

41039 Boyce Road Fremont, CA. 94538

EMC Test Report

Application for Grant of Equipment Authorization

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-216 Issue 2 FCC Part 15 Subpart C

Model: POTPIEX01

ISED CERTIFICATION #: FCC ID:	11508A-POTPIEX01 2AAZF-POTPIEX01
APPLICANT:	Intuitive Surgical Inc. 1266 Kifer Road Building 101 Sunnyvale, CA 94086
TEST SITE(S):	NTS Labs LLC 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
PROJECT NUMBER:	PR172107
REPORT DATE:	August 7, 2023
RE-ISSUED DATE:	November 28, 2023
FINAL TEST DATES:	May 8, June 30, July 28, November 21 and 28, 2023
TOTAL NUMBER OF PAGES:	45

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. NTS Labs LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs LLC of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS Labs LLC.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 7, 2023	First release	
1	November 28, 2023	Updated RSS standard, updated operating frequency range, added Magnetic field strength results, added client device description, added additional details of the operation during testing.	dwb
		Added FSK modulation for control communication and OBW data.	

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DEVICES OPERATING UNDER THE GENERAL LIMITS	7
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL.	9
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	9
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	13
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC §15.207; §FCC 15.107(A), AND RSS-GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
END OF REPORT	45

SCOPE

An electromagnetic emissions test has been performed on the Intuitive Surgical Inc. model POTPIEX01, pursuant to the following rules:

RSS-Gen Issue 5 RSS-216 Issue 2 "Wireless Power Transfer Devices", WPT Source Type 1 Device FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Labs LLC test procedures:

ANSI C63.10-2013 ICES-001

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

NTS Labs LLC is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intuitive Surgical Inc. model POTPIEX01 complied with the requirements of the following regulations:

RSS-Gen Issue 5

RSS-216 Issue 2 "Wireless Power Transfer Devices", WPT Source Type 1 Device FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intuitive Surgical Inc. model POTPIEX01 and therefore apply only to the tested sample. The sample was selected and prepared by Tony Permsombut of Intuitive Surgical Inc.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DEVICES OPERATING UNDER THE GENERAL LIMITS

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result						
15.209		Transmitter Fundamental Signal Emissions, 120-148.5 kHz	-0.6 dBµV/m @146 kHz (-24.4 dB)	Refer to table in limits section	Complies						
15.209		Transmitter Radiated Spurious Emissions, 0.009 – 30 MHz	31.4 dBµV/m @ 60.01 MHz (-8.6 dB)	Refer to table in limits section	Complies						
15.209		Transmitter Radiated Spurious Emissions, 1 – 2 GHz	39.3 dBµV/m @ 1250.0 MHz (-14.7 dB)	ICES-001	Complies						
Note 1 Pass/	Fail criteria defi	-	· · · · · · · · · · · · · · · · · · ·								

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result		
	RSS-216 ICES-001 Table 2	Transmitter Radiated Spurious Emissions, 0.009 - 30 MHz	23.1 dBµA/m @ 0.150 MHz (-15.9 dB)	ICES-001	Complies		
RSS-216 Transmitter Radiated 23.0 dBµV/m @ 105.72 ICES-001 Complies ICES-001 Spurious Emissions, MHz ICES-001 Complies Table 4 30 – 1,000 MHz (-7.0 dB) ICES-001 Complies							
Note 2 Pass/							

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)	
15.203	-	RF Connector	Integral Antenna	Unique or integral antenna required	Complies	
15.207	RSS-GEN Table 4	AC Conducted Emissions	42.9 dBµV @ 27.347 MHz (-7.1 dB)	Refer to page 18	Complies	
-	RSS-GEN 8.4	User Manual		Statement of Compliance	Complies	
- RSP 100 RSS-GEN Occupied Bandwidth 69 Hz Information only N/A 6.7						
Note 3 Pass/	Fail criteria defi	ned by standards listed a	bove.			

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
		0.009 to 30 MHz	± 5.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz	± 3.6 dB
		1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intuitive Surgical Inc. model POTPIEX01, hereafter referred to as EUT, is a wireless power transfer (WPT) 120 - 148.5 kHz transmitter module for use in da Vinci Surgical System (an endoscopic instrument control system) which is intended to assist in the accurate control of endoscopic instruments. The EUT is designed to provide wireless power to Endoscopes. Since the EUT would be installed in da Vinci Surgical System cart during normal operation and could be placed in any position, the EUT was treated as tabletop equipment during testing to simulate the end-user environment.

The sample was received on May 3, 2023 and tested on May 8, June 30, July 28, November 21 and 28, 2023. The EUT consisted of the following component(s):

ſ	Company	Model	Description	Serial Number	FCC ID
	Intuitive Surgical	POTPIEX01	WPT Radio module	FNW22430532	2AAZF-POTPIEX01

OTHER EUT DETAILS

The EUT is unmodulated when charging and uses FSK modulation for control communications of the charging. The EUT was tested with the Intuitive Endoscope Integrated plug as a client device. This was placed in the receptacle between the POTPIEX01 and PIEX01 modules.

ANTENNA SYSTEM

The antenna system consists of a loop.

ENCLOSURE

The EUT does not have any enclosure as it is designed to be installed within host unit.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Labs LLC.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

	Ba	ndwidth tests		
Company	Model	Description	Serial Number	FCC ID
BK Precision	1550	Power Supply	238B21160	-

For radiated tests, a battery was used to provide power to the EUT

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

	Kaulaicu				
Port	Connected To		Cable(s)		
1 OIT		Description	Shielded or Unshielded	Length(m)	
Power	Battery	2 wire	Unshielded	1.0	

	Bandwidth				
Port	Connected To				
1 OIT	Connected 10	Description	Shielded or Unshielded	Length(m)	
Power	Power Supply	2 wire	Unshielded	1.0	
Power Supply AC	Mains	3 wire	Unshielded	1.8	

EUT OPERATION

During emissions testing the EUT was transmitting at 100% duty cycle between 120 and 148.5 kHz. The EUT was tested with a 180 ohm resistive load on the coil in the client device located 0.2mm from the coil. The distance sets the frequency of the EUT.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS Labs LLC has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS Labs LLC.

Site	Designation / Registration Numbers FCC Canada		Location
	FCC	Canada	
			41039 Boyce Road
Chamber 7	US1031	US0027	Fremont,
			CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS Labs, LLC EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

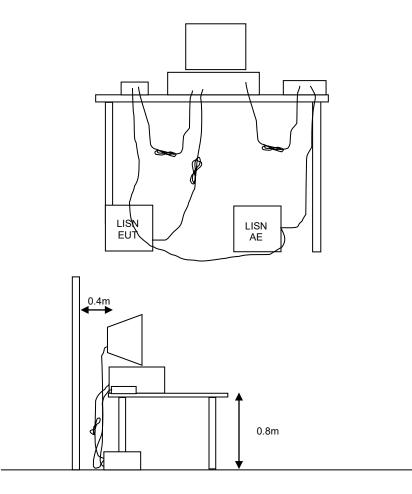
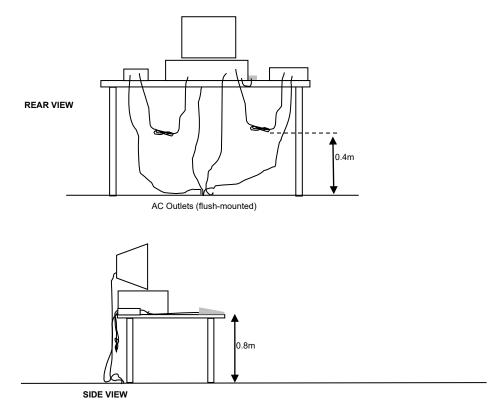


