SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AAXF-KF06A Report No.: LCS180409001AEA

FCC TEST REPORT

For

Shenzhen HomeLead Electronics Co., Ltd.

key finder

Test Model: KF06A

Additional Model No.:

KF05A,KF05B,KF05C,KF06B,KF06C,KF04C,KF04D,ES-KF02,ES-KF03

Prepared for Address	:	Shenzhen HomeLead Electronics Co., Ltd. 6/F Building A, Fengtian Innovation and Technology Industrial Park, Dahe Road, Longhua, Shenzhen, China
Prepared by		Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	April 09, 2018
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	April 11, 2018~ May 22, 2018
Date of Report	:	May 16, 2018

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 28

FC	FCC/IC TEST REPORT CC CFR 47 PART 15C(15.231)
Report Reference No	LCS180409001AEA
Date of Issue	May 22, 2018
Testing Laboratory Name	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure :	Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □
Applicant's Name	Shenzhen HomeLead Electronics Co., Ltd.
Address	6/F Building A, Fengtian Innovation and Technology Industrial Park, Dahe Road, Longhua, Shenzhen, China
Test Specification	
Standard	FCC CFR 47 PART 15 Subpart C
Test Report Form No	LCSEMC-1.0
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	Dated 2011-03
This publication may be reprodu as the Shenzhen LCS Complian owner and source of the materia no responsibility for and will not	esting Laboratory Ltd. All rights reserved. ced in whole or in part for non-commercial purposes as long ce Testing Laboratory Ltd. is acknowledged as copyright al. Shenzhen LCS Compliance Testing Laboratory Ltd. takes assume liability for damages resulting from the reader's material due to its placement and context.
Test Item Description	key finder
Trade Mark	vingnut
Test Model	KF06A
Ratings	DC 3V by battery(210mAh)
Result	Positive

Compiled by:

Supervised by:

Approved by:

Peter Xiao

Peter Xiao / File administrators

Fick Su

Grino Linog

Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 28

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID:2AAXF-KF06A

FCC/IC TEST REPORT

Test Report No. : LCS180409001AEA

<u>May 22, 2018</u> Date of issue

Test Mode	: KF06A
EUT	: key finder
Applicant	: Shenzhen HomeLead Electronics Co., Ltd.
Address	6/F Building A, Fengtian Innovation and Technology Industrial Park, Dahe Road, Longhua, Shenzhen, China
Telephone	:/
Fax	: /
Manufacturer	: Shenzhen HomeLead Electronics Co., Ltd.
Address	6/F Building A, Fengtian Innovation and Technology Industrial Park, Dahe Road, Longhua, Shenzhen, China
Telephone	: /
Fax	: /
Factory	: Shenzhen HomeLead Electronics Co., Ltd.
Address	6/F Building A, Fengtian Innovation and Technology
	Industrial Park, Dahe Road, Longhua, Shenzhen, China
Telephone	-
Fax	

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AAXF-KF06A Report No.: LCS180409001AEA

Revision History

Revision	Issue Date	Revisions	Revised By
000	May 22, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 28

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AAXF-KF06A Report No.: LCS180409001AEA

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. OBJECTIVE 1.3. ENVIRONMENTAL CONDITIONS	
1.4. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.5. EXTERNAL I/O PORT	
1.6. DESCRIPTION OF TEST FACILITY	
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. TEST METHODOLOGY	9
2.1. EUT CONFIGURATION	9
2.2. EUT Exercise	
2.3. GENERAL TEST PROCEDURES	
2.4. INSTRUMENT CALIBRATION	
2.5. TEST MODE	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	
5. TEST ITEMS AND RESULTS	
5.1. TRANSMISSION CEASE TIME	
5.2. TRANSMITTER FIELD STRENGTH OF EMISSIONS	
5.3. 20DB BANDWIDTH EMISSIONS	
5.4. DUTY CYCLE	
5.5. ANTENNA REQUIREMENT	
6. LIST OF MEASURING EQUIPMENTS	28

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AAXF-KF06A Report No.: LCS180409001AEA

