524412.872306.3472-DH124410.378120.962-DH324411.63260.82-DH524412.88307.23-DH124410.378120.963-DH324411.625260	Mode(MHz)Time (ms)Time (ms)Time (ms)1-DH124410.375120316001-DH324411.62259.2316001-DH524412.872306.347316002-DH124410.378120.96316002-DH324411.63260.8316002-DH524412.88307.2316003-DH124410.378120.96316003-DH324411.62526031600	Mode(MHz)Time (ms)Time (ms)Time (ms)(ms)1-DH124410.375120316004001-DH324411.62259.2316004001-DH524412.872306.347316004002-DH124410.378120.96316004002-DH324411.63260.8316004002-DH524412.88307.2316004003-DH124410.378120.96316004003-DH324411.62526031600400

ACCREDITED Certificate #4298.01

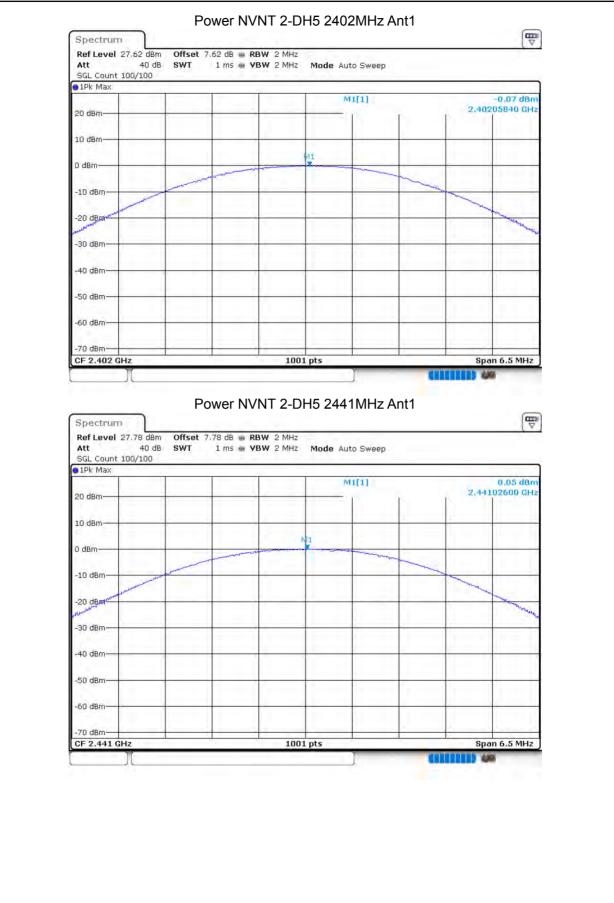




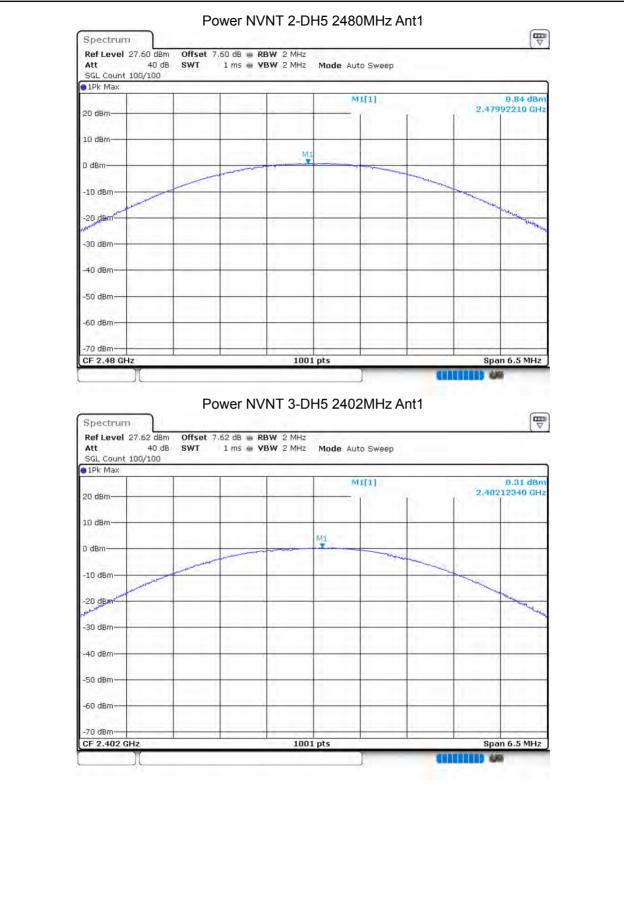


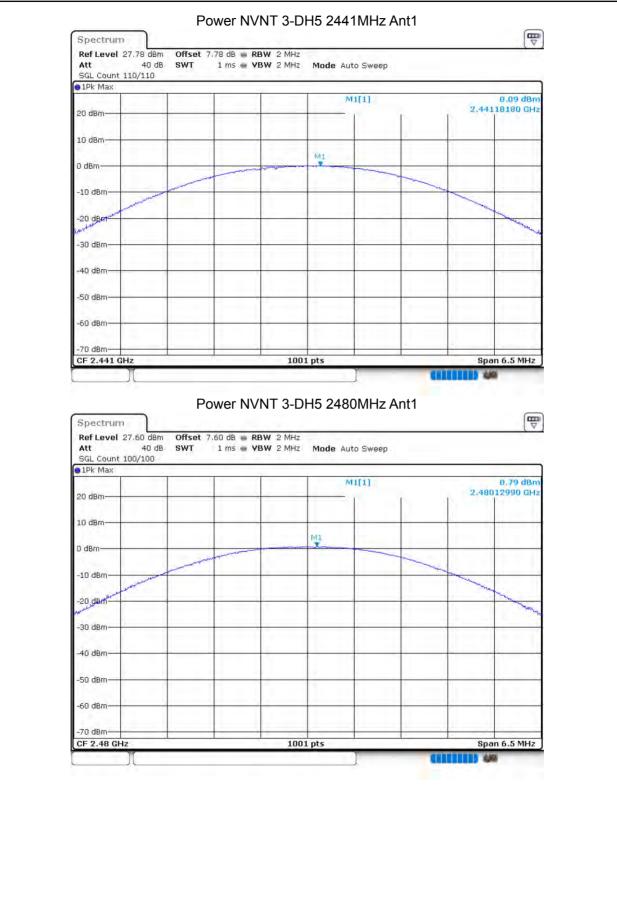

8.2 MAXIMUM CONDUCTED OUTPUT POWER

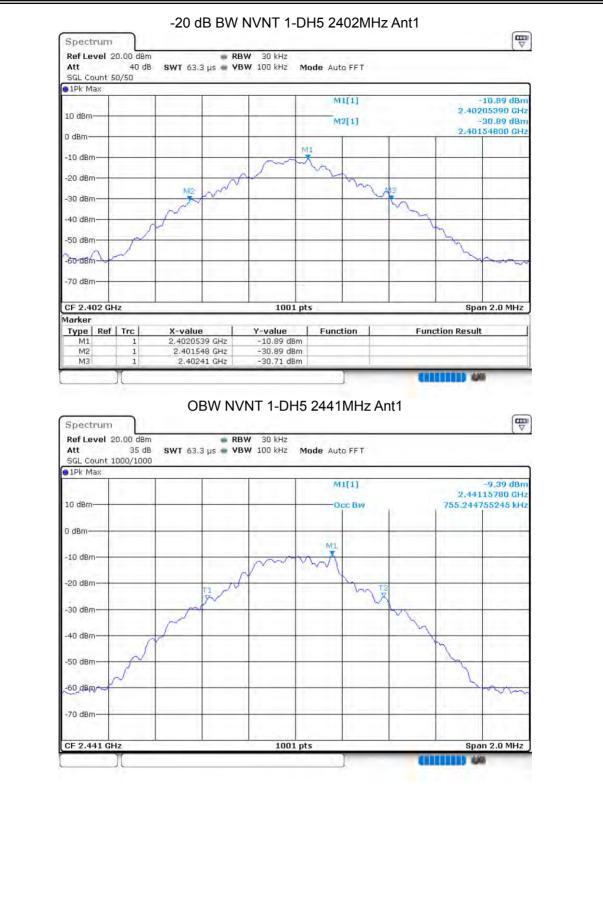
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	0.508	30	Pass
NVNT	1-DH5	2441	Ant 1	1.258	30	Pass
NVNT	1-DH5	2480	Ant 1	1.405	30	Pass
NVNT	2-DH5	2402	Ant 1	-0.075	30	Pass
NVNT	2-DH5	2441	Ant 1	0.047	30	Pass
NVNT	2-DH5	2480	Ant 1	0.838	30	Pass
NVNT	3-DH5	2402	Ant 1	0.312	30	Pass
NVNT	3-DH5	2441	Ant 1	0.086	30	Pass
NVNT	3-DH5	2480	Ant 1	0.792	30	Pass


