

41039 Boyce Road Fremont, CA. 94538

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 5 / RSS-210 Issue 10 FCC Part 15 Subpart C

Model: PIEX01

ISED CERTIFICATION #: FCC ID:	11508A-PIEX01 2AAZF-PIEX01
APPLICANT:	Intuitive Surgical Inc. 1266 Kifer Road Building 101 Sunnyvale, CA 94086
TEST SITE(S):	NTS Labs LLC 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
PROJECT NUMBER:	PR172107
REPORT DATE:	August 7, 2023
RE-ISSUE DATE:	November 15, 2023
FINAL TEST DATES:	May 3, June 20, 24 and 30, 2023
TOTAL NUMBER OF PAGES:	40

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. NTS Labs LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs LLC of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS Labs LLC.

Report Date: August 7, 2023

Project number PR172107 Reissue Date: November 15, 2023

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 7, 2023	First release	
1	November 15, 2023	Updated modulation type, rated power and data rate. Corrected inaccurate supply voltage. Added results up to 1 GHz, added results for magnetic field strength per RSS-GEN and summary table for Canada	dwb

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS SUMMARY	
DEVICES OPERATING IN THE 13.56 MHZ BAND	7
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS.	
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS	
FILTERS/ATTENUATORS	
ANTENNAS	
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC §15.207; FCC §15.107(A), AND RSS-GEN	
TRANSMITTER FUNDAMENTAL EMISSIONS SPECIFICATION LIMITS – 13.56 MHZ	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	40

SCOPE

An electromagnetic emissions test has been performed on the Intuitive Surgical Inc. model PIEX01, pursuant to the following rules:

RSS-Gen Issue 5 RSS-210 Issue 10 "Licence-Exempt Radio Apparatus: Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Labs LLC test procedures:

ANSI C63.10-2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

NTS Labs LLC is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intuitive Surgical Inc. model PIEX01 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 5 RSS-210 Issue 10 "Licence-Exempt Radio Apparatus: Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intuitive Surgical Inc. model PIEX01 and therefore apply only to the tested sample. The sample was selected and prepared by Tony Permsombut of Intuitive Surgical Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DEVICES OPERATING IN THE 13.56 MHZ BAND

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.225		Transmitter Fundamental Signal Emissions, 13.56 MHz	24.7 dBµV/m @ 13.559 MHz (-59.3 dB)	Refer to table in limits section	Complies
15.209		Transmitter Radiated Spurious Emissions, 0.009 – 1,000 MHz	31.5 dBµV/m @ 60.00 MHz (-8.5 dB)	Refer to table in limits section	Complies
15.225		Frequency Stability	5.9 ppm	100 ppm	Complies
Note 1 Pass/Fail criteria defined by standards listed above.					

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
	RSS-210 B.6	Transmitter Fundamental Signal Emissions, 13.56 MHz	24.7 dBµV/m @ 13.559 MHz (-59.3 dB)	Refer to table in limits section	Complies	
	RSS-GEN	Transmitter Radiated Spurious Emissions, 0.009 - 30 MHz	-34.7 dBµA/m @ 27.038 MHz (-12.8 dB)	Refer to table in limits section	Complies	
	RSS-GEN	Transmitter Radiated Spurious Emissions, 30 – 1,000 MHz	31.5 dBµV/m @ 60.00 MHz (-8.5 dB)	Refer to table in limits section	Complies	
	RSS-210 B.6	Frequency Stability	5.9 ppm	100 ppm	Complies	
Note 2 Pass/	Note 2 Pass/Fail criteria defined by standards listed above.					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.207	RSS-GEN Table 4	AC Conducted Emissions	42.9 dBµV @ 27.347 MHz (-7.1 dB)	Refer to page 18	Complies
-	RSS-GEN 8.4	User Manual	-	Statement of Compliance	Complies
- RSP 100 RSS-GEN Occupied Bandwidth 67 Hz Information only N/A 6.7					N/A
Note 3 Pass/Fail criteria defined by standards listed above.					

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
		0.009 to 30 MHz	± 5.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz	± 3.6 dB
		1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intuitive Surgical Inc. model PIEX01, hereafter referred to as EUT, is a RFID 13.56 MHz transceiver module for use in da Vinci Surgical System (an endoscopic instrument control system) which is intended to assist in the accurate control of endoscopic instruments). EUT is designed to read RFID tags inside Endoscopes. Since the EUT would be installed in da Vinci Surgical System cart during normal operation and could be placed in any position, the EUT was treated as tabletop equipment during testing to simulate the end-user environment.

The sample was received on May 3, 2023 and tested on May 3, June 20, 24 and 30, 2023. The EUT consisted of the following component(s):

ſ	Company	Model	Description	Serial Number	FCC ID
	Intuitive Surgical	PIEX01	RFID Radio module	FNW22620234	2AAZF-PIEX01

OTHER EUT DETAILS

The EUT uses ASK modulation. A read tag backscatters the tag transmissions which are detected by the EUT and decoded to identify the tag. The output power is 55 mW and the data rate is 106 kHz.

ANTENNA SYSTEM

The antenna system consists of a loop.

ENCLOSURE

The EUT does not have any enclosure as it is designed to be installed within host unit.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Labs LLC.

SUPPORT EQUIPMENT

No support equipment other than a battery was used during radiated emissions testing. For frequency stability and bandwidth testing, a variable output power supply, BK Precision model 1550 was used instead of the battery.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
1 OIL	Port Connected to		Shielded or Unshielded	Length(m)
DC input	Battery	Two wire	Unshielded	1.5

EUT OPERATION

During testing, the EUT was constantly transmitting at 13.56 MHz, 100% duty cycle.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS Labs LLC has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS Labs LLC.