1. GENERAL INFORMATION

1.1. Description of Device (EUT)			
EUT	:	key finder	
Test Model	:	KF06A	
List Model No.	:	KF05A,KF05B,KF05C,KF06B,KF06C,KF04C,KF04D,ES -KF02,ES-KF03	
Model Declaration	:	PCB board, structure and internal of these model(s) are the same, So no additional models were tested	
Power Supply	:	DC 3V by battery(210mAh)	
Hardware Version	:	VER1.1	
Software Version	:	VER1.0	
Transmit Frequency	:	433.92MHz	
Number of Channels	:	1	
Modulation Type	:	ASK	
Antenna Description	:	Internal Antenna, 2.15dBi(Max.)	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 6 of 28

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators and Industry CanadaRSS-210 for Low Power, License-Exempt Radio Communication Devices. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules and Industry Canada Radio Standards Procedure RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106kPa

1.4. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.5. External I/O Port

I/O Port Description	Quantity	Cable

Report No.: LCS180409001AEA

1.6. Description of Test Facility

FCC Registration Number. is 254912. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001 NVLAP Registration Code is 600167-0

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
Conduction	:	150kHz~30MHz	1.63dB	(1)
Uncertainty				
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C and RSS-210.

2.3. General Test Procedures

2.3.1 Conducted Emissions(N/A)

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of Y axis was reported.

A new battery supplied DC 3.0V power to the EUT for testing.

The EUT transmits signal as soon as it is powered on, and recorded the result in this report.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AAXF-KF06A

Report No.: LCS180409001AEA

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AAXF-KF06A Report No.: LCS180409001AEA

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C & RSS-210			
FCC Rules	FCC Rules Description of Test		
§15.203	Antenna Requirement	Compliant	
§15.205	Restricted Bands Of Operation	Compliant	
§15.209	Radiated Emission Limits, General Requirements.	Compliant	
§15.231 (b)	Field Strength Of Fundamental And Harmonics	Compliant	
§15.231 (c)	20dB Bandwidth	Compliant	
§15.231 (a)(1)	Transmission Cease Time	Compliant	
§15.231	Duty cycle Factor	Compliant	
§15.207	Conducted Emissions	N/A	

5. TEST ITEMS AND RESULTS

5.1. Transmission Cease Time

FCC 15.231 (a)

5.1.1. Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. The antenna was all opened.

5.1.3. Test Results

Temperature	23.6 ℃	Humidity	52.4%
Test Engineer	Ryan Hu		

Frequency (MHz)	Transmission cease Time (s)	Limit: not more than 5 seconds of being released (s)	Conclusion
433.92	3.144	5	PASS

										Analyzer - S		eysigin
Marker	May 10, 2018		ALIGN AUTO	A.r.a. T.r.a	INT	SENSE				50	RF	-
Select Mark	E U 2 3 4 5 6 E W W W W W T P N N N N N	TYP	: Log-Pwr	Avgiyp		Trig: Free R Atten: 10 d	:Wide ↔ in:Low		JS	0000	3 ∆ 5	rker
	5.000 s).58 dB	ΔMkr3 -50							dBm	0.00	, Re	IB/di
Nor												, [
								2~				
				_				-				,
D												
	·	3∆4		_								
Fixe	ndad agail ann an an an An	surger and the second		وريهوريا ا					ممحموريا	- Conditioned	the second second)
	pan 0 Hz 1001 pts)	8.000 s (1	Sweep			00 kHz	#VBW		/IHZ		433.92 / 100 k	
	N VALUE	FUNCTIO	ICTION WIDTH	TION FU		Y 0.37 di	44 s (Δ)	3.	Х	<u>(Δ)</u>		Δ2
Properti						26.51 dBm -50.58 dE 26.51 dBm	72 s 00 s (Δ) 72 s	5.		<u>(Δ)</u>	t t t	F <u>A4</u> F
M 1												
1						m						
			STATUS									

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 13 of 28

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

FCC §15.231 (b)

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of spurious
frequency	Fundamental	emissions
(MHz)	(microvolt/meter)	(microvolt/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,370	125 to375
174-260	3,750	375
260-470	3,750 to12, 500	375 to 1,250
Above 470	12,500	1,250

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(1)
13.36 – 13.41	322 - 335.4		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

5.2.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 1.5 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