Power NVNT 1-DH5 2402MHz Ant1

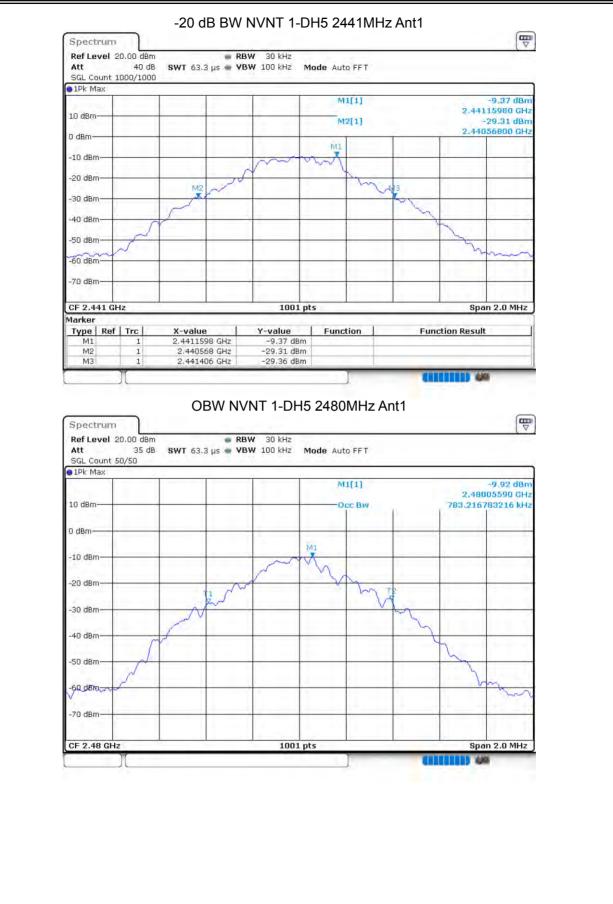
1Pk Max		1			
			M1[1]		0,51 dBr 2,40191010 GH
20 dBm-					
10 dBm					
doni		Mi	1.1		
) dBm					
10 dBm-					
20 dBm					
20 060					
30 dBm	1	-			
40 dBm				-	
50 dBm					
30 UBIII					
60 dBm	 			1	





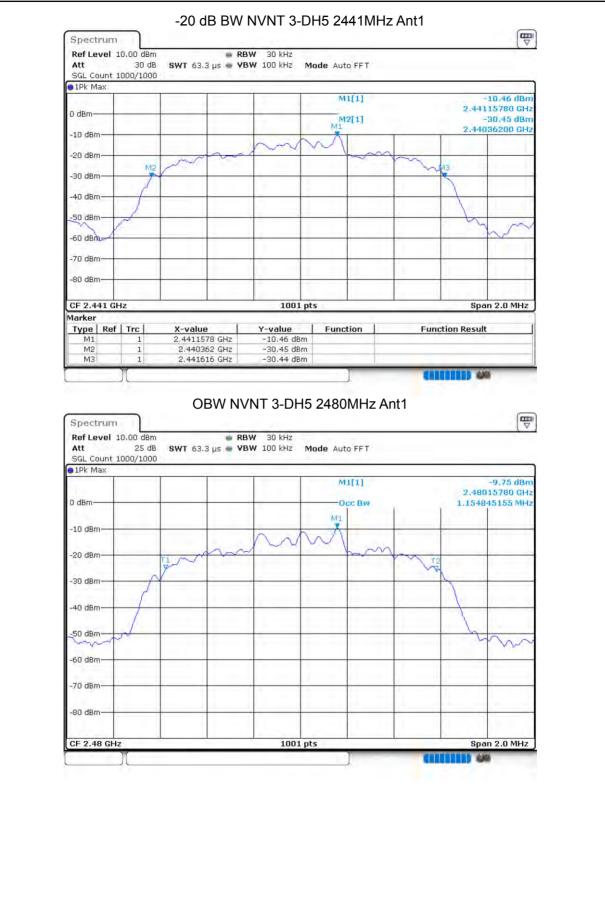

8.3 OCCUPIED CHANNEL BANDWIDTH

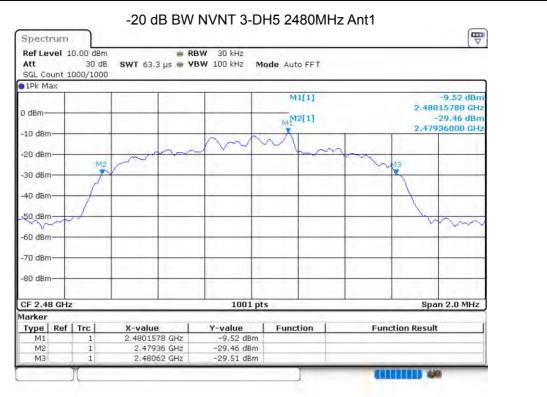
0.0 000						
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.7632	0.862	Pass
NVNT	1-DH5	2441	Ant 1	0.7552	0.838	Pass
NVNT	1-DH5	2480	Ant 1	0.7832	0.812	Pass
NVNT	2-DH5	2402	Ant 1	1.1449	1.264	Pass
NVNT	2-DH5	2441	Ant 1	1.1409	1.254	Pass
NVNT	2-DH5	2480	Ant 1	1.1489	1.27	Pass
NVNT	3-DH5	2402	Ant 1	1.1528	1.252	Pass
NVNT	3-DH5	2441	Ant 1	1.1449	1.254	Pass
NVNT	3-DH5	2480	Ant 1	1.1548	1.26	Pass