Site	Designation / Registration Numbers FCC Canada		Location
	FCC	Canada	
			41039 Boyce Road
Chamber 7	US1031	US0027	Fremont,
			CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS Labs, LLC EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

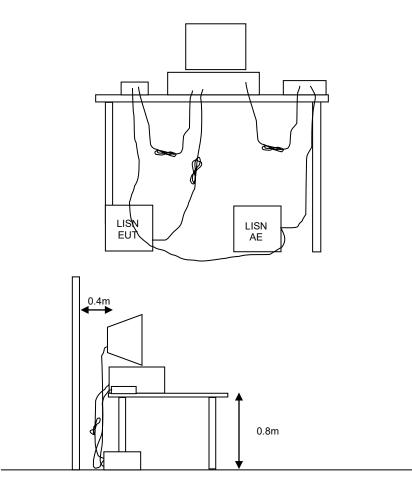
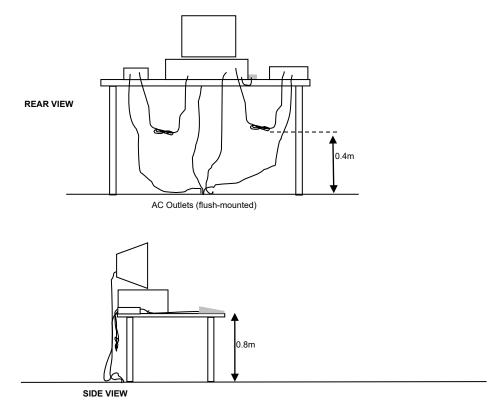


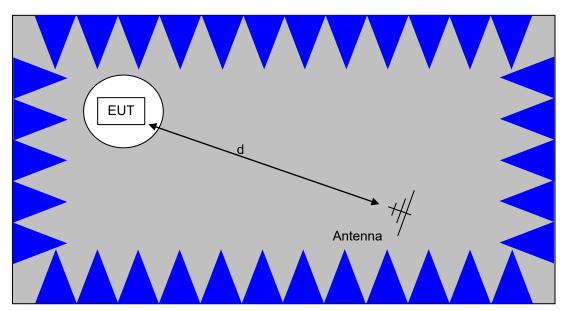
Figure 1 Typical Conducted Emissions Test Configuration

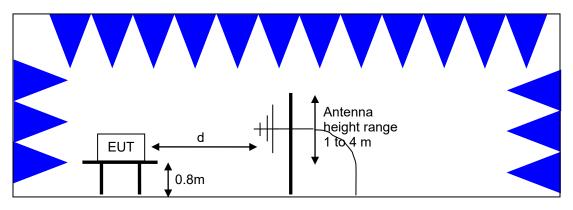
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS-GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC §15.207; FCC §15.107(a), AND RSS-GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

TRANSMITTER FUNDAMENTAL EMISSIONS SPECIFICATION LIMITS – 13.56 MHZ

The table below shows the limits for the fundamental emission in the 13.56 MHz band per FCC §15.225 and RSS-210 B.6. All emissions outside these bands shall meet the general field strength requirements in the following table.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m)
13.110 - 13.410, 13.710 – 14.010	106 @ 30m	40.5 @ 30m
13.410 – 13.553, 13.567 – 13.710	334 @ 30m	50.5 @ 30m
13.553 – 13.567	15848 @ 30m	84.0 @ 30m

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D), and the limits for all emissions from a low power device operating under the general rules of RSS-GEN (Tables 5 and 6) and FCC §15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

Note: RSS-GEN expresses the limits below 30 MHz in terms of magnetic field strength but are equivalent to the values in the table for electric field strength above assuming a 377 ohm field impedance.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

¹ The restricted bands are detailed in FCC 15.205, RSS-GEN Table7

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Conducted Emission <u>Manufacturer</u> National Technical Systems	ns - AC Power Ports, 20-Jur <u>Description</u> NTS EMI Software (rev 2.10)	n-23 <u>Model</u> N/A	<u>Asset #</u> WC022452	<u>Calibrated</u> N/A	<u>Cal Due</u> N/A
ETS-Lindgren	EMC Chamber #7, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 7 (FACT-5)	WC055569	8/8/2022	11/6/2023
EMCO Rohde & Schwarz	LISN, 10 kHz-100 MHz EMI Test Receiver, 20Hz- 40GHz	3825/2 ESI	WC064407 WC068000	11/1/2022 7/21/2022	2/8/2024 7/21/2023
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	WC072359	6/30/2022	6/30/2023
	, 0.009 - 150 MHz, 03-May-23		A	Calibrated	
<u>Manufacturer</u> National Technical Systems	Description NTS EMI Software (rev 2.10)	<u>Model</u> N/A	<u>Asset #</u> WC022452	<u>Calibrated</u> N/A	<u>Cal Due</u> N/A
Rhode & Schwarz Sunol Sciences	Loop Antenna Biconilog, 30-3000 MHz	HFH2-Z2 JB3	WC062457 WC064582	2/17/2022 8/18/2022	2/17/2024 3/24/2025
Hewlett Packard	9kHz-1300MHz pre-amp	363 8447F	WC064582 WC064718	12/28/2022	3/24/2025
Rohde & Schwarz	EMI Test Receiver, 20Hz- 40GHz	ESI	WC068000	7/21/2022	7/21/2023
Bandwidth, 24-Jun-2					
<u>Manufacturer</u> National Technical Systems	Description NTS Capture Analyzer Software (rev 4.0)	<u>Model</u> N/A	<u>Asset #</u> WC022706	<u>Calibrated</u> N/A	<u>Cal Due</u> N/A
National Technical Systems	EMC Lab #4A	None	WC055574	N/A	N/A
Rohde & Schwarz Watlow	Spectrum Analyzer Environmental Chamber Controller	FSQ26 F4	WC055662 WC066185	12/11/2022 6/2/2022	12/31/2023 7/2/2023
Envirotronics	EMC Chamber #10 (Lab #3)	SH16C	WC071534	N/A	N/A
	, .009 - 1,000 MHz, 30-Jun-2		• • •		
<u>Manufacturer</u> National Technical	Description NTS EMI Software (rev	<u>Model #</u>	<u>Asset #</u>	Last Cal	<u>Cal Due</u>
Systems	2.10)	N/A	WC022452	N/A	
Rhode & Schwarz Sunol Sciences	Loop Antenna Biconilog, 30-3000 MHz	HFH2-Z2 JB3	WC062457 WC064582	2/17/2022 8/18/2022	2/17/2024 3/24/2025
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	WC064582 WC064733	5/24/2023	5/24/2025 5/24/2024
Rohde & Schwarz	EMI Test Receiver, 20Hz- 7GHz	ESIB 7	WC064989	1/4/2023	1/4/2024

Appendix B Test Data

TL172107-RANA-PIEX01 Pages 23 – 39

EMC Test Data

Client:	Intuitive Surgical Inc.	PR Number:	PR172107
Product	PIEX01	T-Log Number:	TL172107-RA-PIEX01
System Configuration:	Tested as module with POTPIEX01	Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Emissions Standard(s):	FCC Part 15 & RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intuitive Surgical Inc.