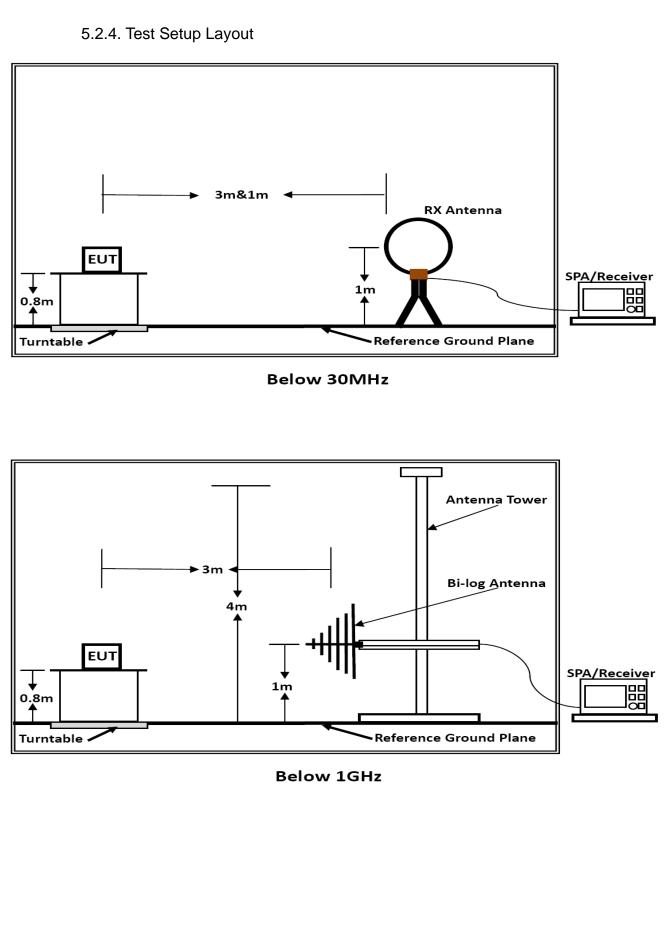
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

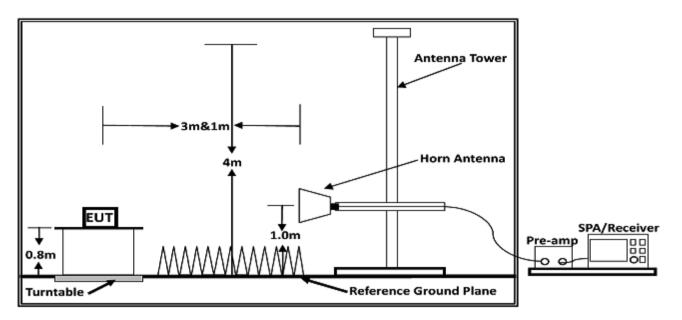
- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:


--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.


--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

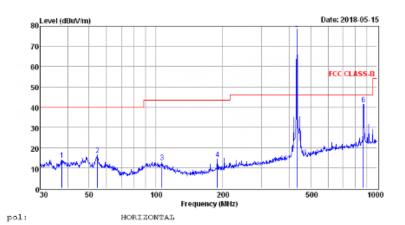
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 19 of 28 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AAXF-KF06A Report No.: LCS180409001AEA

Above 1GHz

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Results of Radiated Emissions (9kHz~30MHz)


The low frequency, which started from 9KHz to 30MHz, was pre-scan and the result was 20dB lower than the limit line per 15.31(o) was not reported.

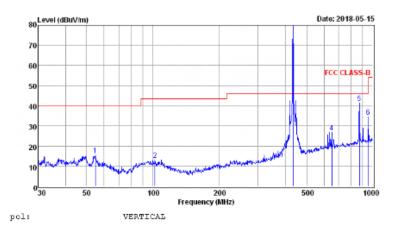
Note: Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	23.6 ℃	Humidity	52.4%
Test Engineer	Ryan Hu	Pol	Horizontal
Test Mode	Тх		

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBu⊽/m	dB	
1 2 3 4	37.68 54.45 106.76	0.65 2.84 -0.32 2.78	0.38 0.46 0.68 0.86	12.99 13.05 12.54 10.54	14.02 16.35 12.90	40.00 40.00 43.50 42.50	-25.98 -23.65 -30.60 -29.32	QP QP QP
4 5 6	189.74 <mark>434.07</mark> 866.09	61.83 18.69	1.18 1.87	10.54 15.53 20.74	14.18 78.54 41.30	43.50 <mark>46.00</mark> 46.00	-29.32 32.54 -4.70	QP Peak Peak


Note: 1. Measured= Reading + Antenna Factor + Cable Loss 2. The emission that ate 20db blow the offficial limit are not reported