Figure 1 Typical Conducted Emissions Test Configuration

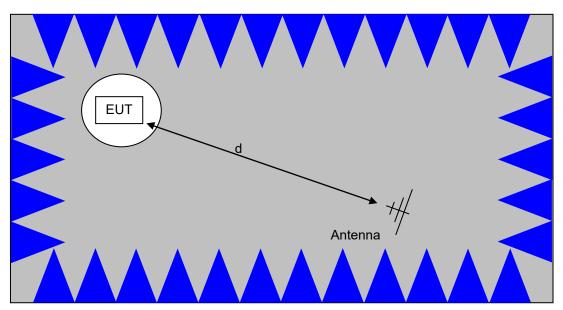
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS-GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC §15.207; §FCC 15.107(a), AND RSS-GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D), the limits for all emissions from a low power device operating under the general rules of RSS-GEN (Tables 5 and 6) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

Note: RSS-GEN expresses the limits below 30 MHz in terms of magnetic field strength but are equivalent to the values in the table for electric field strength above assuming a 377 ohm field impedance.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

¹ The restricted bands are detailed in FCC 15.205, RSS-GEN Table7

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Manufacturer	<u>Description</u> , .009 - 1,000 MHz, 05-May-2	Model	<u>Asset #</u>	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	N/A
ETS-Lindgren	EMC Chamber #7, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 7 (FACT-5)	WC055569	8/8/2022	11/6/2023
Rhode & Schwarz Sunol Sciences Hewlett Packard Rohde & Schwarz	Loop Antenna Biconilog, 30-3000 MHz 9kHz-1300MHz pre-amp EMI Test Receiver, 20Hz- 40GHz	HFH2-Z2 JB3 8447F ESI	WC062457 WC064582 WC064718 WC068000	2/17/2022 8/18/2022 12/28/2022 7/21/2022	2/17/2024 3/24/2025 12/28/2023 7/21/2023
Bandwidth, 09-May-	23				
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	N/A
National Technical Systems	EMC Lab #4A	None	WC055574	N/A	N/A
Rohde & Schwarz	Spectrum Analyzer	FSQ26	WC055662	12/11/2022	12/31/2023
	, .009 - 1,000 MHz, 30-Jun-2	3			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	N/A
Rhode & Schwarz	Loop Antenna	HFH2-Z2	WC062457	2/17/2022	2/17/2024
Sunol Sciences Com-Power	Biconilog, 30-3000 MHz Preamplifier, 1-1000 MHz	JB3 PAM-103	WC064582 WC064733	8/18/2022 5/24/2023	3/24/2025 5/24/2024
Rohde & Schwarz	EMI Test Receiver, 20Hz- 7GHz	ESIB 7	WC064989	1/4/2023	1/4/2024
Conducted Emission	ns - AC Power Ports, 30-Jur	า-23			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	N/A
Fischer Custom Communications	LISN, 25A, 150kHz to 30MHz, 25 Amp	FCC-LISN-50- 25-2-09	WC064531	12/6/2022	12/6/2023
Rohde & Schwarz	EMI Test Receiver, 20Hz- 7GHz	ESIB 7	WC064989	1/4/2023	1/4/2024
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	WC072359	6/28/2023	6/28/2024
Bandwidth, 28-Nov-	23				
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055650	11/10/2023	11/30/2024

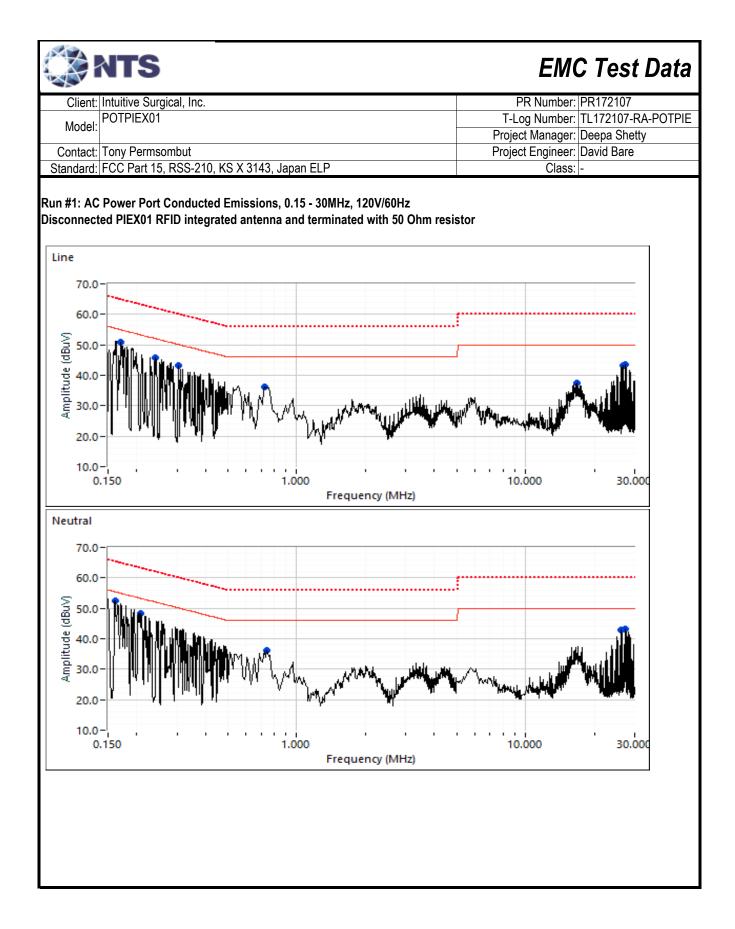
Appendix B Test Data

TL172107-RANA-POTPIEX01 Pages 23 – 34 TL172107-RACA-POTPIEX01 WPT Pages 35 – 44

Client:	Intuitive Surgical, Inc.	PR Number:	PR172107
Product	POTPIEX01	T-Log Number:	TL172107-RA-POTPIE
System Configuration:	Tested as module with PIEX01	Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Emissions Standard(s):	FCC Part 15, RSS-210, KS X 3143, Japan ELP	Class:	-
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