Product

PIEX01

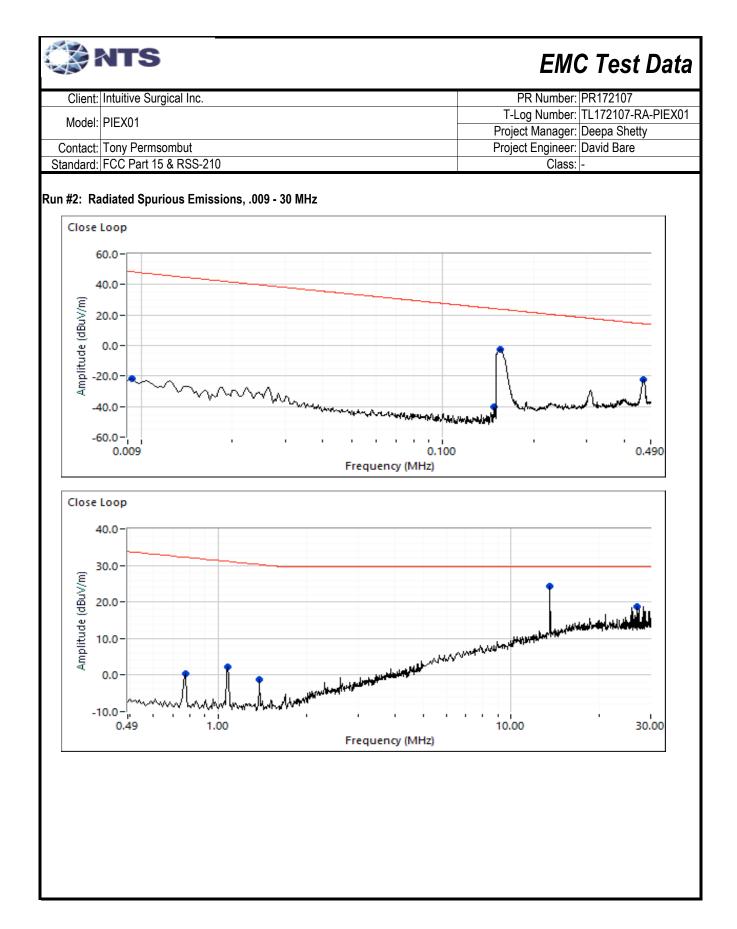
Date of Last Test: 11/28/2023

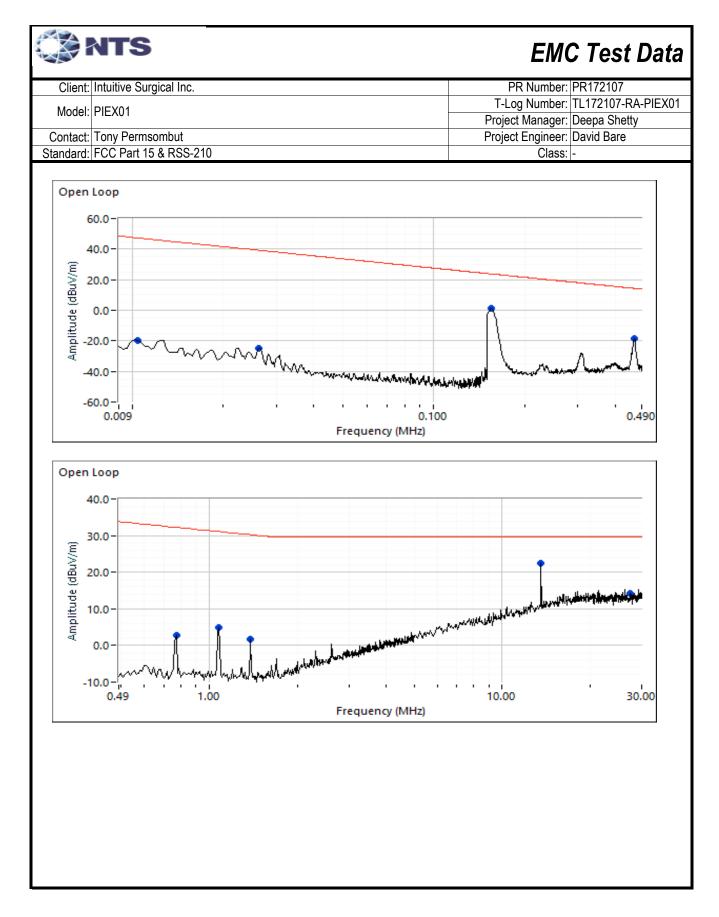
Client: Intuitive	Surgical Inc.			PR Number: PR172107
			T-	Log Number: TL172107-RA-PIEX01
Model: PIEX01				ject Manager: Deepa Shetty
Contact: Tony Per			Proj	ject Engineer: David Bare
Standard: FCC Par	t 15 & RSS-210			Class: -
	Radia	ated Emissions		
Test Specific De	tails			
Objecti	ve: The objective of this test session is specification listed above.	to perform final qualification	on testing o	of the EUT with respect to the
Date of Te	est: 5/3/2023	Config. Used:	1	
•	er: M. Birgani	Config Change:	-	
Test Locati	on: Fremont Chamber #7	EUT Voltage:	12VDC	
The test distance a	nd extrapolation factor (if used) are det	ailed under each run desc	rintion	
Note, preliminary te antenna. Maximize antenna, and mani Ambient Condition Summary of Res Run # 1	Rel. Humidity: ults Test Performed Fundamental Signal Field Strength / Spectral Mask	maximized by orientation vere maximized by orienta 20-22 °C 48-50 % Limit FCC 15.225 & RSS 210 B.6	of the EUT	EUT, elevation of the measurement Margin 24.7 dBµV/m @ 13.559 MHz (-59.3 dB)
Note, preliminary te antenna. Maximize antenna, and manip Ambient Condition Summary of Res Run #	ed testing indicated that the emissions v bulation of the EUT's interface cables. DNS: Temperature: Rel. Humidity: ults Test Performed Fundamental Signal Field Strength / Spectral Mask .009 - 30 MHz	maximized by orientation vere maximized by orienta 20-22 °C 48-50 % Limit FCC 15.225 &	of the EUT tion of the I	EUT, elevation of the measurement Margin 24.7 dBµV/m @ 13.559 MHz (-59.3 dB) 16.8 dBµV/m @ 27.038 MHz (-12.7 dB)
Note, preliminary te antenna. Maximize antenna, and manip Ambient Condition Summary of Res Run # 1 2 3	ed testing indicated that the emissions v bulation of the EUT's interface cables. DNS: Temperature: Rel. Humidity: Ults Test Performed Fundamental Signal Field Strength / Spectral Mask	maximized by orientation vere maximized by orienta 20-22 °C 48-50 % Limit FCC 15.225 & RSS 210 B.6	result Result Pass	EUT, elevation of the measurement Margin 24.7 dBµV/m @ 13.559 MHz (-59.3 dB) 16.8 dBµV/m @ 27.038 MHz