	Fundamental and Harmonics Average Result						
Frequenc y (MHz)	Peak Level (dBµV/m)	AV Factor(dBµV/m) (see Section 5.4)	Average Level (dBµV/m)	Limit(dBµV/ m) (average)	Margin(d B)	Conclusi on	
434.07	78.54	-8.80	69.74	80.82	-11.08	PASS	
866.09	41.30	-8.80	32.5	60.82	-28.32	PASS	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AAXF-KF06A

Report No.: LCS180409001AEA

Temperature	23.6 ℃	Humidity	52.4%
Test Engineer	Ryan Hu	Pol	Vertical
Test Mode	Тх		

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
3 4 5	54.64 102.00 434.07 651.94 869.13 955.44	1.83 -0.59 68.33 6.69 18.73 11.25	0.46 0.60 1.18 1.58 1.87 1.89	13.04 12.98 15.53 18.64 20.77 21.45	15.33 12.99 85.04 26.91 41.37 34.59	40.00 43.50 46.00 46.00 46.00 46.00	-24.67 -30.51 39.04 -19.09 -4.63 -11.41	QP QP Peak QP Peak QP

Note: 1. Measured= Reading + Antenna Pactor + Cable Loss 2. The emission that ate 20db blow the offficial limit are not reported

		Fundame	ntal and Harm	nonics Averag	e Result	
Frequenc y (MHz)	Peak Level (dBµV/m)	AV Factor(dBµV/m) (see Section 5.4)	Average Level (dBµV/m)	Limit(dBµV/ m) (average)	Margin(d B)	Conclusi on
434.07	85.04	-8.80	76.24	80.82	-4.58	PASS
869.13	41.37	-8.80	32.57	60.82	-28.25	PASS

5.2.8. Results of Radiated Emissions (1-5GHz)

Temperature	23.6 ℃	Humidity	52.4%
Test Engineer	Ryan Hu	Test Mode	Тх

Peak Value:				
Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin(dB)	Polarization
1300.72	46.45	74	-27.55	Horizontal
1735.63	48.96	74	-25.04	Horizontal
2168.89	44.16	74	-29.84	Horizontal
1300.41	40.88	74	-33.12	Vertical
1735.97	40.29	74	-33.71	Vertical
2168.52	43.14	74	-30.86	Vertical

Average Va	alue:					
Frequency (MHz)	Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Margin(dB)	Polarization
1300.72	46.45	-8.80	37.65	54	-16.35	Horizontal
1735.63	48.96	-8.80	40.16	54	-13.84	Horizontal
2168.89	44.16	-8.80	35.36	54	-18.64	Horizontal
1300.41	40.88	-8.80	32.08	54	-21.92	Vertical
1735.97	40.29	-8.80	31.49	54	-22.51	Vertical
2168.52	43.14	-8.80	34.34	54	-19.66	Vertical

1. Measuring frequencies from 9k~10th harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.

2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.

3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.3. 20dB Bandwidth Emissions

FCC 15.231 (c)

5.3.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

5.3.3. Test Data

Temperature	23.6 ℃	Humidity	52.4%
Test Engineer	Ryan Hu	Test Mode	Тх

Transmit Frequency	Limit	20dB Bandwidth	Result					
(MHz)	(kHz)	(kHz)	Nesult					
433.92	1084.85	373.5	PASS					
Maximum allowed bandwidth:	Ø0.25% of the centre operating frequency							
Maximum anowed bandwidth.	0.5% of the centre operating frequency							
RBW:	⊠10kHz	other kHz						
VBW:	⊠30kHz							

Keysight Spectrum Analyzer - Occupied BW					
Ref Value 0.00 dBm	Center	SENSE:INT Freq: 433.940000 MHz free Run Avg Hol	Rad	19:32 PM May 16, 2018 io Std: None	Amptd/Y Scale
		: 10 dB		io Device: BTS	Ref Value 0.00 dBm
15 dB/div Ref 0.00 dBm	<u>.</u>				
-15.0		1			Attenuation
-30.0	Roman and Street	of burner with marries	ma		[10 dB]
-45.0	www.			w ^{uluver} was also and	
-75.0					Scale/Div 15.0 dB
-90.0					
-105					
-135					
Center 433.9 MHz				Span 3 MHz	
#Res BW 10 kHz	#	VBW 30 kHz	Sw	eep 28.73 ms	Presel Center
Occupied Bandwidth	ı	Total Power	-8.80 dBi	m	
1.5	5591 MHz				Presel Adjust
Transmit Freq Error	113.25 kHz	OBW Power	99.00	%	0 Hz
x dB Bandwidth	373.5 kHz	x dB	-20.00 d	в	
					More 1 of 2
MSG			I STATUS		r

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 24 of 28

5.4. Duty cycle

5.4.1. Limit

No dedicated limit specified in the Rules.