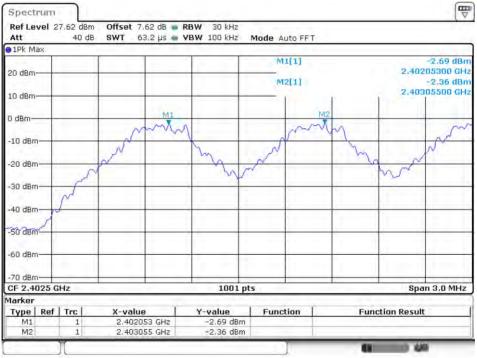

OBW NVNT 1-DH5 2402MHz Ant1

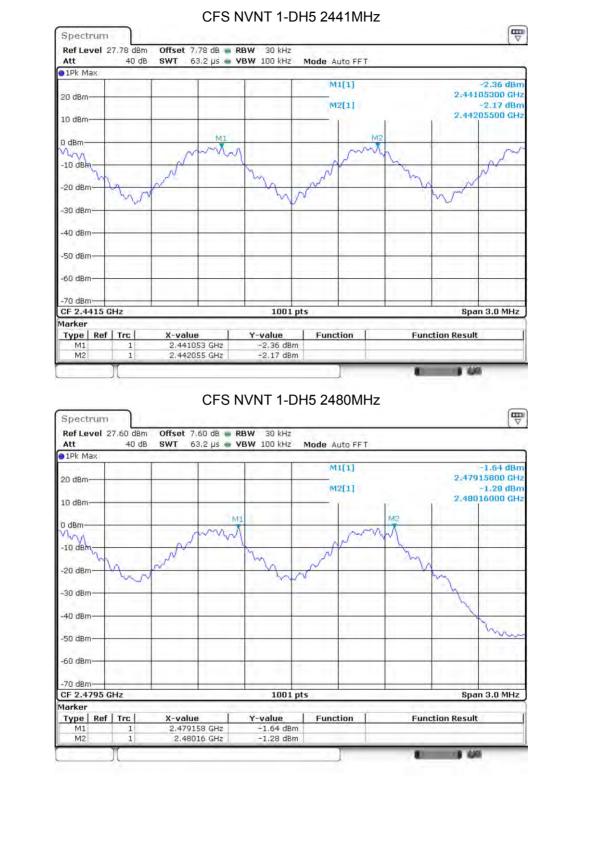




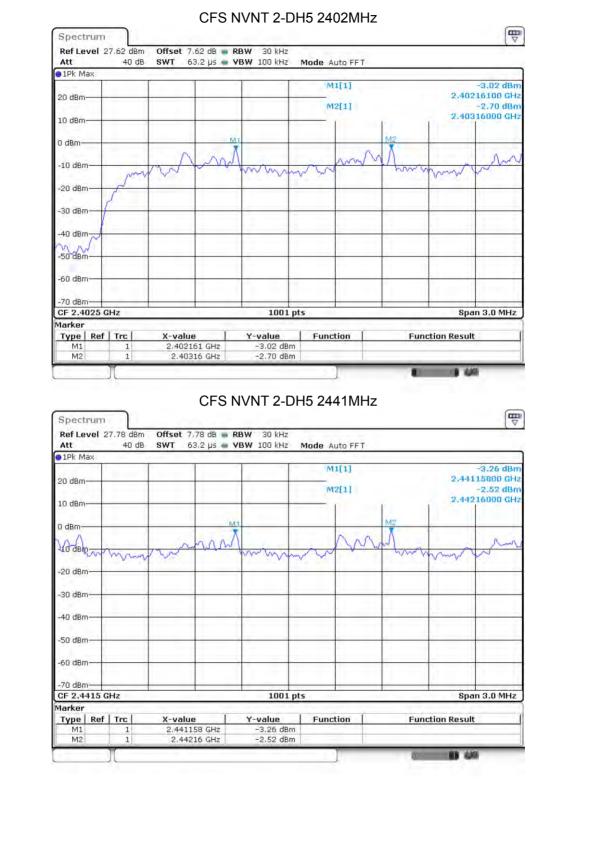


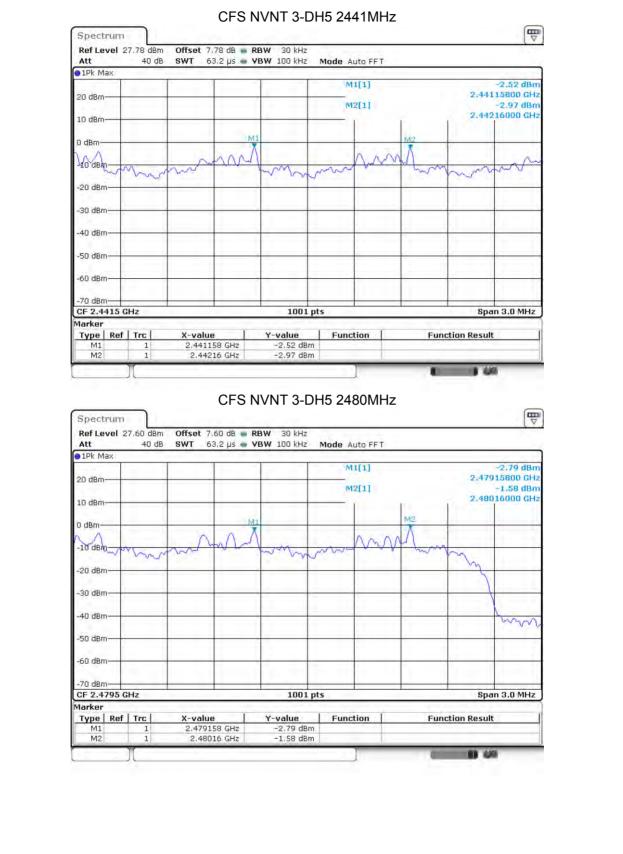


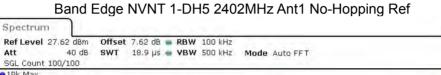


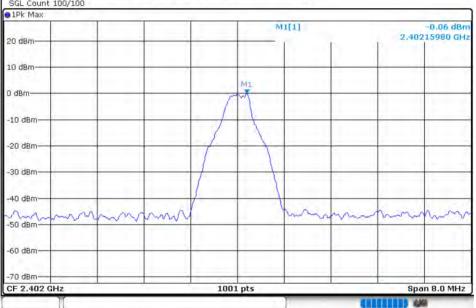

8.4 CARRIER FREQUENCIES SEPARATION

U.T OANN						
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2402.053	2403.055	1.002	0.862	Pass
NVNT	1-DH5	2441.053	2442.055	1.002	0.838	Pass
NVNT	1-DH5	2479.158	2480.16	1.002	0.812	Pass
NVNT	2-DH5	2402.161	2403.16	0.999	0.843	Pass
NVNT	2-DH5	2441.158	2442.16	1.002	0.836	Pass
NVNT	2-DH5	2479.011	2480.01	0.999	0.847	Pass
NVNT	3-DH5	2402.158	2403.16	1.002	0.835	Pass
NVNT	3-DH5	2441.158	2442.16	1.002	0.836	Pass
NVNT	3-DH5	2479.158	2480.16	1.002	0.84	Pass


CFS NVNT 1-DH5 2402MHz




8.5 NUMBER OF HOPPING CHANNEL Condition Hopping Number Mode Limit Verdict NVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 dBm Offset 7.62 dB ■ RBW 100 kHz SWT 1 ms ■ VBW 300 kHz 40 dB Att Mode Auto Sweep SGL Count 7000/7000 1Pk Max M1[1] 0.38 dBn 20 dBm 2.4020040 GHz M2[1] 0.46 dBm 2.4802435 GHz 10 dBm MO O ZBR -Pr 10A 20 dBm 30 dBm 40 dBm -50 dBm -60 dBm -70 dBm-Stop 2.4835 GHz 1001 pts Start 2.4 GHz Marker Function **Y-value** -0.38 dBm 0.46 dBm 2.402004 GHz **Function Result** Type | Ref | Trc M1 M2 2.4802435 GHz


m ⊽

8.6 BAND EDGE

0.0 B AND	EDGE						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	No-Hopping	-40.98	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-41.02	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-43.86	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-42.79	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-36.95	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-39.74	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-41.22	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-42.65	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-40.74	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-40.8	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-43.37	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-41.33	-20	Pass

• 1Pk Max		1	1	M1[1]		_	-0.55 dBm
20 dBm				M2[1]			205000 GHz -43,91 dBm
10 dBm	-	-	-		6		100000 GHz
0 dBm		3					MI
-10 dBm		1			-	-	
-20 dBm	D1 -20,055	5 dBm					
-30 dBm						· · · · · ·	
-40 dBm	and the NAME AND	and a such external	M4 White has a second second	What we write to be appeared	Capacitan Level and	M3	MALLAND MANA
-50 dBm-		Munitive Area tently		and the state of the state of	. Who we can dear	alle confirme	aver a
-60 dBm			-		-		
-70 dBm-	6 GHz		100:	L pts		Stop	2.406 GHz
Marker		V		Function	1	10.0	
Type Re M1 M2	1 1 1	X-value 2.40205 GH 2.4 GH		Sm	Fun	ction Result	
M3	1	2.39 GH	and a second	Im			
	1	2 2400 CL	Ja	ino i			
M4	n 27.62 dBm 40 dB	Offset 7.62 dB SWT 18.9 µs	-41.05 de g) NVNT 1-E B RBW 100 kHz s VBW 300 kHz	0H5 2402MH Mode Auto FF		pping R	
M4 Spectrun Ref Level Att SGL Count	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E) 0H5 2402MI			
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF			
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF			
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count ID dBm- D dBm- -10 dBm- -20 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count ID dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count ID dBm- D dBm- -10 dBm- -20 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count ID dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrun Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Ed	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	0H5 2402MH Mode Auto FF	T		
M4 Spectrum Ref Level Att SGL Count ID dBm D dBm -10 dBm -20 dBm -30 dBm -50 dBm	and Ed 27.62 dBm 40 dB 8000/8000	ge(Hopping offset 7.62 db swr 18.9 µs) NVNT 1-E	DH5 2402MH	T	2.404	
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	and Ed 27.62 dBm 40 dB 8000/8000	ge(Hopping offset 7.62 db swr 18.9 µs	g) NVNT 1-E	DH5 2402MH	T	2.404	0.97 dBm h15780 GHz

SGL Count 1 9 1Pk Max	1200/12			• VBW 300 kHz	Mode Auto FF	<u></u>		
20 dBm-	-				M1[1]		2 405	0.69 dBm
					M2[1]		-	05000 GHz 44.70 dBm
10 dBm						- 1	2.400	00000 GH2 M1
0 dBm			1					ANN)
-10 dBm								11/1/
-20 dBm0	01 -19,0	28 dBm====	1					
-30 dBm	-			M4			· · · · · ·	
-40 dBm	Laur Ma	hannenpan	which which is	minutitiensublies	alter the departments	to material and another motion of	AB	ME
-50 dBm					0.0	V		
-60 dBm			-	-				
-70 dBm							1	
Start 2.306 Marker	GHz		-	1001 p	ts		Stop 2	2.406 GHz
Type Ref		X-valu		Y-value 0.69 dBm	Function	Fun	ction Result	
M1 M2	1		2.4 GHz	-44.70 dBm				
		2	387 GHz	-44.15 dBm				
M3 M4	1		493 GHz	-40.06 dBm				
M4 Spectrum Ref Level 2 Att SGL Count 1	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	-40.06 dBm	DMHz Ant1 Mode Auto FF		ng Ref	(T)
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz	OMHz Ant1			0,36 dBm 05590 GHz
M4 Spectrum Ref Level 2 Att	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 Pk Max 20 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 Pk Max 20 dBm 10 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 Pk Max 20 dBm 10 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 O dBm 10 dBm 0 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2 O dBm 10 dBm 10 dBm -10 dBm -20 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2 O dBm 10 dBm 0 dBm -10 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2 O dBm 10 dBm 10 dBm -10 dBm -20 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 SGL Count 1 O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 Ban 27.60 de 40	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF			0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	1 Ban 27.60 dE 40 100/100	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(DMHz Ant1 Mode Auto FF		2,480	0,36 dBm 05590 GHz
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -60 dBm	1 Ban 27.60 dE 40 100/100	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(RBW 100 kHz yBW 300 kHz	DMHz Ant1 Mode Auto FF		2,480	0,36 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	1 Ban 27.60 dE 40 100/100	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(DMHz Ant1 Mode Auto FF		2,480	0,36 dBm 05590 GHz
M4 Spectrum Ref Level 2 Att SGL Count 1 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1 Ban 27.60 dE 40 100/100	2.3 d Edge N m Offset	NVNT 1 7.60 dB	1-DH5 248(DMHz Ant1 Mode Auto FF		2,480	0,36 dBm 05590 GHz