	NTS
--	-----

EMC Test Data

Client: I	ntuitive Surgical Inc.	PR Number:	PR172107
Model: F		T-Log Number:	TL172107-RA-PIEX01
	IEAU	Project Manager:	Deepa Shetty
Contact: T	ony Permsombut	Project Engineer:	David Bare
Standard: F	CC Part 15 & RSS-210	Class:	-

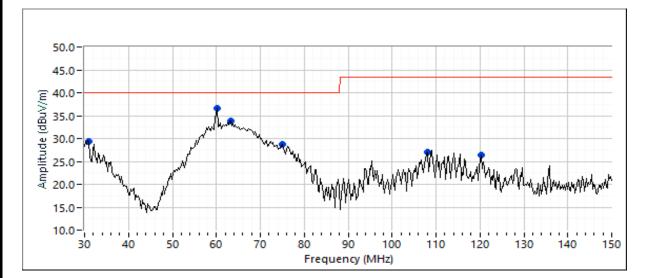

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
.009 - 0.49 MHz	3	300	Per ANSI C63.10
0.49 - 30 MHz	3	30	Per ANSI C63.10
13.06 - 14.06 MHz	3	30	Per ANSI C63.10
30 - 150 MHz	3	3	0.0


Run #1: Fundamental Signal Field Strength / Spectral Mask

Preliminary readings (RFID at 13.56 MHz)

i reminary	readings (r								
Frequency	Level	Pol	FCC 15.22	5/RSS-210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	O/C	Limit	Margin	Pk/QP/Avg	degrees	meters		
13.559	24.7	С	84.0	-59.3	PK	230	1.1	Side	
13.559	23.8	0	84.0	-60.2	PK	125	1.1	Side	
13.559	24.2	С	84.0	-59.8	PK	222	1.1	Upright	
13.559	23.9	0	84.0	-60.1	PK	297	1.1	Upright	
13.559	17.4	С	84.0	-66.6	PK	209	1.1	Flat	
13.559	15.9	0	84.0	-68.1	PK	97	1.1	Flat	
		-							
Note :	For polarity	O = Open	oop and C =	Close loop					
	The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except								
Note 1:									
	based on measurements employing an average detector, with a peak limit 20dB above the average limit.								
			Limits for I	Fundamenta	al				
	Freq (I	MHz)	RBW	(kHz)	Limit (dBuV	/m) @ 30m			
	< 13.	110	(9	29	.5			
	13.110	13.410	ļ	9	40	.5			

× 15.	110	9	29.0
13.110	13.410	9	40.5
13.410	13.553	9	50.5
13.553	13.567	9	84.0
13.567	13.710	9	50.5
13.710	14.010	9	40.5
> 14.	010	9	29.5