5.4.2. Test Procedure

5.4.2.1. Place the EUT on the table and set it in transmitting mode.

5.4.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

5.4.2.3. Set centre frequency of spectrum analyzer=operating frequency.

5.4.2.4. Set the spectrum analyzer as RBW=100kHz, VBW=100KHz, Span=0Hz, Adjust Sweep=100ms to obtain the "worst-case" pulse on time

5.4.2.5. Repeat above procedures until all frequency measured was complete.

5.4.3. Test Data

Ton = 1.05*3+3.1+0.3*6 (ms)=8.05 (ms) Tp = 22.2(ms) The duty cycle=8.05/22.2= 36.3% Average Correction Factory = 20log (Ton/Tp) =20log 0.363 = -8.80dB

Note: The signal bandwidth was measured and less then 100kHz RBW so PDCF factor is not required to correct the fundamental signal peak result.

🚺 Key	sight	Spectr		nalyzer - Sv	wept	SA																									×
<mark>ıxı</mark> Marl	ker	5Δ	RF	50 s 50 s		AC S					٦.			ENSE	Г		Av	у Тур	IGN A			10:2	TF	RAC	E 1	23	, 201 4 5	6		Marker	
								NO: V Gain:						e R 0 di										DE	тР	NN	NN	N	Sel	ect Marke	r,
10 dE	3/div	,	Ref	0.00 c	1Br	n														1	ΔN	/lk	r5	3 -(00).2	.0 21	μs dE			ŧ	5
Log -10.0 -20.0				Δ 1Δ2					.3∆	.4			•5	Δ6	 															Norm	nal
-30.0 -40.0 -50.0			X	\rightarrow			X4		╢		1			-										-						Del	lta
-60.0 -70.0 -80.0 -90.0		Marunan	<u>, n.</u>	rsu-sulf	v) Yur ¹ ya	4		_r ry N		- 		1.64	Лe	hugad	VI.N	ų.	-dyp	Kaqd∕a	M _M		n,	j j	4	¥ 4		h hr			Fixed	d⊳
Res	BW	10	0 kl	0000 N Hz					#V	в٧	1		kHz	z					wee	<u> </u>				s ('	ioc)1) Hz pts			c	Dff
$\begin{array}{c c} R & MOL \\ \hline 1 & \Delta 2 \\ \hline 2 & F \\ \hline 3 & \Delta 4 \\ \hline 4 & F \\ \hline 5 & \Delta 6 \\ \hline 3 & F \\ \hline \end{array}$		t t t	(Δ (Δ)		43	1.050 1.950 3.100 3.30 300.0) ms) ms) ms 0 µs	(Δ) (Δ))	-34 -34	-0.0 .64 -0.6 .61 -0.2	2 d dBr 1 d	n B n B	UNCT	IION		FUNC	N WID			FUN	СТК	DN V	ALU					Properties	5►
5 Δ6 5 F 7 8 9 0																														Mo 1 of	
MSG													III						1 00	STATU	s						F				

Pulse width

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 28

Report No.: LCS180409001AEA

🚺 Keysight Spectrum Analyzer - Swept SA					
Marker 3 Δ 25.4000 ms	SENSI	Avg Type:	Log-Pwr TRAC	M May 22, 2018 E 1 2 3 4 5 6	Marker
PN	D: Wide ↔ Trig: Free F ain:Low Atten: 10 d		DI	PE WWWWWW ET P N N N N N	Select Marker
10 dB/div Ref 0.00 dBm			ΔMkr3 2	5.40 ms 0.07 dB	3
-10.0 -20.0					Norma
	×a				Delta
-70.0 -80.0 -90.0	Les here were	ul M ^{art} maring landary metry	h, laporal, and the spice along a	17M- U-VIVE	Fixed▷
Center 433.920000 MHz Res BW 100 kHz	#VBW 100 kHz		Sweep 100.0 ms (Off
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns (Δ) -0.07 dB			E	Properties►
	m				More 1 of 2
MSG			STATUS	E	

Numbers of pulse during 22.2ms(11)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 28

5.5. Antenna Requirement

FCC 15.203

5.5.1. Standard Applicable

According to § 15.203 & RSS-Gen, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.5.2. Result

Compliant.