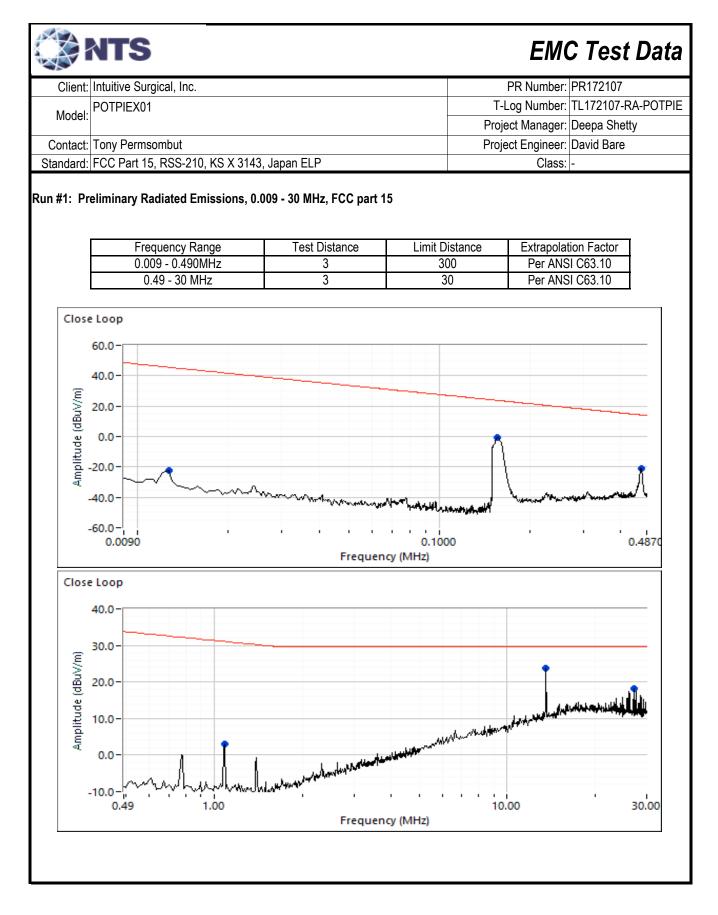
For The

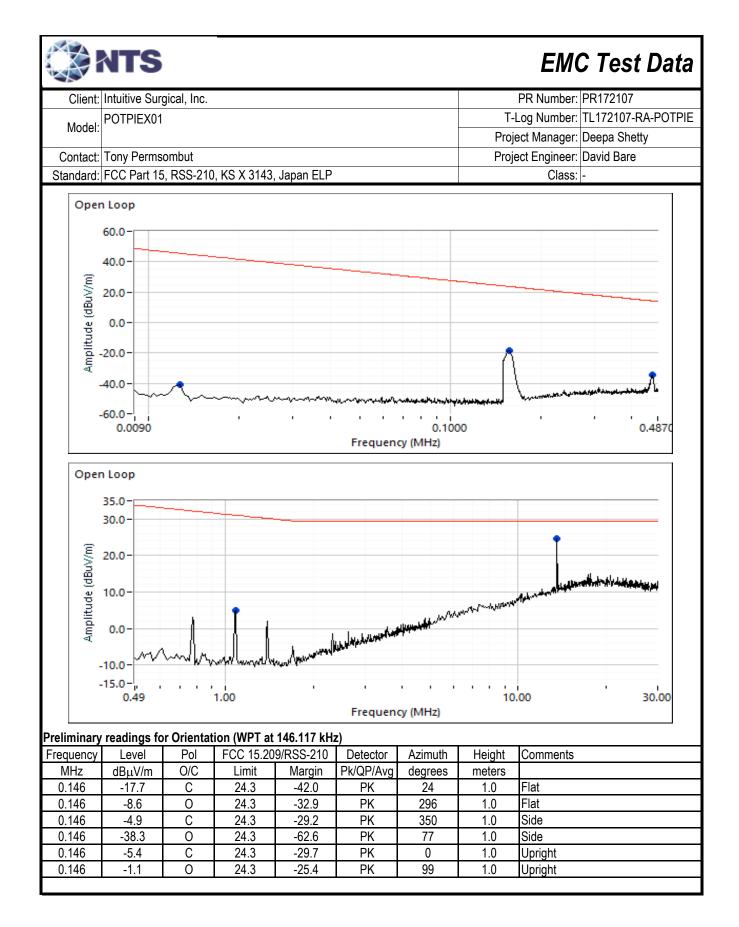

Intuitive Surgical, Inc.

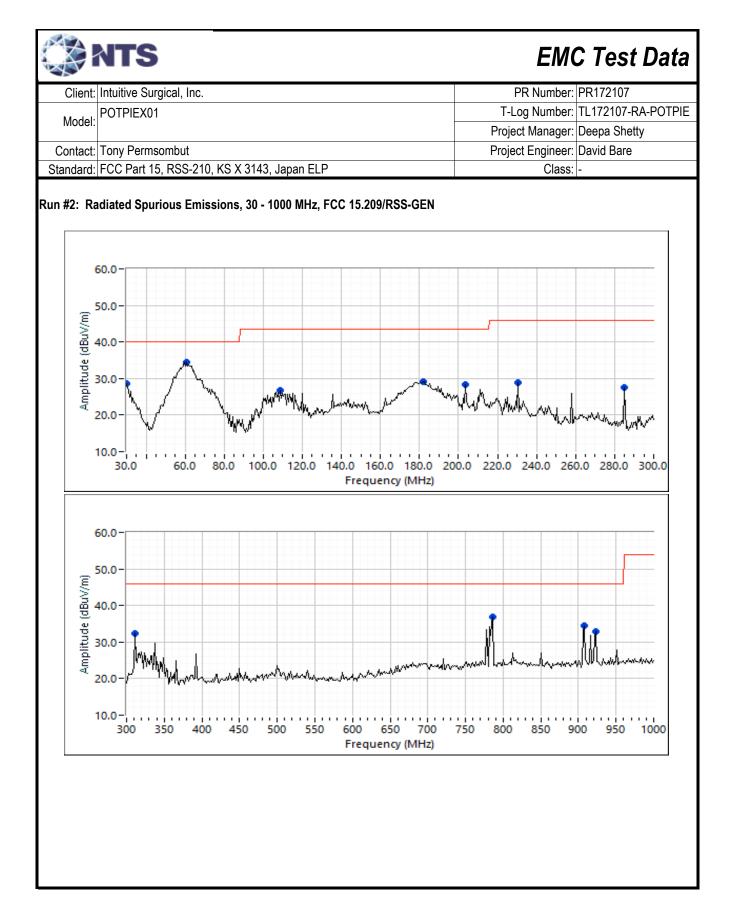
Product

POTPIEX01

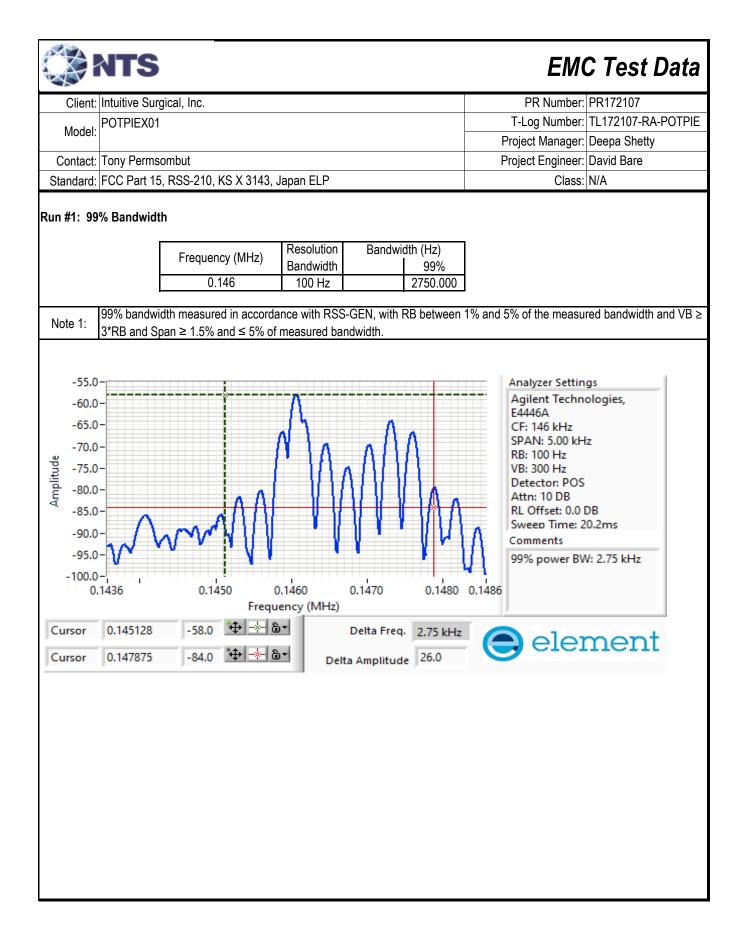
Date of Last Test: 11/28/2023


🔊 NTS				FM	C Test Data		
Client: Intuitive Sur	gical, Inc.		т	PR Number:	PR172107 TL172107-RA-POTPIE		
Model:					Deepa Shetty		
Contact: Tony Perms	ombut		ect Engineer:				
	i, RSS-210, KS X 3143, Japan ELP			Class:			
	Condu (NTS Silicon Valley, Frem	icted Emissions ont Facility, Semi-Anec	hoic Cham	ber)			
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.							
•	6/30/2023 Rafael Varelas Fremont Chamber #7	Config. Used: Config Change: Host Unit Voltage:	None				
plane and 80cm from t	guration t, the EUT was located on a foam ta he LISN. Remote support equipmer pment where routed through metal c	nt was located outside of	the semi-an	echoic chamb	per. Any cables running		
Ambient Condition	S: Temperature:	23.8 °C					
	Rel. Humidity:	44 %					
Summary of Result	S						
Run #	Test Performed	Limit	Result	Margin			
1	CE, AC Power,120V/60Hz	FCC §15.207	Pass	42.9 dBµV ((-7.1 dB)	@ 27.347 MHz		
Deviations From Th	made to the EUT during testing	ndard.					