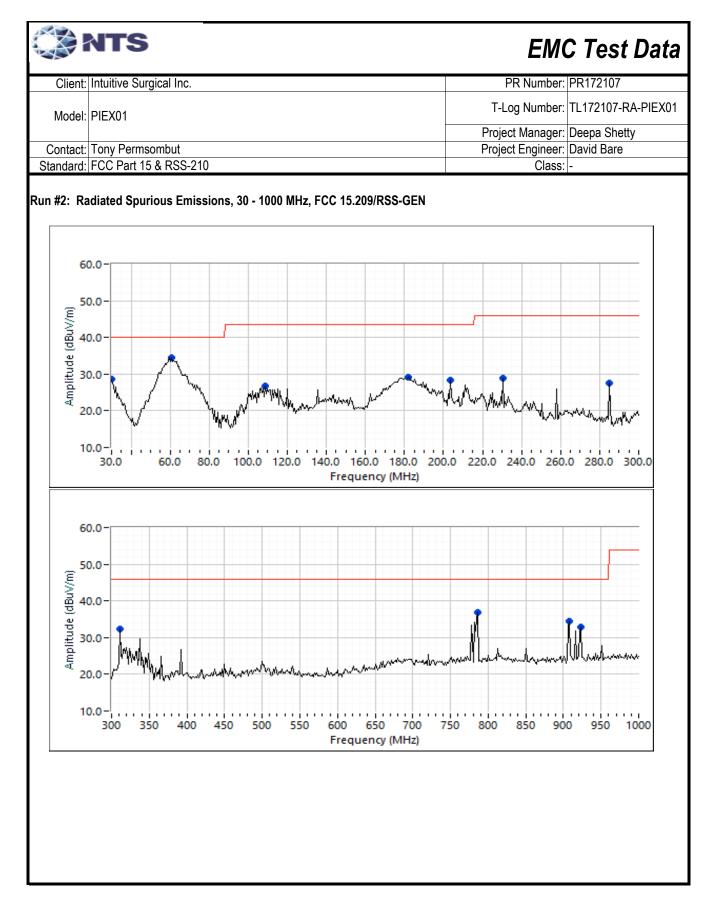


MHz dB 1.076 - 0.768 - 1.383 - 13.559 2 27.038 1 0.010 - 0.026 -2 0.144 -	X01 y Permsor C Part 15 &	mbut & RSS-21 FCC Pol O/C C C C	0 FCC 1 Limit 31.1 32.2	Margin	Detector Pk/QP/Avg	Azimuth	Proj Proj	ect Manager: [ect Engineer: [Class: -	TL172107-RA-PIEX01 Deepa Shetty David Bare
Contact: Tony Standard: FCC Preliminary re Frequency L MHz dB 1.076	y Permsor C Part 15 δ eadings - _evel 3μV/m 2.3 0.3 -1.3 24.2 18.7	FCC Pol O/C C C C C	FCC 1 Limit 31.1	Margin		Azimuth	Proj Proj	ect Manager: [ect Engineer: [Class: -	Deepa Shetty David Bare
Standard: FCC Preliminary re Frequency L MHz dB 1.076 1 0.768 1 1.383 - 13.559 2 27.038 1 0.010 - 0.026 - 0.144 -	Part 15 δ eadings - _evel 3μV/m 2.3 0.3 -1.3 24.2 18.7	FCC Pol O/C C C C C	FCC 1 Limit 31.1	Margin		Azimuth		Class: -	
Preliminary re Frequency L MHz dB 1.076 1 0.768 1 1.383 - 13.559 2 27.038 1 0.010 - 0.026 - 0.144 1	eadings - _evel 3μV/m 2.3 0.3 -1.3 24.2 18.7	FCC Pol O/C C C C	FCC 1 Limit 31.1	Margin		Azimuth			
Frequency L MHz dB 1.076 0.768 1.383 13.559 27.038 1 0.010 0.026 0.144	Level βμV/m 2.3 0.3 -1.3 24.2 18.7	Pol O/C C C C	Limit 31.1	Margin		Azimuth		L	
Frequency L MHz dB 1.076 0.768 1.383 13.559 27.038 1 0.010 0.026 0.144	Level βμV/m 2.3 0.3 -1.3 24.2 18.7	Pol O/C C C C	Limit 31.1	Margin		Azimuth		1.	
MHz dB 1.076 - 0.768 - 1.383 - 13.559 2 27.038 1 0.010 - 0.026 -2 0.144 -	3μV/m 2.3 0.3 -1.3 24.2 18.7	0/C C C C	Limit 31.1	Margin			Height	Comments	
1.076	2.3 0.3 -1.3 24.2 18.7	C C C	31.1			degrees	meters		
0.768 1.383 13.559 27.038 10.010 0.026 0.144	0.3 -1.3 24.2 18.7	C C		-28.8	Peak	173	1.1	Peak reading	with QP limit
1.383 - 13.559 2 27.038 1 0.010 - 0.026 -2 0.144 -	-1.3 24.2 18.7	С	JZ.Z	-31.9	Peak	182	1.1		with QP limit
13.559 2 27.038 1 0.010 0.026 2 0.144	18.7		30.2	-31.5	Peak	182	1.1	ÿ	with QP limit
27.038 1 0.010 -* 0.026 -2 0.144 -	18.7	С	84.0	-59.8	Peak	222	1.1	RFID Fundan	
0.010 - 0.026 - 2 0.144	-19.6	C	29.5	-10.8	Peak	213	1.1		
0.026 -2 0.144		0	47.2	-66.8	Peak	109	1.1	Peak reading	with QP limit
0.144	-24.7	0	39.2	-63.9	Peak	267	1.1	Peak reading	
	1.0	0	23.8	-22.8	Peak	268	1.1	WPT Fundam	
0.463 - 1	-18.8	0	14.3	-33.1	Peak	273	1.1	Peak reading	with QP limit
	2.7	0	32.2	-29.5	Peak	247	1.1	Peak reading	with QP limit
1.077	5.0	0	31.1	-26.1	Peak	261	1.1		with QP limit
1.385	1.8	0	30.2	-28.4	Peak	256	1.1		with QP limit
13.567 2	22.5	0	84.0	-61.5	Peak	299	1.1	RFID Fundan	
27.395 1	14.3	0	29.5	-15.2	Peak	290	1.1		
Note : For p	nolarity O	= Open l	oop and C =	Close loon					
					e hased on m	easurement	s emploving	a CISPR quas	si-peak detector excep
								•	nese three bands are
	•	•						e the average	
5466			to omploying	anavorago	dotootor, ma			o ino avorago	
Maximized rea	adings (ir	ncludes r	manipulatio	n of EUT int	erface cable	s)			
	_evel	Pol	FCC 1		Detector	Azimuth	Height	Comments	
MHz dB	3μV/m	O/C	Limit	Margin	Pk/QP/Avg	degrees	meters		
27.038 1	16.8	С	29.5	-12.7	QP	211	1.1	QP (1.00s)	
	10.2	0	29.5	-19.3	QP	360	1.1	QP (1.00s)	
Note : For p	nolarity ()	- Open l	oop and C =	Close leen					
		limite sho	we in the ab	ove table an	e based on m	assurament			si-peak detector exce
									nese three bands are
base	ed on mea	asuremen	ts employing	an average	detector, with	n a peak limi	t 20dB abov	e the average	limit.