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

6. LIST OF MEASURING EQUIPMENTS

2 Power Sensor R&S NRV-Z81 100458 2017-06-17 2018-06-16 3 Power Sensor R&S NRV-Z32 10057 2017-06-17 2018-06-16 4 SPECTRUM Agilent E4407B MY41440754 2017-06-17 2018-06-16 5 MXA Signal Agilent Power Sensor R&S NY41440754 2017-06-17 2018-06-16 5 MXA Signal Agilent N9020A MY49100040 2017-06-17 2018-06-16 5 MXA Signal Agilent N9020A MY49100040 2017-06-17 2018-06-16 6 SPECTRUM R&S FSP 100503 2017-06-17 2018-06-16 7 3m Semi Anechoic SIDT FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 8 Positioning MF MF-7082 / 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-22 10	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3 Power Sensor R&S NRV-Z32 10057 2017-06-17 2018-06-16 ESA-E SERIES Agilent E4407B MY41440754 2017-01-17 2018-06-16 MAA Signal Agilent N9020A MY49100040 2017-06-17 2018-06-16 MAX Signal Agilent N9020A MY49100040 2017-06-17 2018-06-16 MANLYZER R&S FSP 100503 2017-06-17 2018-06-16 MANLYZER R&S FSP 100503 2017-06-17 2018-06-16 MANLYZER R&S FSP 03CH03-HY 2017-06-17 2018-06-16 R SIDT SAC-3M 03CH03-HY 2017-06-17 2018-06-16 B Positioning MF MF-7082 / 2017-06-17 2018-06-16 EIN Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 EIN Test Software QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-06-12 11 AMPLIFIER QuieTek	1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
ESA-E SERIES SPECTRUM ANALYZER Agilent E4407B MY41440754 2017-11-17 2018-11-16 5 MXA Signal Analyzer Agilent N9020A MY49100040 2017-06-17 2018-06-16 3 SPECTRUM Analyzer Agilent N9020A MY49100040 2017-06-17 2018-06-16 3 SPECTRUM ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 3 SPECTRUM ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 3 Smemi Anechoic Chamber SIDT FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 4 Desitioning Controller MF MF-7082 / 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 11 AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-06-22 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22	2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
44 SPECTRUM ANALYZER Agilent E4407B MY41440754 2017-11-17 2018-11-16 5 MXA Signal Analyzer Agilent N9020A MY49100040 2017-06-17 2018-06-16 5 SPECTRUM ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 6 SPECTRUM ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 7 3m Semi Anechoic Chamber SIDT FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 3 Positioning Controller MF MF-7082 / 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 11 AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-06-22 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-17 2018-06-22 <	3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
Analyzer Agilent N9020A MY49100040 2017-06-17 2018-06-16 SPECTRUM ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 3 Serii Anechoic Chamber SIDT FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 3 Positioning Controller MF MF-7082 / 2017-06-17 2018-06-16 3 Positioning Controller MF MF-7082 / 2017-06-17 2018-06-16 3 Positioning Controller MF QIX E3 N/A 2017-06-17 2018-06-16 4 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-12 11 AMPLIFIER QuieTek QTK-A255G CHM10809065 2017-11-17 2018-06-22 13 By-log Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 14 Horn Antenna	4	SPECTRUM	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
ANALYZER R&S FSP 100503 2017-06-17 2018-06-16 3 Semi Anechoic Chamber SIDT FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 3 Positioning Controller MF MF-7082 / 2017-06-17 2018-06-16 9 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 11 AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-06-12 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Preamplifier SCHWARZBECK BBH 9170 791 2017-09-21 2018-06-16 16 Broadband	5	U U	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
7 Chamber FRANKONIA SAC-3M 03CH03-HY 2017-06-17 2018-06-16 3 Positioning Controller MF MF-7082 / 2017-06-17 2018-06-16 3 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 11 AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-06-22 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBH 9170 791 2017-09-21 2018-09-20 16 Breadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-06-17 2018-06-16 <td< td=""><td>6</td><td></td><td>R&S</td><td>FSP</td><td>100503</td><td>2017-06-17</td><td>2018-06-16</td></td<>	6		R&S	FSP	100503	2017-06-17	2018-06-16