Client:	Intuitive Sur	gical, Inc.					PR Number	
Model:	POTPIEX01						T-Log Number	TL172107-RA-POTPII
MOUEI.							Project Manager	Deepa Shetty
Contact:	Tony Perms	sombut					Project Engineer	David Bare
Standard:	FCC Part 1	5, RSS-210	, KS X 3143	Japan ELP			Class	-
				•		, i i i i i i i i i i i i i i i i i i i		
Preliminarv	peak readi	nas captur	ed durina p	re-scan (pe	ak readings	vs. average lin	nit)	
Frequency	Level	AC		15.207	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/AVG			
16.697	37.3	Line	50.0	-12.7	Peak			
26.850	43.3	Line	50.0	-6.7	Peak			
27.347	43.4	Line	50.0	-6.6	Peak			
0.746	36.3	Line	46.0	-9.7	Peak			
0.169	51.0	Line	54.9	-3.9	Peak			
0.239	45.8	Line	52.1	-6.3	Peak			
0.305	43.1	Line	50.1	-7.0	Peak			
0.160	52.4	Neutral	55.4	-3.0	Peak			
0.209	48.2	Neutral	53.2	-5.0	Peak			
0.745	36.3	Neutral	46.0	-9.7	Peak			
26.156	42.8	Neutral	50.0	-7.2	Peak			
	43.3	Neutral	50.0	-6.7	Peak			
27.345		INEULIAL		-0.7	геак			
27.345	40.0	Neuliai	50.0	-0.7	reak			
		•		-0.7	Геак			
inal quasi	-peak and a	verage rea	dings		•	Comments		
inal quasi Frequency	- peak and a Level	verage rea AC	dings FCC §	15.207	Detector	Comments		
inal quasi Frequency MHz	-peak and a Level dBμV	verage rea AC Line	dings FCC § Limit	15.207 Margin	Detector QP/AVG			
Final quasi Frequency MHz 27.347	- peak and a Level dBμV 42.9	verage rea AC Line Line	dings FCC § Limit 50.0	15.207 Margin -7.1	Detector QP/AVG AVG	AVG (0.10s)		
Final quasi Frequency MHz 27.347 27.345	- peak and a Level dBμV 42.9 42.7	verage rea AC Line Line Neutral	dings FCC § Limit 50.0 50.0	15.207 Margin -7.1 -7.3	Detector QP/AVG AVG AVG	AVG (0.10s) AVG (0.10s)		
Final quasi Frequency MHz 27.347 27.345 26.156	- peak and a Level dBμV 42.9 42.7 42.4	verage rea AC Line Line Neutral Neutral	dings FCC § Limit 50.0 50.0 50.0	15.207 Margin - 7.1 -7.3 -7.6	Detector QP/AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s)		
inal quasi Frequency MHz 27.347 27.345 26.156 27.347	- peak and a Level dBμV 42.9 42.7 42.4 43.3	verage rea AC Line Line Neutral Neutral Line	dings FCC § Limit 50.0 50.0 50.0 60.0	15.207 Margin - 7.1 -7.3 -7.6 -16.7	Detector QP/AVG AVG AVG AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
Final quasi Frequency MHz 27.347 26.156 27.347 27.345	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2	verage rea AC Line Line Neutral Neutral Line Neutral	dings FCC § Limit 50.0 50.0 50.0 60.0 60.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8	Detector QP/AVG AVG AVG QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.347 27.345 26.156 27.347 27.345 26.156	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8	verage rea AC Line Line Neutral Neutral Line Neutral Neutral	dings FCC § Limit 50.0 50.0 50.0 60.0 60.0 60.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2	Detector QP/AVG AVG AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.345 26.156 27.347 27.345 26.156 26.156 26.753	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1	verage rea AC Line Neutral Neutral Line Neutral Neutral Line	dings FCC § Limit 50.0 50.0 50.0 60.0 60.0 60.0 50.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9	Detector QP/AVG AVG AVG AVG QP QP QP AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 27.345 26.156 27.345 26.156 27.345 26.156 26.753 0.160	- peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1	Verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral	dings FCC § Limit 50.0 50.0 50.0 60.0 60.0 60.0 50.0 65.5	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4	Detector QP/AVG AVG AVG QP QP QP QP AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
Frequency MHz 27.345 26.156 27.345 26.156 27.345 26.156 26.753 0.160 0.169	- peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4	Verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 50.0 65.5 65.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.347 27.345 26.156 27.347 27.345 26.156 26.753 0.160 0.169 0.209	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6	verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Neutral	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 50.0 65.5 65.0 63.2	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6	Detector QP/AVG AVG AVG QP QP QP QP AVG QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.347 27.345 26.156 27.347 27.345 26.156 26.753 0.160 0.169 0.209 0.239	peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9	Verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Neutral Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.345 26.156 27.347 27.345 26.156 26.156 26.753 0.160 0.169 0.209 0.239 0.305	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3	Verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Neutral Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 60.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.345 26.156 27.345 26.156 26.753 0.160 0.209 0.239 0.305 26.753	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3 31.4	Verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Line Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1 60.1 60.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8 -28.6	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 27.345 26.156 27.345 26.156 27.345 26.156 26.753 0.160 0.209 0.209 0.239 0.305 26.753 0.169	- peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3 31.4 26.0	verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Line Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1 60.1 60.1 60.0 55.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8 -28.6 -29.0	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 27.347 27.345 26.156 27.347 27.345 26.156 26.753 0.160 0.209 0.209 0.239 0.305 26.753 0.169 0.209	-peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3 31.4 26.0 19.1	verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Line Line Line Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1 60.1 60.1 60.0 55.0 53.2	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8 -28.6 -29.0 -34.1	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 27.345 26.156 27.345 26.156 27.345 26.156 26.753 0.160 0.209 0.209 0.239 0.305 26.753 0.169	- peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3 31.4 26.0	verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Line Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1 60.1 60.1 60.0 55.0	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8 -28.6 -29.0	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Final quasi Frequency MHz 27.347 27.345 26.156 27.347 27.345 26.156 26.753 0.160 0.209 0.239 0.305 26.753 0.169 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209	peak and a Level dBμV 42.9 42.7 42.4 43.3 43.2 42.8 30.1 44.1 43.4 39.6 37.9 35.3 31.4 26.0 19.1 20.9	verage rea AC Line Neutral Neutral Line Neutral Line Neutral Line Neutral Line Line Line Line Line Line	dings FCC § Limit 50.0 50.0 60.0 60.0 60.0 60.0 65.5 65.0 63.2 62.1 60.1 60.1 60.0 55.0 53.2 55.5	15.207 Margin -7.1 -7.3 -7.6 -16.7 -16.8 -17.2 -19.9 -21.4 -21.6 -23.6 -24.2 -24.8 -24.8 -28.6 -29.0 -34.1 -34.6	Detector QP/AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		