Client:	Intuitive Sur	gical Inc.						PR Number: PR172107
Model:	PIEX01							Log Number: TL172107-RA-PIEX0
Ocartest		o						ect Manager: Deepa Shetty
	Tony Perms FCC Part 15		10				Proje	ect Engineer: David Bare Class: -
Stanuaru.	I CO Fait 15	a 1.00-21	10					01055
Prelimina	ary readings	- ISED Ca	nada					
requency		Pol	RSS-	GEN	Detector	Azimuth	Height	Comments
MHz	dBµA/m	O/C	Limit	Margin	Pk/QP/Avg	degrees	meters	
1.076	-49.2	С	-24.6	-24.6	Peak	173	1.1	Peak reading with QP limit
0.768	-51.2	С	-21.6	-29.6	Peak	182	1.1	Peak reading with QP limit
1.383	-52.8	С	-26.7	-26.1	Peak	182	1.1	Peak reading with QP limit
13.559	-27.3	С	-21.9	-5.4	Peak	222	1.1	RFID Fundamental
27.038	-32.8	С	-21.9	-10.9	Peak	213	1.1	
0.010	-71.1	0	-4.3	-66.8	Peak	109	1.1	Peak reading with QP limit
0.026	-76.2	0	-12.3	-63.9	Peak	267	1.1	Peak reading with QP limit
0.144	-50.5	0	-27.1	-23.4	Peak	268	1.1	WPT Fundamental
0.463	-70.3	0	-37.2	-33.1	Peak	273	1.1	Peak reading with QP limit
0.770	-48.8	0	-21.6	-27.2	Peak	247	1.1	Peak reading with QP limit
1.077	-46.5	0	-24.6	-21.9	Peak	261	1.1	Peak reading with QP limit
1.385	-49.7	0	-26.7	-23.0	Peak	256	1.1	Peak reading with QP limit
13.567	-29.0	0	-21.9	-7.1	Peak	299	1.1	RFID Fundamental
27.395	-37.2	0	-21.9	-15.3	Peak	290	1.1	
-		D		040	D ()	A ' 11		
-requency	Level	Pol		-210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	0/C	Limit	Margin	Pk/QP/Avg	degrees	meters	
13.559	24.2	<u>C</u>	84.0	-59.8	Peak	222	1.1	RFID Fundamental
13.567	22.5	0	84.0	-61.5	Peak	299	1.1	RFID Fundamental
Note :	For polarity) = Open	loop and C =	Close loop				
					e based on m	easurement	s employing	a CISPR quasi-peak detector exce
Note 1:	for the frequ	ency band	s 9-90 kHz, ´	10-490 kHz	and above 1	000 MHz. Ra	diated emis	sion limits in these three bands are
	based on me	easuremer	nts employing	an average	detector, wit	h a peak limi	t 20dB abov	e the average limit.
						·		
					erface cable			
requency	Level	Pol	RSS-		Detector	Azimuth	Height	Comments
MHz	dBµA/m	O/C	Limit	Margin	Pk/QP/Avg	degrees	meters	
27.038	-34.7	С	-21.9	-12.8	QP	211	1.1	QP (1.00s)
27.038	-41.3	0	-21.9	-19.4	QP	360	1.1	QP (1.00s)
Note :	For polarity () = Open	loop and C =	Close loon				
NULC .					e hased on m	easurement	s emplovina	a CISPR quasi-peak detector exce
ote 1:								sion limits in these three bands are
		•						e the average limit.
			no empioying	, un average		r a peak iiiili		o the average innit.

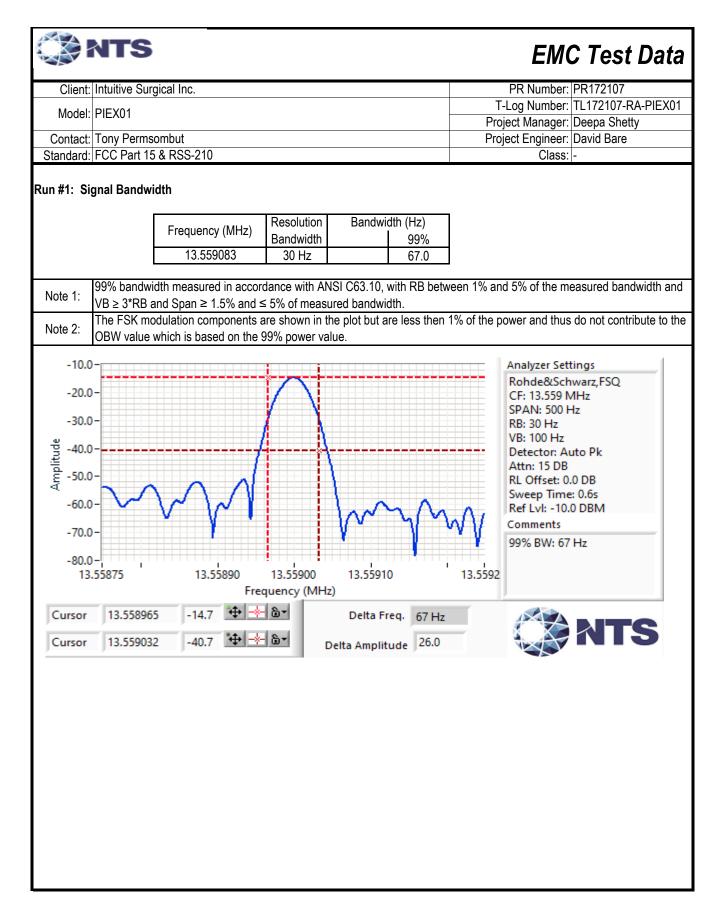
NTS	EMC Test Dat		
Client: Intuitive Surgical Inc.	PR Number: PR172107		
Model: PIEX01	T-Log Number: TL172107-RA-PIEX01		
	Project Manager: Deepa Shetty		
Contact: Tony Permsombut	Project Engineer: David Bare		
Standard: FCC Part 15 & RSS-210	Class: -		

Run #3: Radiated Spurious Emissions, 30 - 150 MHz


Preliminary Readings

Frequency	Level	Pol	FCC 15.209	9/RSS-GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
30.730	29.3	V	40.0	-10.7	Peak	356	1.0	
60.003	36.6	V	40.0	-3.4	Peak	172	1.0	
63.149	33.9	V	40.0	-6.1	Peak	119	1.0	
74.969	28.8	V	40.0	-11.2	Peak	105	1.5	
107.852	27.1	V	40.0	-12.9	Peak	305	1.0	
120.000	26.4	Н	40.0	-13.6	Peak	24	2.0	

Maximized readings (includes manipulation of EUT interface cables)


Frequency	Level	Pol	FCC 15.20	9/RSS-GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
60.003	31.5	V	40.0	-8.5	QP	158	1.0	QP (1.00s)
30.730	27.6	V	40.0	-12.4	QP	360	1.0	QP (1.00s)
63.149	27.4	V	40.0	-12.6	QP	148	1.0	QP (1.00s)
74.969	23.7	V	40.0	-16.3	QP	88	1.0	QP (1.00s)
107.852	26.8	V	43.5	-16.7	QP	316	1.0	QP (1.00s)
120.000	25.0	Н	43.5	-18.5	QP	27	2.5	QP (1.00s)