10 dBm	- 1 - C	1		1	M1[1]		0,44 di	
0 dBm 10 dBm 20 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 11 1 1 2.4796 GHz 100 pts 12.4796 GHz 100 pts 100 pts	20 dBm				M2[1]		-43,59 di	Bm
-10 Bm -20 dbm -30 dbm -30 dbm -40 dbm -30 dbm -40 dbm -50 dbm -50 dbm -50 dbm -50 dbm -70	M1					- (2.48350000 G	iHz
20 dbm D1 -13.636 dbm -30 dbm -40 dbm -30 dbm -40 dbm -50 dbm -46 dbm -70 dbm -100 pts Stor 2.476 GHz 1001 pts Stor 2.476 GHz 0.44 dbm M2 1 2.47995 GHz -46 dbm M3 1 2.5 GHz -46 dbm M4 1 2.4948 GHz -46 d.31 dbm M4 1 2.4948 GHz Add B0 SWT 18.9 µS & YBW 300 kHz Spectrum								
-30 dBm	The second second							
d d		9,636 dBm-						5
-50 dBm		Ma						
-60 dBm -70 dBm Stop 2.576 GHz Yor dBm 1001 pts Stop 2.576 GHz Warker 1 2.47995 GHz 0.44 dBm Mil 1 2.4335 GHz -43.59 dBm M3 1 2.435 GHz -43.59 dBm M4 1 2.4948 GHz -43.51 dBm M4 1 2.4948 GHz -43.51 dBm Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colsp	whe multipolymenter	martine	malanterment	and a superior and a superior	washington by an approximately	white whether the man	awy when an and	Lwga
And Control Contect Contecontect Control Control Control Control Control Contro								
Start 2.476 GHz 1001 pts Stop 2.576 GHz Yope Ref Trc X-value Y-value Function Function Result M1 1 2.47995 GHz 0.44 dBm Function Function Result M2 1 2.4835 GHz -43.59 dBm Function Result Function Result M3 1 2.4948 GHz -44.31 dBm Function Result Function Result M4 1 2.4948 GHz -43.51 dBm Function Result Function Result M4 1 2.4948 GHz -43.51 dBm Function Result Function Result Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Function Result Function Result Stop 27.60 dbm Offset 7.60 dB RBW 100 kHz Mater Stop 2.48000000 GHz Stop 20 dbm 0 dbm MI[1] 0.79 dBm 2.48000000 GHz O dBm M1 M1 Function Result Function Result -10 dBm M1 M1 M1 0.79 dBm -20 dBm M1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td></td<>							l	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.47995 GHz 0.44 dBm 1 2.4393 GHz -43.59 dBm 1 M3 1 2.4393 GHz -44.359 dBm 1 2.4948 GHz -43.59 dBm 1 M4 1 2.4948 GHz -46.31 dBm 1 2.4948 GHz -43.51 dBm M4 1 2.4948 GHz -43.51 dBm 1	Start 2.476 GHz	- T	Д	1001	pts		Stop 2.576 GH	łz
M2 1 2.4835 GHz -43.59 dBm M3 1 2.5 GHz -46.31 dbm M4 1 2.4948 GHz -43.51 dBm Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att a 0 dB SWT 18.9 µs YBW 300 kHz M1[1] 0.79 dBm Offset 7.60 dB RBW 100 kHz Att a 0 dB SWT 18.9 µs YBW 300 kHz Multiple Auto FFT SGL count 8009/8009 IPk Max 0 dBm 0.79 dBm 0.19 dBm 0.19 dBm 0.48000000 GHz 0 dBm 0.10 dBm 0.10 dBm	and a split to all a second and a second					Fun	ction Result	1
M3 1 2.5 GHz -46.31 dBm M4 1 2.4948 GHz -43.51 dBm Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 8009/8009 IPk Max 0.79 dBm 20 dBm 0.79 dBm -10 dBm 0.79 dBm -40 dBm 0.79 dBm -20 dBm 0.79 dBm -20 dBm 0.79 dBm -40 dBm 0.79 dBm 0.79 dBm								
Spectrum Provide and a constraint of the second consecond constraint of the second constraint of the secon								
Spectrum Provide and a constraint of the second consecond constraint of the second constraint of the secon)(0		
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Att SGL Count 8009,	40 dB SWT				т	`	
0 dBm -10\dBm -20 dBm -30 dBm -40 dBm	Att SGL Count 8009, 1Pk Max	40 dB SWT				T	0.79 di	Bm
-20 dBm -30 dBm -40 dBm	Att SGL Count 8009, 1Pk Max 20 dBm	40 dB SWT				T.	0.79 di	Bm
-20 dBm -30 dBm -40 dBm	Att SGL Count 8009, 1Pk Max 20 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
-30 dBm	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm 0 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
-40 dBm	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm 0 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm -10 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
-50 dBm	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T .	0.79 di	Bm
Jo dom	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
	Att SGL Count 8009, 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
-60 dBm	Att SGL Count 8009, 1Pk Max 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
-70 dBm	Att SGL Count 8009, 1Pk Max 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	40 dB SWT		VBW 300 kHz	M1[1]	T	0.79 di	Bm
CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 8009, 1Pk Max 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	40 dB SWT		VBW 300 kHz	MI[1]		0.79 di 2,4800000 d	Bm HIZ

20 dbm MI[1] 2.47995000 GHz 10 dbm 2.48850000 GHz 0 dbm 2.48850000 GHz 20 dbm 2.48850000 GHz 20 dbm 1 21 dbm 1 22 dbm 0.03 dbm 21 dbm 1 22 dbm 0.03 dbm 20 dbm 1 24 dbm 2.4795 GHz 30 dbm 1 24 dbm 2.4795 GHz 30 dbm 1 24 dbm 1 24 dbm <th>1Pk Max</th> <th>200/1200</th> <th></th> <th></th> <th>~ ~ ~</th> <th></th> <th></th> <th></th> <th></th> <th></th>	1Pk Max	200/1200			~ ~ ~					
10 dBm 2.4835000 GHz 0 dBm 2.4835000 GHz 20 dBm 20 dBm 30 dBm 40 dBm 40 dBm 10 dBm 50 dBm 10 dBm 8tort 2.476 GHz 1001 pts Stort 2.476 GHz 1001 pts Stort 2.476 GHz 1001 pts Stort 2.476 GHz 44.35 GHz 40 dB 1 2.4805 GHz 41 2.4405 GHz 44.35 GHz 42 1 2.4405 GHz 44.36 GHm 42 1 2.4405 GHz 42.00 dEm M1 1 2.4905 GHz 42.00 dEm Spectrum CV Ref Level 27.52 dBm Offset 7.52 dB RBW 100 kHz Att 40 dB WW 300 kHz Mode Auto FFT SGL Count 100/100 40 dB 40 dB 40 dB 40 dBm 40 dB 40 dB	20 dBm					M	1[1]		2.47	
Continue	10 dBm	-		-	1.000	M	2[1]			-44.35 dBm
Huller Image: Mage Image Image Image: Mag	ML							1		
20 gbm 01 -19.200 dbm 04 - 04 gbm 04 - 04	1111						1		1.000	
30 dBm M4 M3 M4	AWL L	10.000	dBm							
40 M4 M4 <t< td=""><td></td><td>1 -19.209</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1 -19.209								
40 dBm		M4					1		1	
-60 dBm -70 dBm -7	Martin and		amiles Rylandar	Man sendering	4 manual march	minument	an and the state	anno-united and the	manuthankla	notestimenter
Jong Jong Start 2.476 GHz Stop 2.576 GHz Marker 1 2.47995 GHz 0.03 dBm Function Function Result M1 1 2.4995 GHz 0.03 dBm Function Function Result M2 1 2.4905 GHz -0.03 dBm Function Result Function Result M2 1 2.4905 GHz -44.79 dBm Function Function Result M3 1 2.4905 GHz -44.79 dBm Function Function Result M4 1 2.4905 GHz -44.79 dBm Function Result Function Result M4 1 2.4905 GHz -42.00 dBm Function Result Function Result M4 1 2.4905 GHz -42.00 dBm Function Result Function Result Start 2.4902 GHz Function Result Material Result Function Result Function Result Start 2.402 BB Offset 7.62 dB RBW 100 kHz Material Result Function Firet Start 2.402 BB GHz Material Result Material Result F	-50 dBm									
Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Trype Ref Trc X-value Y-value Function Function Result M2 1 2.4935 GHz 0.03 dBm Function Function Result M3 1 2.4935 GHz -44.35 dBm Function Function Result M4 1 2.4935 GHz -44.79 dBm Function Function Result M4 1 2.4905 GHz -42.00 dBm Function Function Result M4 1 2.4905 GHz -42.00 dBm Function Function Result Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref Spectrum Function Result Function Result SGL count 100/100 SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL count 100/100 91Pk Max	-60 dBm							· · · · · ·	1	
Nerker Trc X-value Y-value Function Function Result M1 1 2.47995 GHz 0.03 dBm 1 2.4835 GHz -44.35 dBm 1 1 2.4835 GHz -44.35 dBm 1 1 2.4905 GHz -44.79 dBm 1 2.4905 GHz -44.79 dBm 1 2.4905 GHz -42.00 dBm 1 <		GHz		1	1001	pts			Ston	2.576 GHz
M1 1 2.47995 GHz 0.03 dBm M2 1 2.4935 GHz -44.35 dBm M3 1 2.5 GHz -44.79 dBm M4 1 2.4905 GHz -42.00 dBm M5 GE count 100/100 Image: SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: SWT 18.9 µs VBW 300 kHz Mode Auto FFT -4.56 dBm 20 dBm	Marker							-		
M3 1 2.5 GHz -44.79 dBm M4 1 2.4905 GHz -42.00 dBm Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image	M1	1	2.479	95 GHz	0.03 dBr	m	tion	Fund	tion Resu	<u>n</u>
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2"										
Spectrum Image: Construct of the second secon			0.40	NOT CH2	-42.00 dBr	m				
10 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -40 dBm 10 dBm -50 dBm 10 dBm -70 dBm 10 dBm	M4 Spectrum Ref Level 2 Att SGL Count 11	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz /		-Hoppir	ng Ref	, (T)
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 1Pk Max	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	-Hoppir		-4,56 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 1Pk Max	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	D-Hoppin		-4,56 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 SGL Count 11 1Pk Max 20 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	D-Hoppin		-4,56 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 SGL Count 11 1Pk Max 20 dBm 10 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 SGL Count 11 1Pk Max 20 dBm 10 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 IPk Max 20 dBm 10 dBm 0 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-40 dBm -50 dBm -60 dBm -70 dBm	M4 Spectrum Ref Level 2' Att SGL Count 11 DIPk Max 20 dBm 10 dBm -10 dBm -10 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-50 dBm -60 dBm -70 dBm	M4 Spectrum RefLevel 2' Att SGL Count 11 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-60 dBm	M4 Spectrum RefLevel 2' Att SGL Count 11 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-70 dBm-	M4 Spectrum Ref Level 2' Att SGL Count 11 IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
-70 dBm-	M4 Spectrum RefLevel 2' Att SGL Count 11 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -40 dBm -40 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
	M4 Spectrum Ref Level 2: Att SGL Count 11 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
	M4 Spectrum Ref Level 2: Att SGL Count 11 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Band I	Edge N	IVNT 2- .62 dB - R	DH5 240 BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-4,56 dBm
	M4 Spectrum Ref Level 2' Att SGL Count 10 IPk Max 20 dBm 10 dBm -0 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm -70 dBm	Eand I 7.62 dBm 40 dB 20/100	Edge N	IVNT 2- .62 dB - R	DH5 240	D2MHz /	uto FFT	p-Hoppin	2,40	-4,56 dBm 213590 GHz
	M4 Spectrum Ref Level 2' Att SGL Count 10 IPk Max 20 dBm 10 dBm -0 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm -70 dBm	Eand I 7.62 dBm 40 dB 20/100	Edge N	IVNT 2- .62 dB - R	DH5 240	D2MHz /	uto FFT	p-Hoppin	2,40	-4,56 dBm 213590 GHz