Client: Intuitive Surgi				EMC Te	st Data
POTPIEX01	cal, Inc.			PR Number: PR1721	07
Madalel • • • • • • • • • • • •			T-	Log Number: TL17210	07-RA-POTPIE
Model:			Proj	ect Manager: Deepa S	Shetty
Contact: Tony Permso	mbut	Proj	ect Engineer: David Ba	are	
	RSS-210, KS X 3143, Japan ELF)		Class: -	
	Radi	iated Emissions			
•	he objective of this test session is pecification listed above.	s to perform final qualification	on testing o	f the EUT with respect	to the
Date of Test: 6	/30/2023	Config. Used:	1		
Test Engineer: F		Config Change:			
-	Fremont Chamber #7	EUT Voltage:			
Ambient Conditions	Rel. Humidity				
Summary of Results		1 12.20	D	Maraia	
Run #	Test Performed	Limit	Result	Margin 24.7 dBµV/m @ 13.5	
1	Radiated Emissions 0.009- 30 MHz	FCC part 15.209 / RSS- 216	Pass	(-4.8 dB)	
	Radiated Emissions	FCC part 15.209 / RSS-		31.4 dBµV/m @ 60.0)1 MHz
2	30 - 1,000 MHz	216	Pass	(-8.6 dB)	
	During Testing nade to the EUT during testing				


		nical. Inc.						PR Number: PR172107	
Model:	ient: Intuitive Surgical, Inc.					T-Log Number: TL172107-RA-POTPI			
	Nodel:							ect Manager: Deepa Shetty	
Contact:	Contact: Tony Permsombut						Project Engineer: David Bare		
	FCC Part 15		, KS X 3143.	Japan ELP			,	Class: -	
		,	, ,						
Prelimina	iry peak read	lings capt	ured during	pre-scan					
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	PK/QP/AVG	degrees	meters		
0.013	-22.1	С	45.5	-67.6	Peak	351	1.0		
0.146	-0.7	С	23.7	-24.4	Peak	12	1.0		
0.466	-21.0	С	14.2	-35.2	Peak	3	1.0		
13.559	23.7	С	29.5	-5.8	Peak	218	1.0	RFID Fundamental	
27.217	18.2	С	29.5	-11.3	Peak	169	1.0		
1.083	2.9	С	31.1	-28.2	Peak	360	1.0		
0.013	-40.9	0	45.5	-86.4	Peak	243	1.0		
0.146	-18.4	0	23.7	-42.1	Peak	96	1.0	WPT Fundamental	
0.466	-34.3	0	14.2	-48.5	Peak	80	1.0		
Maximize	d quasi-neal	k reading	s (includes i	maninulatio	on of FUT inte	orface cable	(c)		
					n of EUT inte			Comments	
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
Frequency MHz	Level dBµV/m		FCC 1 Limit		7	Azimuth degrees	Height meters		
Frequency	Level	Pol v/h	FCC 1	15.209 Margin	Detector PK/QP/AVG	Azimuth	Height	QP (1.00s)	
Frequency MHz 13.559	Level dBμV/m 24.7	Pol v/h O	FCC 1 Limit 29.5	15.209 Margin -4.8	Detector PK/QP/AVG QP	Azimuth degrees 316	Height meters 1.0		
Frequency MHz 13.559 13.559	Level dBμV/m 24.7 24.0	Pol v/h O C	FCC 1 Limit 29.5 29.5	15.209 Margin -4.8 -5.5	Detector PK/QP/AVG QP QP	Azimuth degrees 316 216	Height meters 1.0 1.0	QP (1.00s) QP (1.00s)	
Frequency MHz 13.559 13.559 27.217	Level dBµV/m 24.0 15.7	Pol v/h O C C	FCC 1 Limit 29.5 29.5 29.5	15.209 Margin -4.8 -5.5 -13.8	Detector PK/QP/AVG QP QP QP	Azimuth degrees 316 216 167	Height meters 1.0 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s)	
Frequency MHz 13.559 13.559 27.217 0.146	Level dBμV/m 24.7 24.0 15.7 -0.6	Pol v/h O C C C	FCC 1 Limit 29.5 29.5 29.5 23.8	15.209 Margin -4.8 -5.5 -13.8 -24.4	Detector PK/QP/AVG QP QP QP QP	Azimuth degrees 316 216 167 13	Height meters 1.0 1.0 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
Frequency MHz 13.559 13.559 27.217 0.146 1.083	Level dBμV/m 24.7 24.0 15.7 -0.6 5.1	Pol v/h O C C C O	FCC 1 Limit 29.5 29.5 29.5 29.5 23.8 31.1	5.209 Margin -4.8 -5.5 -13.8 -24.4 -26.0	Detector PK/QP/AVG QP QP QP QP QP	Azimuth degrees 316 216 167 13 100	Height meters 1.0 1.0 1.0 1.0 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	

	NTS
--	-----

	Intuitive Sur	gical, Inc.					PR Number		
Madali	POTPIEX01						T-	Log Number:	TL172107-RA-POTPI
Model:							Proj	ect Manager:	Deepa Shetty
Contact:	Tony Perms	ombut					Proj	ect Engineer:	David Bare
Standard:	FCC Part 15				Class:	-			
		,							
Prelimina	ary Readings	5							
Frequency	Level	Pol	FCC 15.20	9/RSS-GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
60.008	34.6	V	40.0	-5.4	Peak	37	1.0		
30.006	28.7	V	40.0	-11.3	Peak	124	1.0		
108.571	26.7	V	43.5	-16.8	Peak	317	1.0		
181.820	29.2	Н	43.5	-14.3	Peak	260	2.0		
203.398	28.3	V	43.5	-15.2	Peak	142	1.0		
230.523	28.9	V	46.0	-17.1	Peak	233	1.0		
284.749	27.6	Н	46.0	-18.4	Peak	222	1.0		
311.870	32.4	Н	46.0	-13.6	Peak	224	1.0		
786.597	36.9	V	46.0	-9.1	Peak	50	1.0		
907.794	34.4	V	46.0	-11.6	Peak	325	3.5		
922.215	32.8	V	46.0	-13.2	Peak	124	1.0		
Maximize Frequency	ed readings Level	(includes Pol	manipulatio	n of EUT int 9/RSS-GEN	erface cable Detector	s) Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
60.008	31.4	V	40.0	-8.6	QP	38	1.0	QP (1.00s)	
30.006	27.0	V	40.0	-13.0	QP	125	1.0	QP (1.00s)	
311.870	31.2	Н	46.0	-14.8	QP	212	1.0	QP (1.00s)	
786.597	19.5	V	46.0	-26.5	QP	51	1.4	QP (1.00s)	
922.215	19.3	V	46.0	-26.7	QP	125	1.0	QP (1.00s)	
907.794	19.1	V	46.0	-26.9	QP	326	1.0	QP (1.00s)	

	NTS				EMO	C Test Data	
Client:	Intuitive Surgica	, Inc.			PR Number:	PR172107	
Model:	Model: POTPIEX01				T-Log Number: TL172107-RA-PO		
			-	-	Deepa Shetty		
	Tony Permsomb		Proj	Project Engineer: David Bare			
Standard:	FCC Part 15, RS	S-210, KS X 3143, Japan ELP			Class:	N/A	
		RSS-GEN Measure	ements (WPT	equipn	nent)		
Test Spe	cific Details						
		objective of this test session is to cification listed above.	perform final qualificati	on testing of t	he EUT with r	espect to the	
	Date of Test: 11/2		Config. Use				
	est Engineer: D. E	3are mont EMC Lab #4b	Config Change				
10	est Location. Fre	mont EINIC Lad #40	EUT Voltage				
General 1	Fest Configur	ation					
	•	to a loop antenna that was connec	cted to a spectrum ana	lyzer.			
	• •••						
Ambient	Conditions:	Temperature:	19 °C				
		Rel. Humidity:	36 %				
	C 14/1 1 1	d Equipmont					
	/ for Wideban						
	n #	Test Performed	Limit	Result	V	'alue / Margin	
Ru	ın # 1	Test Performed 99% Bandwidth	Limit -	Result Pass	V 2.75 kHz	alue / Margin	
Ru Modificat No modifi Deviatior	in # 1 tions Made Du cations were made ns From The S	Test Performed 99% Bandwidth uring Testing de to the EUT during testing	-			'alue / Margin	

Client:	Intuitive Surgical Inc.	PR Number:	PR172107
Product	POTPIEX01	T-Log Number:	TL172107-RACA-
			POTPIEX01
System Configuration:		Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Emissions Standard(s):	RSS-216	Class:	-
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intuitive Surgical Inc.