				ЕМС	Test Data
Client: Intuitive Sur	gical Inc.			PR Number: PF	R172107
	•	T-Log Number: TL172107-RA-PIEX01			
Model: PIEX01			ect Manager: De		
Contact: Tony Perms Standard: FCC Part 15		Project Engineer: David Bare Class: -			
				01033.	
	Radi	ated Emissions			
Test Specific Detai Objective:	S The objective of this test session is specification listed above.	s to perform final qualificatio	n testing c	f the EUT with re	espect to the
5	6/30/2023 Rafael Varelas Fremont Chamber #7	Config. Used: ´ Config Change: - EUT Voltage: ´			
Note, preliminary testi antenna. Maximized t	extrapolation factor (if used) are de ng indicates that the emissions were esting indicated that the emissions ation of the EUT's interface cables. s: Temperature Rel. Humidity	e maximized by orientation were maximized by orientat : 23.8 °C	of the EUT		
Summary of Result				1	
Run # 2	Test Performed Radiated Emissions	Limit FCC part 15.209 / RSS-	Result Pass	Margin 31.4 dBµV/m ((-8.6 dB)	@ 60.01 MHz
	30 - 1,000 MHz	210		(•••• •=)	

Madal	Intuitive Surgical Inc.							PR Number:	PR172107
wodel:	PIEX01						T-Log Number: TL172107-RA-P		TL172107-RA-PIEX07
							Project Manager: Deepa Shetty		
	tact: Tony Permsombut Jard: FCC Part 15 & RSS-210						Project Engineer:		
Standard:	FCC Part 15	& RSS-2	10					Class:	-
Prelimina	ry Readings								
requency	Level	Pol	FCC 15.20	9/RSS-GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
60.008	34.6	V	40.0	-5.4	Peak	37	1.0		
30.006	28.7	V	40.0	-11.3	Peak	124	1.0		
108.571	26.7	V	43.5	-16.8	Peak	317	1.0		
181.820	29.2	Н	43.5	-14.3	Peak	260	2.0		
203.398	28.3	V	43.5	-15.2	Peak	142	1.0		
230.523	28.9	V	46.0	-17.1	Peak	233	1.0		
284.749	27.6	H H	46.0	-18.4	Peak	222	1.0		
311.870 786.597	32.4 36.9	н V	46.0 46.0	-13.6 -9.1	Peak Peak	224 50	<u>1.0</u> 1.0		
907.794	34.4	V	46.0	-9.1	Peak	325	3.5		
922.215	32.8	V	46.0	-13.2	Peak	124	1.0		
								4	
1					erface cable			T	
requency	Level	Pol		9/RSS-GEN		Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
60.008	31.4 27.0	V V	40.0 40.0	-8.6	QP	38	1.0	QP (1.00s)	
30.006 311.870	31.2	H	40.0	-13.0 -14.8	QP QP	125 212	<u>1.0</u> 1.0	QP (1.00s) QP (1.00s)	
786.597	19.5	V	46.0	-14.0	QP QP	51	1.4	QP (1.00s) QP (1.00s)	
922.215	19.3	V	46.0	-26.7	QP	125	1.4	QP (1.00s)	
907.794	19.1	V	46.0	-26.9	QP	326	1.0	QP (1.00s)	

				EMC Test Dat
Client:	Intuitive Surgical Inc.		F	PR Number: PR172107
Model:	PIEX01			og Number: TL172107-RA-PIEX
			2	ct Manager: Deepa Shetty
	Tony Permsombut FCC Part 15 & RSS-210		Projec	ct Engineer: David Bare Class: -
	-	S-GEN and FCC	Part 15.225 Frequency Stability	
est Spe	cific Details			
			nal qualification testing of t	the EUT with respect to the
General T	est Configuration			
	enuator or dc-block if necessary. For f			
chamber. Radiated	measurements are made with the EUT	Г located on a non-con nperature: 21-22 Humidity: 38-40	°C	measurement antenna.
chamber. Radiated Ambient	measurements are made with the EUT Conditions: Ter Rel.	nperature: 21-22 Humidity: 38-40	°C %	
chamber. Radiated mbient Cummary Run #	measurements are made with the EUT Conditions: Ter Rel. 7 of Results Test Performed	nperature: 21-22	°C	Result / Margin
chamber. Radiated mbient <u>cummary</u> Run # 1 2	measurements are made with the EUT Conditions: Ter Rel. r of Results Test Performed 99% or Occupied Bandwidth Frequency Stability	nperature: 21-22 Humidity: 38-40	°C %	
chamber. Radiated Ambient (Ambient (Summary Run # 1 2 Modificat No modifi Deviation No deviat	measurements are made with the EUT Conditions: Ter Rel. of Results Test Performed 99% or Occupied Bandwidth	nperature: 21-22 Humidity: 38-40 Limit - 100 ppm testing s of the standard.	°C % Pass / Fail	Result / Margin 67 Hz

EMC Test Data

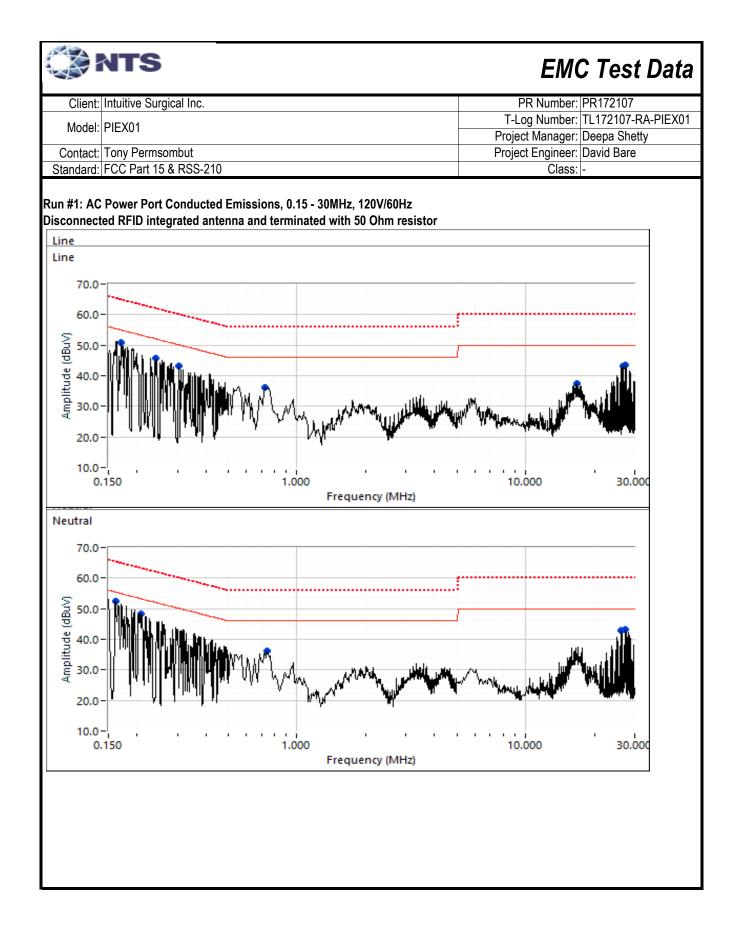
Client:	Intuitive Surgical Inc.	PR Number:	PR172107
Model	lodel: PIEX01	T-Log Number:	TL172107-RA-PIEX01
MOUEI.	TIEXUI	Project Manager:	Deepa Shetty
Contact:	Tony Permsombut	Project Engineer:	David Bare
Standard:	FCC Part 15 & RSS-210	Class:	-