SGL Cou 1Pk Max		100								1
20 dBm-						M	1[1]		2.40	-0.52 dBm 215000 GHz
10 dBm-				-		M	2[1]			-46.52 dBm 000000 GHz
0 dBm-		_					1	[2.40	M1
-10 dBm-							1.1			A
-20 dBm-										
-30 dBm-	D1 -	24.561	dBm			-		-		
-					M4	-			MB	
40. Alah44	water	Puriliana	aliputantiant	wayabaanda	mound	whiteworthand	murallymo	uthyrumarhout	alarmad Kharman	when the Who
-60 dBm-										
-70 dBm-							1	·	1	1 1
Start 2.3	806 GH	z	1	1	1001	pts		1	Stop	2.406 GHz
Marker Type I	Ref T		X-valu		Y-value	Func	tion	Fune	ction Resu	lt
M1 M2		1	2	2.4 GHz	-0.52 dB -46.52 dB	Im				
M3	-1-	1		39 GHz 69 GHz	-43.60 dB -41.51 dB					
M4 Spectre Ref Lev Att SGL Cou	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	VNT 2-D RBW 100 kHz VBW 300 kHz			Ant1 Ho	pping F	Ref
M4 Spectro Ref Lev Att SGL Cou Pk Max	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A		Ant1 Ho		
M4 Spectre Ref Lev Att SGL Cou	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm
M4 Spectru Ref Lev Att SGL Cou 1Pk Mas 20 dBm- 10 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		0.20 dBm 515680 GHz
M4 Spectru Ref Levi Att SGL Cou 1Pk May 20 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk Mas 20 dBm- 10 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk Max 20 dBm- 10 dBm- 0 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk May 20 dBm- 10 dBm- -10 dBm- -20 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Lev Att SGL Cou 1Pk May 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm-	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Levi Att SGL Cou 10 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	um el 27.6 nt 800(d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT		2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Levi Att SGL Cou 10 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm	Im Im 1000 100	d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡	RBW 100 kHz		uto FFT	Ant1 Ho	2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Levi Att SGL Cou 1Pk Max 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Im Im 1000 100	d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡			uto FFT		2.40	0.20 dBm 515680 GHz
M4 Spectru Ref Levi Att SGL Cou 1Pk Max 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Im Im 1000 100	d Edg 2 dBm 40 dB	ge(Hop offset 7	.62 dB 🐞 🖡			uto FFT		2.40	0.20 dBm 515680 GHz

20 ddm 0.21 ddm 10 ddm 4.24.04 exponses 10 ddm 2.40 exponses 10 ddm 10 ddm 20 ddm 1 2.40 exponse 20 ddm 1 2.40 exponse 20 ddm 1 2.40 exponse 21 2.40 exponse 1 0.10 exponse 21 2.40 exponse 1 0.10 exponse 21 2.40 exponse 1 0.10 exponse 21 2.40 exponse 1 0.	Ref Level 27 Att SGL Count 12	40 dB			RBW 100 kHz VBW 300 kHz		FFT			
10 dBm 4-4-7 0 dBm 2.40000000 cHz 10 dBm 4-4-7 10 dBm 4-4-7 10 dBm 4-4-7 20 dBm 4-4-7 40 dBm 4-4-7 40 dBm 4-4-7 40 dBm 4-4-7 70 dBm 4-4-7 40 dBm 4-4-7 70 dBm 4-4-7 60 dBm 4-4-7 70 dBm 10 dBm 70 dB	• 1Pk Max	1			1 1	M1[1]				
10 dBm 01 - 19.797 dBm 01 - 10 dBm 01 - 10 dBm 01 - 10 dBm 01 - 1 2.3 G cHz 1001 pts Stop 2.406 GHz 100 pts Stop 2.400 GHz 100						M2[1]				
10 dBm 01 -19.797 dBm 04	10 dBm						1	2.400		
10 dBm 01 -10.797 dBm 30 dBm 10 40 dBm 10 70 dBm 10 40 dBm 2.4 GHz 12 2.4 GHz 13 2.39 GHz 14 2.3485 GHz 39.55 dBm M4 12 2.3485 GHz -39.55 dBm Spectrum WBW Ref Level 27.60 dBm Offset 7.50 dB RBW 100 kHz Att 40 dB SWT 18.9 µS WBW 300 kHz Att 40 dB SWT 18.9 µS WBW 300 kHz 20 dBm 10 11 1.31 dBm 10 dBm 11 1.31 dBm <td>0 dBm</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.04</td>	0 dBm	1							11.04	
30 dm									mars	
40 dBm Max	54 M	-19,797	dBm-		-					
Band Y-value Function Function Result 70 dbm 1 2.40485 GHz 0.21 dbm Function Result Function Result M1 1 2.40485 GHz 0.21 dbm Function Result Function Result M2 1 2.4 GHz -44.75 dbm Function Result Function Result M3 1 2.396 GHz -39.55 dbm Function Result Function Result M4 1 2.3485 GHz -39.55 dbm Function Result Function Result M4 1 2.3485 GHz -39.55 dbm Function Result Function Result Spectrum Function Contract Function Result Function Result Function Result Sol Count 100100 BWT 10.8 Pt WIN 300 kHz Mode Auto FFT Sol Count 100 Sol Count 100100 Function Result Function Result Function Result Function Result 20 dbm Glam Function Result Function Result Function Result 30 dbm Glam Function Result Function Result Functio					M4					
Band Y-value Function Function Result 70 dbm 1 2.40485 GHz 0.21 dbm Function Result Function Result M1 1 2.40485 GHz 0.21 dbm Function Result Function Result M2 1 2.4 GHz -44.75 dbm Function Result Function Result M3 1 2.396 GHz -39.55 dbm Function Result Function Result M4 1 2.3485 GHz -39.55 dbm Function Result Function Result M4 1 2.3485 GHz -39.55 dbm Function Result Function Result Spectrum Function Contract Function Result Function Result Function Result Sol Count 100100 BWT 10.8 Pt WIN 300 kHz Mode Auto FFT Sol Count 100 Sol Count 100100 Function Result Function Result Function Result Function Result 20 dbm Glam Function Result Function Result Function Result 30 dbm Glam Function Result Function Result Functio	And summer in solow proves	unity own	annan	some the second	monetroning	to have been a subject to be	ation distant and taken	Mo Mo Mo	May may	
To dBm Stop 2.406 GHz Start 2.306 GHz 1001 pts Stop 2.406 GHz Tarker Trick Y-value Function Function Result M1 1 2.40495 GHz 0.21 dBm Function Result Function Result M2 1 2.40495 GHz -0.21 dBm Function Result Function Result M3 1 2.39 GHz -44.75 dBm Function Result Function Result M4 1 2.3485 GHz -39.55 dBm Function Result Function Result M4 1 2.3485 GHz -39.55 dBm Function Result Function Result M4 1 2.3485 GHz -39.55 dBm Function Result Function Result Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Stop 2.48003200 GHz Function Function Result Function Function Result Function Result Stop 2.60 dBm Mt (1) -1.31 dBm 2.48003200 GHz Function Functi				-	1			1		
Stort 2.306 GHz Stor 2.406 GHz Tarker Type Ref Trc X-value Y-value Function Function Result M2 1 2.40495 GHz 0.21 dBm 1 1 2.40495 GHz 0.21 dBm M2 1 2.4 dFt -44.47 dBm 1 1 2.39 GHz -44.75 dBm M3 1 2.3485 GHz -39.55 dBm 1 1 1 1 Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT 50G Count 100/100 1Pk Max 20 dBm 0 915 VBW 300 kHz M1[1] 2.48003200 GHz 1.31 dBm 20 dBm 1 1 1 1 1 1 1 20 dBm 1								1		
Type Ref Trc X-value Y-value Function Function M1 1 2.4045 GHz 0.21 dBm 0.21 dBm 0.21 dBm M2 1 2.4 GHz -44.47 dBm 0.21 dBm 0.21 dBm M3 1 2.39 GHz -44.75 dBm 0.21 dBm 0.21 dBm M4 2.3465 GHz -39.55 dBm 0.00000000000000000000000000000000000		Hz			1001	pts		Stop	2.406 GHz	
M2 1 2.4 GHz -44.47 dBm M3 1 2.39 GHz -44.75 dBm M4 1 2.3485 GHz -39.55 dBm Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Image: Comparison of the state of	Marker Type Ref	Trc	X-value		Y-value	Function	Fur	nction Result	t - 1	
M3 1 2.39 GHz -44.75 dBm M4 1 2.3485 GHz -39.55 dBm Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Max Mode Auto FFT SQL Count 100/100 IPK Max MI(1) -1.31 dBm 2.488003200 GHz 10 dBm -1.0 dBm -1.0 dBm -1.31 dBm -1.31 dBm -1.31 dBm -1.31 dBm -1.31 dBm -1.31 dBm -1.0 dBm -1.0 dBm -1.0 dBm -1.31 dBm -1.0 dBm -1.0 dBm -1.0 dBm -1.0 dBm -1.0 dBm -1.0 dBm <td colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Im				and the second second						
Spectrum The second secon									65	
10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm	Spectrum Ref Level 27 Att SGL Count 10	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	13.21.33		ing Ref		
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm- 10 dBm-	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm- 10 dBm- 0 dBm-	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-40 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm- 10 dBm-	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-50 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm- 10 dBm- 0 dBm-	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-50 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm- 10 dBm- -10 dBm-	.60 dBm 40 dB	Offset 7.	60 dB 🍙	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-60 dBm	Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F			-1,31 dBm	
-70 dBm-	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT		-1,31 dBm	
	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT		-1,31 dBm	
	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT		-1,31 dBm	
	Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT		-1,31 dBm	
	Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT	2,480	-1,31 dBm 103200 GHz	
	Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT	2,480	-1,31 dBm 103200 GHz	
	Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT	2,480	-1,31 dBm 103200 GHz	
	Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	.60 dBm 40 dB	Offset 7.	60 dB • • •	RBW 100 kHz	Mode Auto F	FT	2,480	-1,31 dBm 103200 GHz	