3 Controller MF MF-7082 / 2017-06-17 2018-06-16 9 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 10 EMI Test Software AUDIX E3 N/A 2017-06-17 2018-06-16 11 AMPLIFIER Quie Tek QTK-A2525G CHM10809065 2017-11-17 2018-06-22 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-06-17 2018-06-16 18 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 19	7			SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10 EMI Test Receiver R&S ESR 7 101181 2017-06-17 2018-06-16 11 AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-11-16 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16	8	•	MF	MF-7082	/	2017-06-17	2018-06-16
AMPLIFIER QuieTek QTK-A2525G CHM10809065 2017-11-17 2018-11-16 12 Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna EMCO 3115 6741 2017-09-21 2018-06-22 16 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-06-17 2018-06-16 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20<	9	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
Active Loop Antenna SCHWARZBECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16	10	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16
12 Antenna SCHWAR2BECK FMZB 1519B 00005 2017-06-23 2018-06-22 13 By-log Antenna SCHWARZBECK VULB9163 9163-470 2018-05-02 2019-05-01 14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-06-17 2018-06-16 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-R1GH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2017-06-17 2018-06-16	11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
14 Horn Antenna EMCO 3115 6741 2017-06-23 2018-06-22 15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 </td <td>12</td> <td>•</td> <td>SCHWARZBECK</td> <td>FMZB 1519B</td> <td>00005</td> <td>2017-06-23</td> <td>2018-06-22</td>	12	•	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI JS Tonscend Corporation JS1120-3 / N/A N/A </td <td>13</td> <td>By-log Antenna</td> <td>SCHWARZBECK</td> <td>VULB9163</td> <td>9163-470</td> <td>2018-05-02</td> <td>2019-05-01</td>	13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-02	2019-05-01
15 Antenna SCHWARZBECK BBHA 9170 791 2017-09-21 2018-09-20 16 Broadband Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A <t< td=""><td>14</td><td>Horn Antenna</td><td>EMCO</td><td>3115</td><td>6741</td><td>2017-06-23</td><td>2018-06-22</td></t<>	14	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
16 Preamplifier SCHWARZBECK BBV 9719 9719-025 2017-09-21 2018-09-20 17 RF Cable-R03m Jye Bao RG142 CB021 2017-06-17 2018-06-16 18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	15		SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20
18 RF Cable-HIGH SUHNER SUCOFLEX 106 03CH03-HY 2017-06-17 2018-06-16 19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	16		SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20
19 TEST RECEIVER R&S ESCI 101142 2017-06-17 2018-06-16 20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	17	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
20 RF Cable-CON UTIFLEX 3102-26886-4 CB049 2017-06-17 2018-06-16 21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
21 10dB Attenuator SCHWARZBECK MTS-IMP136 261115-001-003 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	19	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
21 10dB Attenuator SCHWARZBECK MTS-IMP136 2 2017-06-17 2018-06-16 22 Artificial Mains R&S ENV216 101288 2017-06-17 2018-06-16 23 RF Control Unit JS Tonscend Corporation JS0806-2 178060073 2017-10-28 2018-10-27 24 JS1120-3 BT/WIFI Test Software JS Tonscend Corporation JS1120-3 / N/A N/A	20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
23RF Control UnitJS Tonscend CorporationJS0806-21780600732017-10-282018-10-2724JS1120-3 BT/WIFI Test SoftwareJS Tonscend CorporationJS1120-3/N/AN/A	21	10dB Attenuator	SCHWARZBECK	MTS-IMP136		2017-06-17	2018-06-16
23RF Control Unit CorporationJS0806-21780600732017-10-282018-10-2724JS1120-3 BT/WIFI Test SoftwareJS Tonscend CorporationJS1120-3/N/AN/A	22	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16
24 Test Software Corporation JS1120-3 / N/A N/A	23	RF Control Unit		JS0806-2	178060073	2017-10-28	2018-10-27
Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST COLTD.	24			JS1120-3	/	N/A	N/A
· · · · · · · · · · · · · · · · · · ·	Note:	All equipment is call	ibrated through GU	ANGZHOU LISAI	CALIBRATION A	ND TEST CO	.,LTD.

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 28 of 28