Run #2: Frequency Stability

Nominal Frequency: 13.559038 MHz

Frequency Stability Over Temperature

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature.


Temperature	Frequency Measured	D	rift
(Celsius)	(MHz)	(Hz)	(ppm)
-20	13.558998	-40	3.0
-10	13.558987	-51	3.8
0	13.559038	0	0.0
10	13.559119	81	5.9
20	13.559038	0	0.0
30	13.559038	0	0.0
40	13.559038	0	0.0
50	13.559038	0	0.0
	Worst case:	81	5.9
	Worst case:	81	5.9

Frequency Stability Over Input Voltage

Nominal Voltage is 12V

<u>Voltage</u>	Frequency Measured	D	<u>rift</u>
(AC)	(MHz)	(Hz)	(ppm)
85%	13.559033	-5	-0.4
115%	13.559041	3	0.2
	Worst case:	-5	-0.4

STR				EMC Test Data
Client: Intuitive Sur	gical Inc.			PR Number: PR172107
Model: PIEX01			Log Number: TL172107-RA-PIEX01	
Contact: Tony Perms	omhut			ject Manager: Deepa Shetty ject Engineer: David Bare
Standard: FCC Part 15		110	Class: -	
	Condu (NTS Silicon Valley, Frem	icted Emissions ont Facility, Semi-Ane	choic Cham	nber)
	S The objective of this test session is specification listed above.	to perform final qualificat	tion testing c	of the EUT with respect to the
Date of Test: Test Engineer: Test Location:		Config. Used Config Change Host Unit Voltage	None	Z
plane and 80cm from t	t, the EUT was located on a foam ta he LISN. Remote support equipmer	nt was located outside of	the semi-ar	er, 40 cm from a vertical coupling nechoic chamber. Any cables running nrough a ferrite clamp upon exiting the
Ambient Condition	Temperature:	23.8 °C		
	Rel. Humidity:	44 %		
Summary of Result				
Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	FCC §15.207	Pass	42.9 dBµV @ 27.347 MHz (-7.1 dB)
Deviations From Th	made to the EUT during testing	ndard.		
	FC) and POTPIEX01 (155 kHz WPT) are tested together.		

	NTS
--	-----

EMC Test Data

Client [.]	Intuitive Sur	raical Inc					PR Number:	PR172107
		giour mo.						TL172107-RA-PIEX0
Model:	PIEX01						Project Manager:	
Contact:	Tony Permsombut						Project Engineer:	
	FCC Part 15 & RSS-210						Class:	
Preliminarv	peak readi	nas captur	ed durina p	re-scan (pe	ak readings	vs. average lim	it)	
Frequency	Level	AC		15.207	Detector	Comments	/	
MHz	dBµV	Line	Limit	Margin	QP/AVG			
16.697	37.3	Line	50.0	-12.7	Peak			
26.850	43.3	Line	50.0	-6.7	Peak			
27.347	43.4	Line	50.0	-6.6	Peak			
0.746	36.3	Line	46.0	-9.7	Peak			
0.169	51.0	Line	54.9	-3.9	Peak			
0.239	45.8	Line	52.1	-6.3	Peak			
0.305	43.1	Line	50.1	-7.0	Peak			
0.160	52.4	Neutral	55.4	-3.0	Peak			
0.209	48.2	Neutral	53.2	-5.0	Peak			
0.745	36.3	Neutral	46.0	-9.7	Peak			
26.156	42.8	Neutral	50.0	-7.2	Peak			
27.345	43.3	Neutral	50.0	-6.7	Peak			
Final quasi [,]	-peak and a	verage rea	dings					
Frequency	Level	AC		15.207	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/AVG			
27.347	42.9	Line	50.0	-7.1	AVG	AVG (0.10s)		
27.345	42.7	Neutral	50.0	-7.3	AVG	AVG (0.10s)		
26.156	42.4	Neutral	50.0	-7.6	AVG	AVG (0.10s)		
27.347	43.3	Line	60.0	-16.7	QP	QP (1.00s)		
27.345	43.2	Neutral	60.0	-16.8	QP	QP (1.00s)		
26.156	42.8	Neutral	60.0	-17.2	QP	QP (1.00s)		
26.753	30.1	Line	50.0	-19.9	AVG	AVG (0.10s)		
0.160	44.1	Neutral	65.5	-21.4	QP	QP (1.00s)		
0.169	43.4	Line	65.0	-21.6	QP	QP (1.00s)		
0.209	39.6	Neutral	63.2	-23.6	QP	QP (1.00s)		
0.239	37.9	Line	62.1	-24.2	QP	QP (1.00s)		
0.305	35.3	Line	60.1	-24.8	QP	QP (1.00s)		
26.753	31.4	Line	60.0	-28.6	QP	QP (1.00s)		
0.169	26.0	Line	55.0	-29.0	AVG	AVG (0.10s)		
0.209	19.1	Neutral	53.2	-34.1	AVG	AVG (0.10s)		
0.160	20.9	Neutral	55.5	-34.6	AVG	AVG (0.10s)		
	13.3	Line	50.1	-36.8	AVG	AVG (0.10s)		
0.305 0.239	14.2	Line	52.1	-37.9	AVG	AVG (0.10s)		

End of Report

This page is intentionally blank and marks the last page of this test report.