Product

POTPIEX01

Date of Last Test: 11/21/2023

ele:	ment			EMC Test Data
Client: Intuitive Surgi				PR Number: PR172107
¥			T	Log Number: TL172107-RACA-
Product: POTPIEX01				ject Manager: Deepa Shetty
Contact: Tony Permso	mbut		Proj	ect Engineer: David Bare
Standard: RSS-216				Class: -
	Dedie	to d Emile allowa		
	Radia (NTS Silicon Valley, Fremo	ted Emissions ont Facility, Semi-Ane	echoic Cham	ıber)
Test Specific Details	x			
- Objective: 1	Find the objective of this test session is to provide the objective of this test session is to provide the objective of th	o perform final qualifica	ation testing c	of the EUT with respect to the
Date of Test: 1	1/21/2023	Config. Used	d: 1	
Test Engineer: D		Config Change		
Test Location: F	Fremont Chamber #3	EUT Voltage	e: 12Vdc	
General Test Config	uration			
•	support equipment were located on	the turntable for radiate	ed emissions	testing. No remote support
equipment was used.	support equipment were located on			testing. No remote support
	s above 1 GHz to FCC Part 15 were	e performed with floor a	absorbers in p	place in accordance with the test
methods of ANSI C63.4	and CISPR 16-1-4.		·	
The test distance and ex	xtrapolation factor (if applicable) are	detailed under each ru	un descriptior	۱.
Note, preliminary testing	indicates that the emissions were r	maximized by orientation	on of the EUT	and elevation of the measurement
	-	ere maximized by orien	tation of the	EUT, elevation of the measurement
antenna, and manipulat	ion of the ELIT's interface cables			
Ambiant Conditions		21.8 °C		
Ambient Conditions	Temperature:	21.8 °C		
Ambient Conditions		21.8 °C 30 %		
	Temperature: Rel. Humidity:			
	Temperature: Rel. Humidity:		Result	Margin
Summary of Results	Temperature: Rel. Humidity: Test Performed Radiated Emissions	30 %		39.3 dBµV/m @ 1250.0 MHz
Summary of Results	Temperature: Rel. Humidity: Test Performed	30 %	Result Pass	
Summary of Results Run # 3	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized	30 %		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing	30 %		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized	30 %		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing	30 %		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz
Summary of Results Run # 3 Modifications Made No modifications were n Deviations From The	Temperature: Rel. Humidity: Test Performed Radiated Emissions 1 GHz - 2 GHz Maximized During Testing nade to the EUT during testing e Standard	30 % Limit FCC 15.209		39.3 dBµV/m @ 1250.0 MHz

			ent					EMC Test Da
Client:	Intuitive Sur	gical Inc.						PR Number: PR172107
roduct:	POTPIEX01	1						Log Number: TL172107-RACA-
		a ma la unit						ject Manager: Deepa Shetty
	Tony Perms RSS-216	sombut					Proj	ect Engineer: David Bare Class: -
		adinos. 10	000 - 2000 M	Hz				
[ters for Preli	minary Sca	n(s)	
	Fre	equency Ra	ange	Prescan	Distance	Limit D	Distance	Extrapolation Factor
		(MHz)			ters)		eters)	(dB, applied to data)
		1000 - 200	0		3		3	0.0
Amplitud A	0.0- 0.0- 0.0- 0.0- 1000		1200 '		میں	0 1600		undanananananananananananananananananana
minary Juency	peak readi Level	ngs captu Pol	red during p		ak readings Detector	vs. average Azimuth	limit) Height	Comments
IHz	dBµV/m	v/h	Limit	Margin	PK/QP/AVG	degrees	meters	
0.000	36.2	V	54.0	-17.8	Peak	42	1.0	
0.000	41.8	Н	54.0	-12.2	Peak	193	1.3	
-			(vs. FCC lin	,			1	
uency		Pol	FCC 1		Detector	Azimuth	Height	Comments
Hz	dBµV/m	v/h	Limit	Margin	PK/AVG	degrees	meters	
0.030 0.010	39.3 35.4	H V	54.0	-14.7	AVG AVG	<u>198</u> 41	1.2	RB 1 MHz;VB 10 Hz;Peak
0.010		-	54.0	-18.6			1.0	RB 1 MHz;VB 10 Hz;Peak
1060	45.2	Н	74.0	-28.8	PK	198	1.2	RB 1 MHz;VB 3 MHz;Peak
0.000	10.8	V	74 0	33.0	סע	/1	10	DD 1 MUTV/D 3 MUTVDook

40.8

V

74.0

-33.2

1150.020

ΡK

41

1.0

RB 1 MHz;VB 3 MHz;Peak

	NTS				ЕМС	C Test Data
Client	Intuitive Surgical Inc.				PR Number:	PR172107
	POTPIEX01			T-	Log Number:	TL172107-RACA-
					ect Manager:	
	Tony Permsombut			Proje	ect Engineer:	David Bare
Standard:	RSS-216				Class:	-
		Radia	ted Emissions			
	(NT	S Silicon Valley, Frem	ont Facility, Semi-Ane	choic Cham	ber)	
est Spe	cific Details					
	Objective: The objectiv	e of this test session is t listed above.	o perform final qualificat	tion testing of	f the EUT with	respect to the
	Date of Test: 7/28/2023		Config. Used:	: 1		
	st Engineer: M. Birgani		Config Change			
Т	est Location: Fremont Cha	amber #3	Host Unit Voltage	Battery (12.	.0 VDC)	
	est Configuration					
The EUT The test o Note, pre antenna.	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat and manipulation of the E	factor (if applicable) are hat the emissions were ed that the emissions we	e detailed under each ru maximized by orientatio	n description n of the EUT	and elevation	of the measurement
The EUT The test of Note, pre antenna. antenna,	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat	factor (if applicable) are hat the emissions were ed that the emissions we	e detailed under each ru maximized by orientatio	n description n of the EUT	and elevation	of the measurement
The EUT The test of Note, pre antenna. antenna,	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat and manipulation of the E	factor (if applicable) are hat the emissions were ed that the emissions we UT's interface cables.	e detailed under each ru maximized by orientatio ere maximized by orient	n description n of the EUT	and elevation	of the measurement
The EUT The test of Note, pre antenna, antenna,	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat and manipulation of the E	factor (if applicable) are hat the emissions were ed that the emissions we UT's interface cables. Temperature:	e detailed under each ru maximized by orientatio ere maximized by orient 22-24 °C	n description n of the EUT	and elevation	of the measurement
The EUT The test of Note, pre antenna, antenna,	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat and manipulation of the E Conditions:	factor (if applicable) are hat the emissions were ed that the emissions we UT's interface cables. Temperature: Rel. Humidity:	e detailed under each ru maximized by orientatio ere maximized by orient 22-24 °C	n description n of the EUT	and elevation EUT, elevation	of the measurement of the measurement
The EUT The test of Note, pre antenna. antenna, Ambient	was located on the turntal listance and extrapolation iminary testing indicates t Maximized testing indicat and manipulation of the E Conditions:	factor (if applicable) are hat the emissions were ed that the emissions we UT's interface cables. Temperature: Rel. Humidity: formed Spurious Emissions	e detailed under each ru maximized by orientatio ere maximized by orient 22-24 °C 36-40 %	n description n of the EUT ation of the E	and elevation EUT, elevation	of the measurement of the measurement

Modifications Made During Testing No modifications were made to the EUT during testing