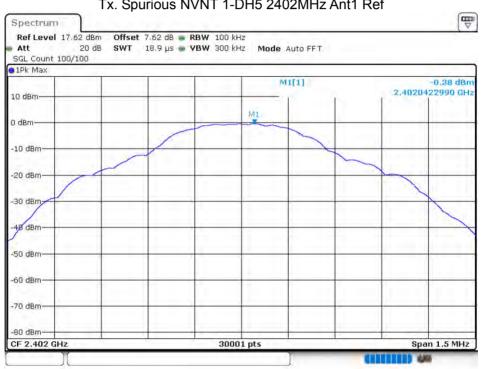
SGL Count 1Pk Max			1	1					
20 dBm		_	-		M1				-2.05 dBm 015000 GHz
10 dBm					M2	[1]			-46.36 dBm 350000 GHz
			-						
-10 cBm-						1		1	
-20 cBm-	01 -21,309	dBm						1	
-30 dBm-	01 21.300	GETT						1	
-40 dame		M4		1	_	1		1	1.1
-50 dBm	manner	halftennfold	add an and water	any watch the most of	phonenetral manage	abelsturnes	spheraphartaction	munition	the advertised in the
-60 dBm									
-70 dBm						1	1	1	1
Start 2.476 Marker	i GHz			1001	pts			Stop	2.576 GHz
Type Ret M1 M2	f Trc 1		e 015 GHz 035 GHz	Y-value -2.05 dBi -46.36 dBi		ion	Fund	ction Resu	lt
MЗ	1		2.5 GHz 985 GHz	-46.11 dBr -42.54 dBr					
M4	1	2,49							
Spectrum Ref Level Att SGL Count	1 27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho	pping F	
Ba Spectrum Ref Level Att SGL Count	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	- A. 2	to FF T	Ant1 Ho		
Ba Spectrum Ref Level Att SGL Count 1Pk Max	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm-	27.60 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho		0.22 dBm
Ba Spectrum Ref Level Att SGL Count 1 Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.60 dBm 40 dB 8000/8000	ge(Hop offset 7	ping) N		Mode Aut	to FF T	Ant1 Ho	2.47	0.22 dBm 984020 GHz
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.60 dBm 40 dB 8000/8000	ge(Hop offset 7	ping) N	VNT 2-D	Mode Aut	to FF T	Ant1 Ho	2.47	0.22 dBm
Ba Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm-	and Edg 27.60 dBm 40 dB 8000/8000	ge(Hop offset 7	ping) N		Mode Aut	to FF T		2.47	0.22 dBm 984020 GHz
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.60 dBm 40 dB 8000/8000	ge(Hop offset 7	ping) N		Mode Aut	to FF T		2.47	0.22 dBm 984020 GHz

	1000/1000	-		i i	444741			0.40.40
20 dBm					M1[1]		2.479	-0.42 dBm 15000 GHz
10 dBm	-			-	M2[1]	1		43.01 dBm 50000 GHz
0 dBm	-			-		-		
Alt dBm-	-		-			-		
-20 cBm	01 -19,777	dBm				-		
-30 dBm								
-40 dBm	nouthingmun	EM.	annul alementer	moundary	whole when the putting	uehander ogenhalter	What he was a fund	Marana water and
-50 dBm								
-60 dBm						1		
-70 dBm-	GHz			1001	pts		Stop 2	.576 GHz
Marker Type Ref		X-value	. 1	Y-value	Function	Erme	tion Result	
M1 M2	1	2.479	15 GHz 35 GHz	-0.42 dBr -43.01 dBr	n	Func	AION RESUL	
M3 M4	1 1	2	35 GHz 36 GHz	-43.90 dBr -42.44 dBr	n			
MIH	T I	2,48	30 GH2	-42,44 UBI	<u>, , , , , , , , , , , , , , , , , , , </u>	100		
Spectrum Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7.		RBW 100 kHz VBW 300 kHz	Mode Auto FFT			
Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7.			Mode Auto FFT			-0,84 dBm 99200 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB	Offset 7.				i i		-0,84 dBm
Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm-	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm-	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count I D dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	27.62 dBm 40 dB	Offset 7.						-0,84 dBm
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.62 dBm 40 dB 300/300	Offset 7.			MI[1]		2.401	-0,84 dBm
Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 300/300	Offset 7.		WBW 300 kHz	MI[1]		2.401	-0.84 dBm 99200 GHz

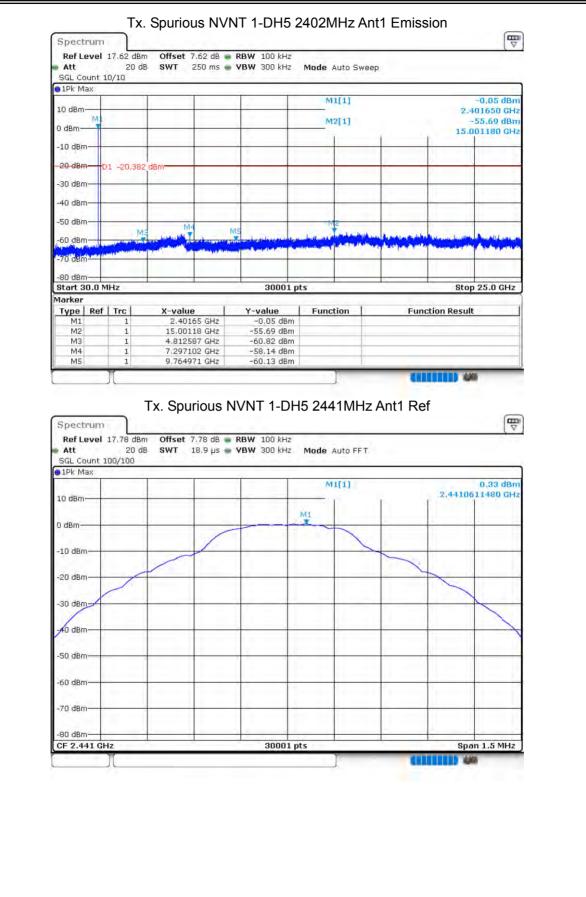
SGL Count 10 9 1Pk Max	00/100			11		10.00			
20 dBm-					MI	[1]		2.40	-0.44 dBm
10 dBm					Ma	2[1]			215000 GHz -45.00 dBm
0 dBm		/				ć		2.40	000000 GHz
-10 dBm			1		1.000	1		1	٨
-30 dBm	L -20.844	dBm						1	
10.10			M4			1		1	
-50 dBm	survey have	and the Human	monorthermol	Lowennesser	manumula	whateled		MMMMunn	name of the
-60 dBm				·					
-70 dBm								1	
Start 2.306 (GHz			1001	pts			Stop	2.406 GHz
Marker Type Ref		X-value		Y-value	Funct	ion	Fun	ction Resu	lt
M1 M2	1	2	15 GHz 2.4 GHz	-0.44 dB -45.00 dB	m				
M3	1		39 GHz 03 GHz	-46.37 dB					
M4			www.unitie	the second s					
	7.62 dBm 40 dB	ge(Hopp	oing) N	VNT 3-D RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	pping F	Ref (₩ 0.60 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz	Mode Au		Ant1 Ho		
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho		0.60 dBm
Bai Spectrum Ref Level 23 SGL Count 80 SGL Count 80 IPk Max 20 dBm 10 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 23 Att SGL Count 80 IPk Max 20 dBm 10 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm 0 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 27 Att SGL Count 80 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bar Spectrum Ref Level 23 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	7.62 dBm 40 dB	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 23 Att SGL Count 80 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	7.62 dBm 40 dB 000/8000	ge(Hopp	oing) N	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz
Bai Spectrum Ref Level 2: Att SGL Count 80 1D dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	7.62 dBm 40 dB 000/8000	ge(Hopp	oing) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515690 GHz
Bai Spectrum Ref Level 2: Att SGL Count 80 IPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm	7.62 dBm 40 dB 000/8000	ge(Hopp	oing) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	0.60 dBm 515680 GHz

20 dBm-	[1]	
10 dBm		0.09 dBm 2.40385000 GHz
and the second	[1]	-44.63 dBm 2.40000000 GHz
-10 dBm		M1
TO ODIT		M
-20 dBm D1 -19,396 dBm		
-30 dBm-		
-40 dBm	another and an another	M3 M2
-50 dBm	and a frank in the second	and the second strength of the second strengt
-60 dBm		
-70 dBm		Stop 2.406 GHz
Marker	1 - 1	
Type Ref Trc X-value Y-value Function M1 1 2.40385 GHz 0.09 dBm	ion Functi	on Result
M2 1 2.4 GHz -44.63 dBm M3 1 2.39 GHz -44.90 dBm		
M4 1 2.3483 GHz -40.21 dBm		
Spectrum Ref Level 27.60 dBm Offset 7.60 dB = RBW 100 kHz Att 40 dB SWT 18.9 µs = VBW 300 kHz Mode Ar SGL Count 100/100 Image: SGL Co	12.52	g Ref
Ref Level 27,60 dBm Offset 7,60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 Mode Ar Plk Max Mr Mr Mr	12.52	
Ref Level 27,60 dBm Offset 7,60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 0 <td>ito FFT</td> <td>-0.01 dBm</td>	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz Mode Ar SGL Count 100/100 Mode Ar PIPk Max Mode Ar	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 Mode Ar PIPk Max Mode Ar 20 dBm	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 Mode Ar 10 dBm M1	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz Mode Ar SGL Count 100/100 Max Mode M 20 dBm 0<	ito FFT	-0.01 dBm
Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 IPk Max Mode Ar Mode Ar 20 dBm 0 dBm MI MI 0 dBm 0 dBm MI MI -10 dBm -20 dBm MI MI	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz Mode Ar SGL Count 100/100 Max Mode M 20 dBm	ito FFT	-0.01 dBm
Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 IPk Max Mode Ar Mode Ar 20 dBm 0 dBm MI MI 0 dBm 0 dBm MI MI -10 dBm -20 dBm MI MI	ito FFT	-0.01 dBm
Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 Image: set of the	ito FFT	-0.01 dBm
Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 Image: set of the	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 N N N N 10 dBm 0 MI N N N N 10 dBm 0	ito FFT	-0.01 dBm
Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Ar SGL Count 100/100 18.9 µs VBW 300 kHz Mode Ar O dBm 10 dBm 11 12 13 14 14 14 10 dBm 10 dBm 10	ito FFT	-0.01 dBm