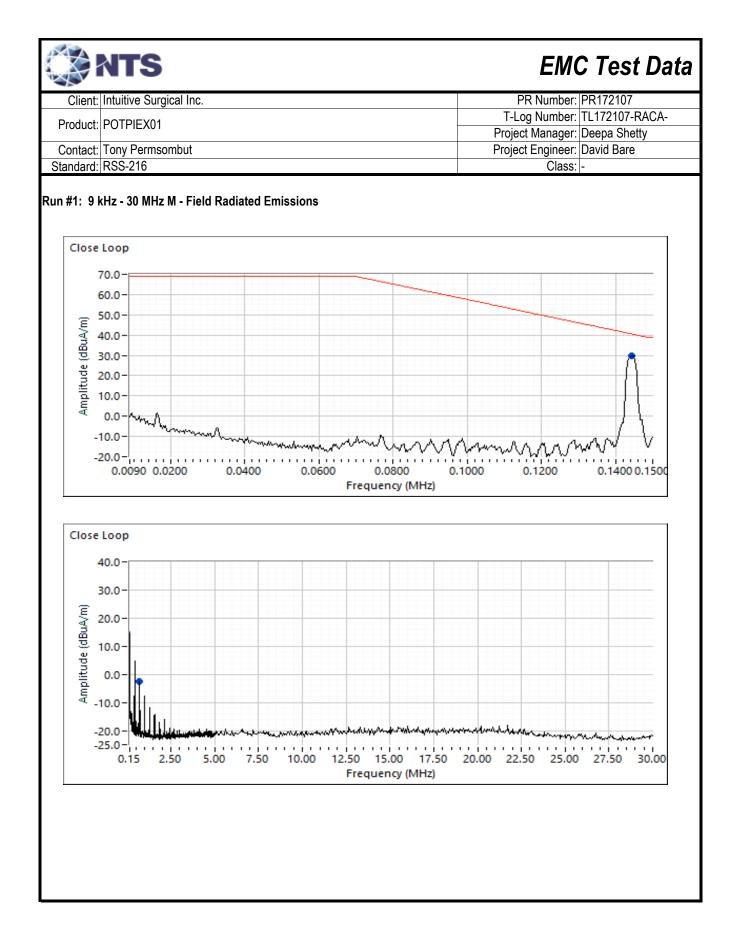
Deviations From The Standard

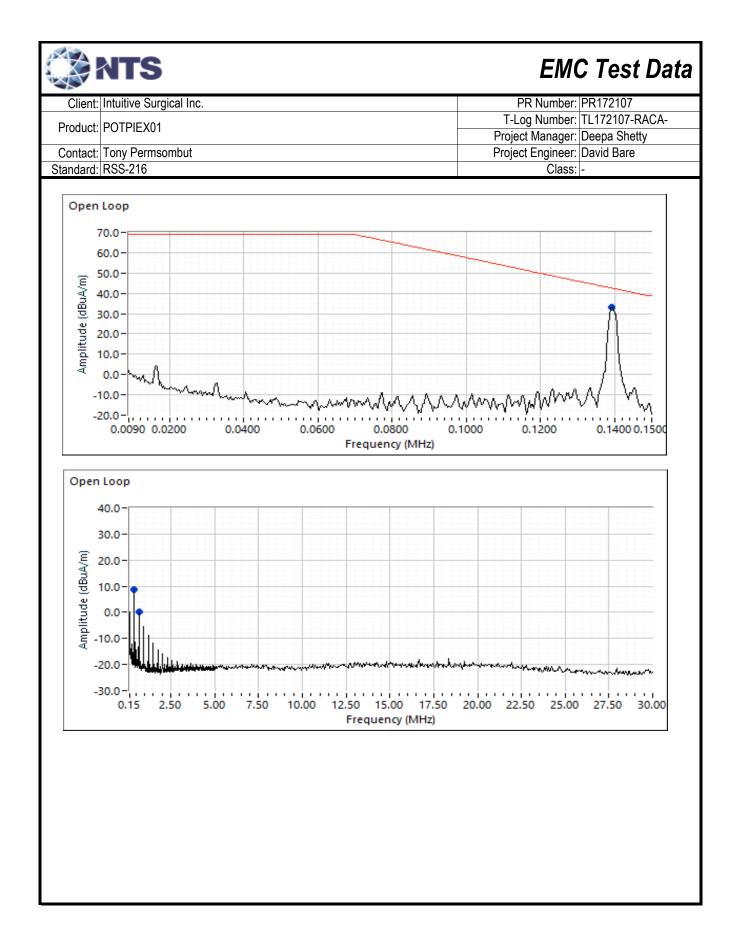
No deviations were made from the requirements of the standard.

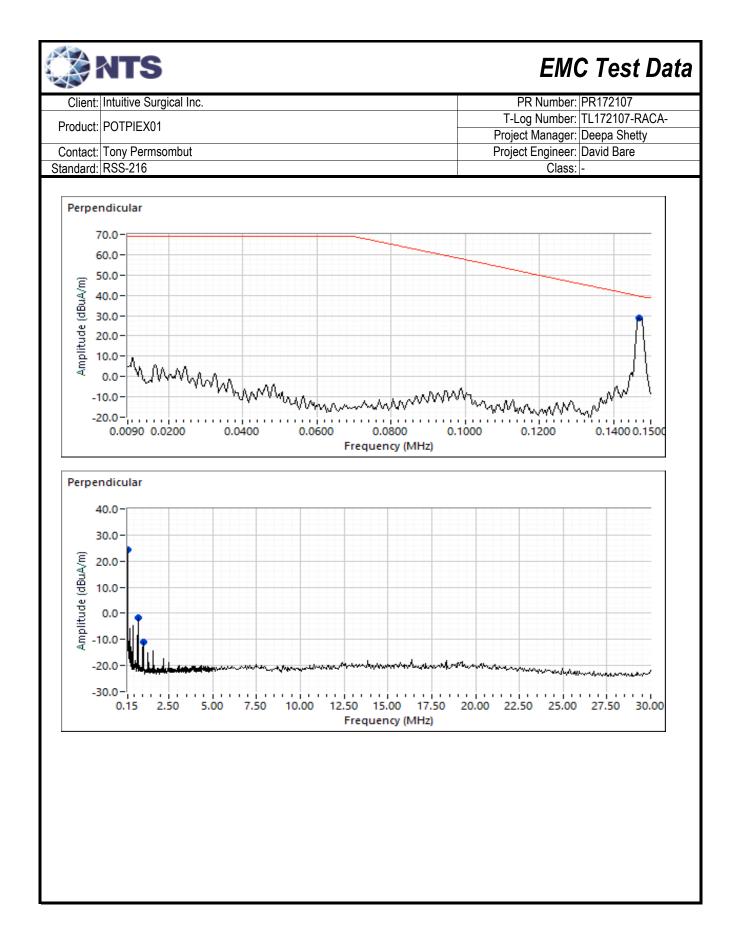
🎲 NTS

EMC Test Data

~~			
Client:	Intuitive Surgical Inc.	PR Number:	PR172107
Droduct:	POTPIEX01	T-Log Number:	TL172107-RACA-
FIOUUCI.		Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Standard:	RSS-216	Class:	-


Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
9 kHz - 30 MHz	3	3	0.0
30 MHz - 1000 MHz	10	10	0.0


Limits for Spurious


Freq (I	MHz)	RBW (kHz)	Limit (dBuA/m) @ 3m
0.009	0.07	9	69
0.07	0.15	9	69-39
0.15	30	9	39-7

Limits for Spurious

Eliling io	opunous	,	
Freq (I	MHz)	RBW (kHz)	Limit (dBuV/m) @ 10m
30	230	120	30
230	1000	120	37
230	1000	120	37

Client:	Intuitive Surgical Inc.	PR Number:	PR172107
Droduct:	POTPIEX01	T-Log Number: TL172107-RACA-	
FIUUUUL.	FOIFIEXUI	Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Standard:	RSS-216	Class:	-

Run #2: 9 kHz - 30 MHz Magnetic Field Radiated Emissions

Preliminary readings

Prelimina	ry readings							
Frequency	Level	Pol	ICES	-001	Detector	Azimuth	Height	Comments
MHz	dBµA/m	O/C/P	Limit	Margin	Pk/QP/Avg	degrees	meters	
0.143	29.9	С	40.9	-11.0	Peak	340	1.0	
0.150	14.1	С	39.0	-24.9	Peak	352	1.5	
0.429	6.0	С	32.7	-26.7	Peak	348	1.0	
0.703	-2.5	С	29.7	-32.2	Peak	340	1.0	
0.137	33.1	0	42.5	-9.4	Peak	260	1.0	
0.380	8.7	0	33.4	-24.7	Peak	260	1.0	
0.571	0.3	0	30.9	-30.6	Peak	47	1.0	
0.146	28.9	Р	40.0	-11.1	Peak	265	1.5	
0.150	24.5	Р	39.0	-14.5	Peak	268	1.5	
0.731	-1.8	Р	29.4	-31.2	Peak	263	2.0	
1.023	-11.0	Р	27.4	-38.4	Peak	57	2.0	
Maximira	d veedingee	(includes)	meninulatio	e of EUT inf		e)		
Frequency	Level	Pol	ICES		erface cable Detector	S) Azimuth	Height	Comments
MHz	dBµA/m	O/C	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
0.150	23.1	0/0	39.0	-15.9	QP	269	1.5	QP (1.00s)
0.421	6.6	C	32.8	-26.2	QP	346	1.0	QP (1.00s)
0.150	5.5	C	39.0	-33.5	QP	353	1.5	QP (1.00s)
0.731	-2.0	0	29.4	-31.4	QP	264	2.0	QP (1.00s)
0.700	-2.0	C	29.7	-31.7	QP	338	1.0	QP (1.00s)
1.023	-11.9	0	27.4	-39.3	QP	58	2.0	QP (1.00s)
0.380	-12.3	0	33.4	-45.7	QP	258	1.0	QP (1.00s)
0.571	-12.3	0	30.9	-46.9	QP QP	45	1.0	QP (1.00s)
0.071	-10.0	0	00.0	-40.3	પા	70	1.0	
Note 1:	For polarity	O = Open I	oop and C =	Close loop,	P = Perpendi	cular		

Client:	Intuitive Sur	gical Inc.						PR Number: PR1	
Product:	POTPIEX01							Log Number: TL1 ect Manager: Dee	
Contact:	Tony Perms	ombut						ect Engineer: Davi	
Standard:							,	Class: -	
Amplitude (dBuV/m)	40.0- 35.0- 30.0- 25.0-								
Amplitude	20.0- 15.0- 10.0- 5.0- 30	100	200	300 4	00 50				900 1000
Prelimina	10.0- 5.0- 30				Frequer) 600 ncy (MHz)	700	800 9	
Prelimina requency	10.0 - 5.0 - , , , , , 30	Pol	KN F	Radio	Frequer Detector) 600 ncy (MHz) Azimuth	700 Height		
Prelimina	10.0- 5.0- 30				Frequer) 600 ncy (MHz)	700	800 9	
Prelimina requency MHz 30.180	10.0 - 5.0 - , , , , 30 ary readings Level dBµV/m	Pol O/C/P	KN F Limit	Radio Margin	Frequer Detector Pk/QP/Avg	0 600 ncy (MHz) Azimuth degrees	700 Height meters	800 9	
Prelimina requency MHz 30.180 105.723 175.986	10.0- 5.0- 30 10.0- 5.0- 1.1 30 10.0- 30 10.0- 1.1 30 10.0- 1.1 30	Pol O/C/P H H H	KN F Limit 30.0 30.0 30.0	Radio Margin -6.4 -6.8 -13.5	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 30 187 1	700 Height meters 3.5 3.0 1.5	800 9	
Prelimina requency MHz 30.180 105.723 175.986 310.812	10.0 - 5.0 - 10.0 - 5.0 - 10.0 - 10.	Pol O/C/P H H H H	KN F Limit 30.0 30.0 30.0 37.0	Radio Margin -6.4 -6.8 -13.5 -14.9	Detector Pk/QP/Avg Peak Peak Peak Peak	Azimuth degrees 30 187 1 324	700 Height meters 3.5 3.0 1.5 3.0	800 9	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957	10.0 - 5.0 - 1. 30 10.0 - 10.1 30 10.1 10.0 - 10.1 10.1 10.0 - 10.1 10.0 - 10.1 10.0 - 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.110.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.11111111111111	Pol O/C/P H H H H	KN F Limit 30.0 30.0 30.0 37.0 37.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 30 187 1 324 91	700 Height meters 3.5 3.0 1.5 3.0 1.5	800 9	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious	10.0 - 5.0 - 30 ary readings Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions	Pol O/C/P H H H H H	KN F Limit 30.0 30.0 30.0 37.0 37.0 37.0 37.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 30 187 1 324 91 258	700 Height meters 3.5 3.0 1.5 3.0 1.5 4.0	Comments	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency	10.0 - 5.0 - 1.1 30 ary readings Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level	Pol O/C/P H H H H H H H Ol	KN F Limit 30.0 30.0 30.0 37.0 37.0 37.0 37.0 KN F	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 30 187 1 324 91 258 Azimuth	700 Height meters 3.5 3.0 1.5 3.0 1.5 4.0 Height	800 9	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency MHz	10.0- 5.0- 30 10.0- 5.0- 1.1 30 10.0- 10.0	Pol O/C/P H H H H H H H V/H	KN F Limit 30.0 30.0 30.0 37.0 37.0 37.0 37.0 KN F Limit	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio Margin	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg	Azimuth degrees 30 187 1 324 91 258 Azimuth degrees	700 Height meters 3.5 3.0 1.5 3.0 1.5 4.0 Height meters	Comments Comments	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency MHz 105.723	10.0 - 5.0 - 30 ary readings Level dBµV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBµV/m 23.0	Pol O/C/P H H H H H H V/H H	KN F Limit 30.0 30.0 37.0 37.0 37.0 37.0 37.0 37.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio Margin -7.0	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg QP	600 Azimuth degrees 30 187 1 324 91 258 Azimuth degrees 187	700 Height meters 3.5 3.0 1.5 3.0 1.5 4.0 Height meters 3.0	Comments Comments	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency MHz 105.723 30.180	10.0 - 5.0 - 30 ary readings Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 26.2 27.1 21.6 26.4 Emissions Level dBμV/m 23.6 26.2 27.1 21.6 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 27.0 26.4 Emissions Level dBμV/m 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	Pol O/C/P H H H H H H H V/H H H H	KN F Limit 30.0 30.0 37.0 37.0 37.0 37.0 KN F Limit 30.0 30.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio Margin -7.0 -12.0	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg QP QP	600 cy (MHz) Azimuth degrees 30 187 1 324 91 258 Azimuth degrees 187	Height meters 3.5 3.0 1.5 3.0 1.5 4.0 Height meters 3.0 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.15	Comments Comments QP (1.00s) QP (1.00s)	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency MHz 105.723 30.180 310.812	10.0 - 5.0 - 30 ary readings Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.0 18.0 19.5	Pol O/C/P H H H H H H H V/H H H H H H	KN F Limit 30.0 30.0 37.0 37.0 37.0 37.0 KN F Limit 30.0 30.0 37.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio Margin -7.0 -12.0 -17.5	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg QP QP QP	600 Azimuth degrees 30 187 1 324 91 258 Azimuth degrees 186 29 323	700 Height meters 3.5 3.0 1.5 3.0 1.5 3.0 1.5 4.0 Height meters 3.0 3.5 3.0 3.5 3.0	Comments Comments QP (1.00s) QP (1.00s) QP (1.00s)	
Prelimina requency MHz 30.180 105.723 175.986 310.812 449.957 950.018 Spurious requency MHz 105.723	10.0 - 5.0 - 30 ary readings Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 23.2 16.5 22.1 21.6 26.4 Emissions Level dBμV/m 23.6 26.2 27.1 21.6 26.4 Emissions Level dBμV/m 23.6 26.2 27.1 21.6 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 26.4 Emissions Level dBμV/m 23.0 27.0 26.4 Emissions Level dBμV/m 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	Pol O/C/P H H H H H H H V/H H H H	KN F Limit 30.0 30.0 37.0 37.0 37.0 37.0 KN F Limit 30.0 30.0	Radio Margin -6.4 -6.8 -13.5 -14.9 -15.4 -10.6 Radio Margin -7.0 -12.0	Frequer Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg QP QP	600 cy (MHz) Azimuth degrees 30 187 1 324 91 258 Azimuth degrees 187	Height meters 3.5 3.0 1.5 3.0 1.5 4.0 Height meters 3.0 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.15	Comments Comments QP (1.00s) QP (1.00s)	

ч

End of Report

This page is intentionally blank and marks the last page of this test report.