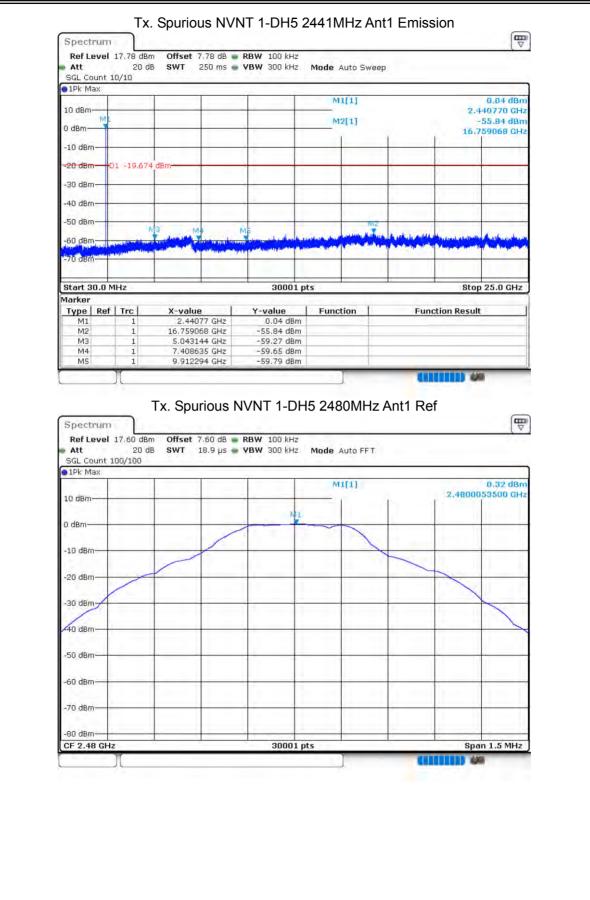
20 dBm			M	1[1]			-1.59 dBm
	1						005000 GHz -45.29 dBm
10 dBm				2[1]	C		350000 GHz
0 dBm						-	
-10 cBm							
-20 cBm D1 -20,01	1 dBm				1		
-30 dBm					<u></u>	·	1
			1	1.0			
4. Margarentiner	W-MAND mollipunt	Anna with the second	monument	and with other	Munnant	hay with the work	4 Manuartalland
-50 dBm-				110 0 0 0 0 0 0 0			
-60 dBm			-			1	
-70 dBm					_	-	
Start 2.476 GHz Marker		100	11 pts			Stop	2.576 GHz
Type Ref Trc	X-value	Y-value	Func	tion	Func	tion Resul	t I
M1 1 M2 1	2.48005 G 2.4835 G						
M3 1 M4 1	2.5 G 2.4903 G						
r Tr				1	-		٥.
Band Ec Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000	n Offset 7.60 c 3 SWT 18.9 j	dB - RBW 100 kH µs - YBW 300 kH		uto FFT			♥
Spectrum Ref Level 27.60 dBn Att 40 dB	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A	uto FFT			-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 dB SGL Count 8000/8000	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 PIPk Max 20 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2,470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 PIPk Max	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 PIPk Max 20 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 0 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 PIPk Max 20 dBm 10 dBm M1	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2,470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 0 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7.60 c 3 SWT 18.9 j		iz Mode A			2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	n Offset 7.60 o 3 SWT 18.9 j		iz Mode A		~~~~~~	2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n Offset 7.60 o 3 SWT 18.9 j		iz Mode A		~~~~~~	2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	n Offset 7.60 o 3 SWT 18.9 j		iz Mode A		~~~~~~	2.470	-0,45 dBm
Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7.60 o 3 SWT 18.9 j		iz Mode A				-0,45 dBm



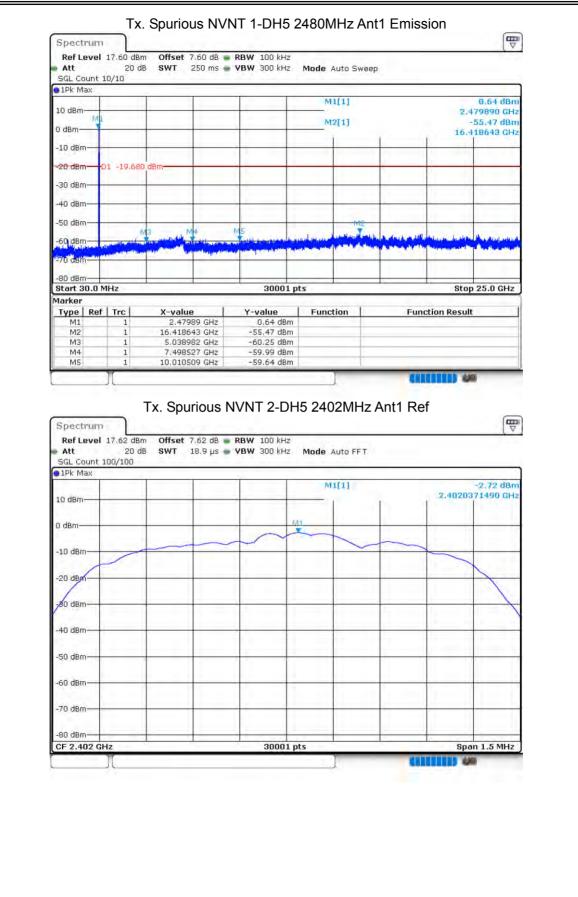
Spectrum Ref Level		n Offset 7.60 dB	RBW 100 kHz			\ \ \ \ \ \ \ \ \ \ \ \ \ \		
Att	40 di	B SWT 227.5 μs	VBW 300 kHz	Mode Auto FFT				
SGL Count : 1Pk Max	1000/100	0						
	-			M1[1]		-1.69 dBm		
20 dBm			-			2.47895000 GHz		
in draw				M2[1]		~43,94 dBm		
10 dBm					1 E	2.48350000 GHz		
						······ + · · · · · · · · · · · · · · ·		
20 dBm	01 -20,45	i4 dBm	-					
30 dBm								
BAL IN		Ma						
40 dBm	madriday	receiver the process prover with	Mynam never work when me	monomina hatta and gold in	readents Palmend were	the the state of t		
50 dBm	100		1.00	A				
JO GOM								
60 dBm								
1.00			and the second sec					
70 dBm					-			
Start 2.476	GHz		1001 pt	5		Stop 2.576 GHz		
larker	1.1.1			The Fact				
	Trc	X-value	Y-value	Function	Functio	on Result		
Type Ref	1	2.47895 GHz	-1.69 dBm					
Type Ref M1	The second second	2.4835 GHz	-43.94 dBm					
the state of the s	1							
1.1-	1	2.5 GHz	-44.06 dBm					

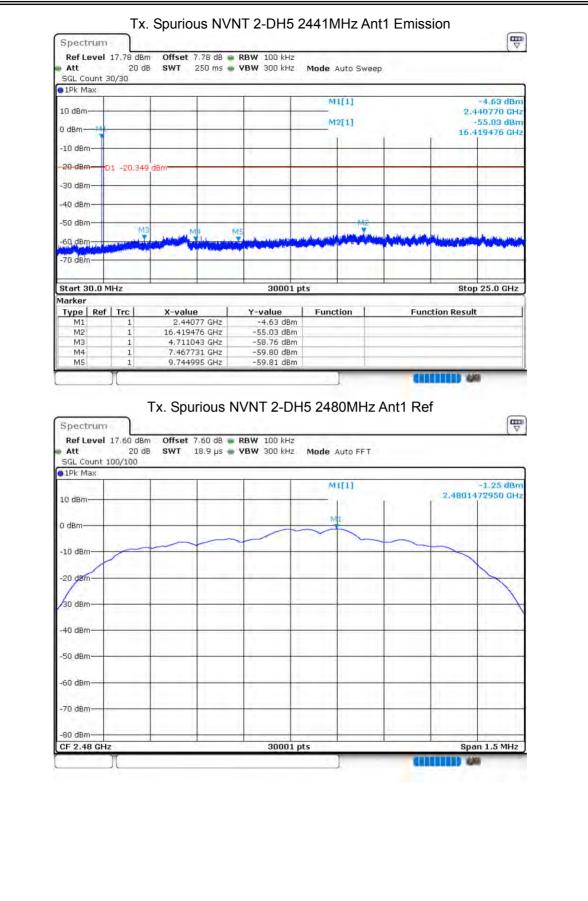

8.7 **CONDUCTED RF SPURIOUS EMISSION**

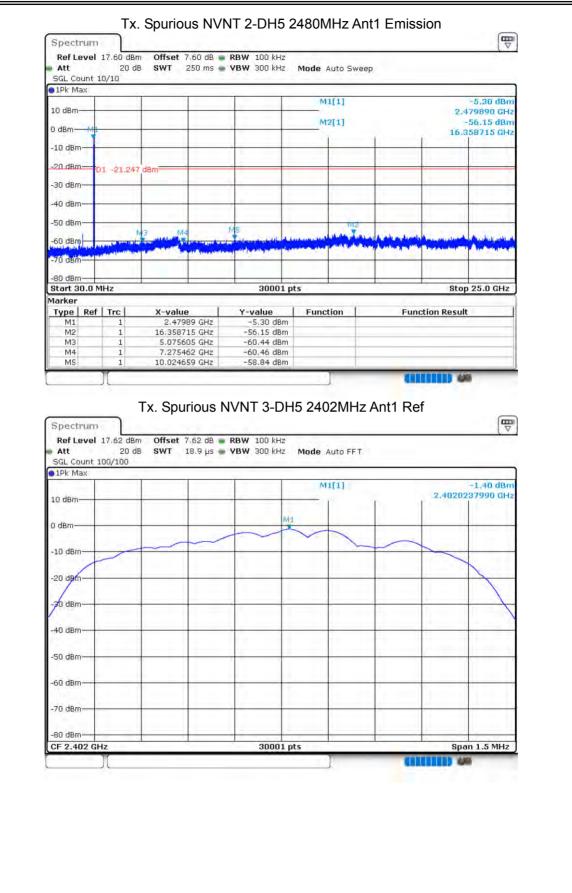
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-55.31	-20	Pass
NVNT	1-DH5	2441	Ant 1	-56.16	-20	Pass
NVNT	1-DH5	2480	Ant 1	-55.79	-20	Pass
NVNT	2-DH5	2402	Ant 1	-45.16	-20	Pass
NVNT	2-DH5	2441	Ant 1	-54.68	-20	Pass
NVNT	2-DH5	2480	Ant 1	-54.9	-20	Pass
NVNT	3-DH5	2402	Ant 1	-53.37	-20	Pass
NVNT	3-DH5	2441	Ant 1	-53.24	-20	Pass
NVNT	3-DH5	2480	Ant 1	-48.99	-20	Pass



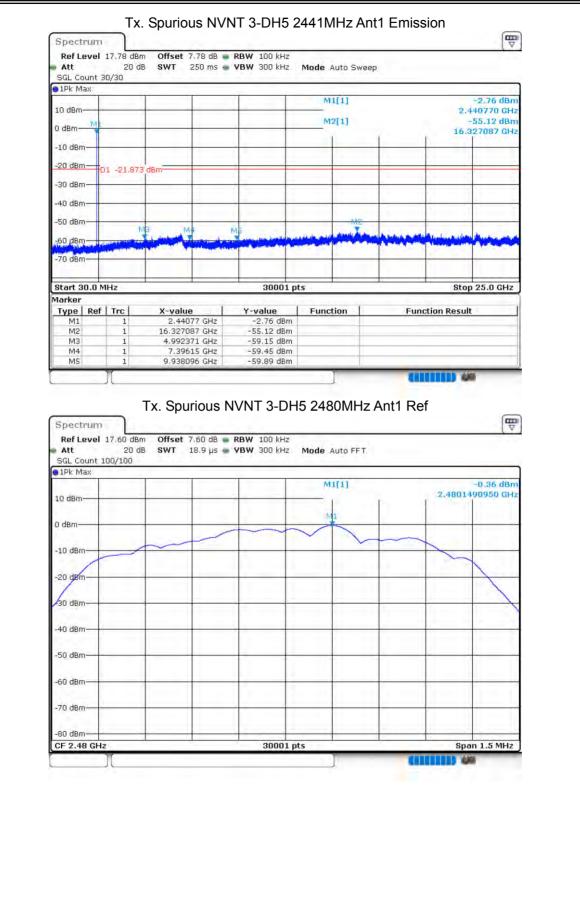
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref







• 1Pk Max	1	1 1			
10 dBm			M1[1]		-0.69 dBm 2.401650 GHz
0 dBm			M2[1]		-47.89 dBm 1.886103 GHz
-10 dBm					
-20 dBm-01 -22/	722 dBm				
-30 dBm					
-40 dBm		-			
-50 dBm	MB M4	M5			_
-60 dBm		INIS ANA ANA ANA	the state of the s	and the stand of the	and a state of the
-70 dBm					
-80 dBm- Start 30.0 MHz	1	30001	nts		Stop 25.0 GHz
Marker				on lotes	
Type Ref Trc M1 1	X-value 2,40165 GH			Function	n Result
M2 1 M3 1	1.886103 GH 4.969898 GH				
	7.317078 GH 9.589348 GH				
M4 1 M5 1	2,003040 01		7		100
M5 1 Spectrum Ref Level 17.78 Att 20 SGL Count 100/100	Tx. Spuriou	100 kHz	H5 2441MHz		-0.35 dBm
M5 1 Spectrum Ref Level 17,78 Att 20	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	
M5 1 Spectrum Ref Level 17.78 Att 21 SGL Count 100/100 1Pk Max	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum 1 Ref Level 17.78 Att 20 SGL Count 100/100 1Pk Max 10 0 dBm 0	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 Att 20 SGL Count 100/100 • 1Pk Max 10 dBm - 10 dBm - 10 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum 1 Ref Level 17.78 Att 20 SGL Count 100/100 1Pk Max 10 dBm 0	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 Att 20 SGL Count 100/100 • 1Pk Max 10 dBm - 10 dBm - 10 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 Ref Level 17.78 20 SGL Count 100/100 10 1Pk Max 10 10 dBm 0 -10 dBm -20 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Ref Level 17.78 Att 20 SGL Count 10 dBm 0 0 dBm -0 -10 dBm -0 -20 dBm -40 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 0 dBm -0 -20 dBm -20 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Ref Level 17.78 Att 20 SGL Count 10 dBm 0 0 dBm -0 -10 dBm -0 -20 dBm -40 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Ref Level 17.78 Att 20 SGL Count 10 dBm 0 0 dBm -0 -10 dBm -0 -20 dBm -30 dBm -50 dBm -50 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 / Ref Level 17.78 / 1 Att 20 SGL Count 100/100 1 1Pk Max 10 0 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	Tx. Spuriou	100 kHz	: Mode Auto FFT	_	-0,35 dBm
M5 1 Spectrum Ref Level 17.78 / Att Ref Level 17.78 / Att 20 / State SGL Count 100/100 100/100 1Pk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -50 dBm - -60 dBm -	Tx. Spuriou	100 kHz	Mode Auto FFT	_	-0,35 dBm
M5 1 Ref Level 17.78 Ref Level 17.78 Att 20 SGL Count 10 dBm 0 -10 dBm 0 -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	Tx. Spuriou	B RBW 100 kHz	Mode Auto FFT	_	-0.35 dBm 2.4+11541450 GHz
M5 1 Ref Level 17.78 Ref Level 17.78 Att 20 SGL Count 10 dBm 0 -10 dBm 0 -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	Tx. Spuriou	B RBW 100 kHz	Mode Auto FFT	_	-0.35 dBm 2.4+115+1450 GHz



	- 11	1	-	M1[1]		-0.96 dBm
10 dBm	-					2.402490 GHz
0 dBm			-	M2[1]		-54.78 dBm 22.747706 GHz
-10 dBm		-	_	_		
-20.dBm-01 -21	.396 dBm		_			
-30 dBm						
-40 dBm	_		_			
-50 dBm			-			142
-60 dBm	MB M4	MS	And and a second state	and the second second	a kon u kondar	man 100 the second
-70 dBm		and because the bases of t				
-80 dBm						
Start 30.0 MHz			30001 pt	s	100 J	Stop 25.0 GHz
Marker Type Ref Trc	X-value		Y-value	Function	Functio	n Result
M1 1 M2 1		19 GHz 16 GHz	-0.96 dBm -54.78 dBm			
M3 1 M4 1			-59.11 dBm -58.59 dBm			
M5 1			-60.30 dBm			
			1	M1[1]		-1,87 dBm 2,4410407490 GHz
10 dBm-		1		-1	1 1	and the state of the
			M			
0 dBm	-				-	
		~~~	~			
0 dBm		~~~				
	~	~~~				
-10 dBm		~~~				
-10 dBm -20 dBm -20 dBm						
-10 dBm						
-10 dBm -20 dBm -20 dBm						
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm						
-10 dBm -20 dBm -20 dBm -40 dBm						
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm						
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm						
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm			30001 pt			Span 1.5 MHz
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm			30001 pt			Span 1.5 MHz
-10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm			30001 pt			Span 1.5 MHz







		Auto Sweep	Mode	RBW 100 kHz VBW 300 kHz			.7.60 dB/ 20 d		Ref Le Att SGL Co
									1Pk Ma
-4.80 dBm		11[1]	M						-
2.479890 GHz		101.11							10 dBm-
-49.36 dBm 903.118 MHz		12[1]	IM		_			144	0 dBm-
903.110 (117)	É E	ī I						1	
				1		1		n –	-10 dBm
	2 I II I					1		-	20 dBm
	· · · · · · · · · · · · · · · · · · ·					a dBm	-20,35		20 aBm
								n	30 dBm
	· · · · · · · · · · · · · · · · · · ·								
	-	-			-			n	40 dBm
1 4   1 + 4	· · · · · · · · · · · · · · · · · · ·	1							M2 50 dBm
	1	1		M5	4	NI3 M4		n	SUIGBIN
the second second for the factor of the second second	A state as minimum as where	A MANAGARAN	Mundana	the second of the second se		Tundund X	And Street of Contractor	n	50 dBm
			- and - to - to - to	- House and the second s	and the second second	and the second se			HIS NO.
								n	70 dBm
								-	80 dBm
Stop 25.0 GHz	5	1	ots	30001 pt		-	Hz		Start 3
				A					larker
tion Result	Function Re	ction	Func	Y-value	e	X-value	Trc	Ref	Type
				-4.80 dBm	89 GHz	2.4798	1	-	M1
				-49.36 dBm	18 MHz	903.11	1		M2
					Ballion State State 1	F 11001	1		M3
				-59.40 dBm	54 GHz		1		
				-59.40 dBm -59.15 dBm -59.56 dBm	87 GHz	7.3378	1	-	M4 M5

END OF REPORT