

| Date : 2018-03-02<br>No. : HM18010011 | 10011                             | Page 1 of 62                                                                                                                                                                                  |
|---------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant:                            |                                   | ng Electron Technology Co., Ltd<br>ilin Town, Zhongkai Hi-tech Development Zone,<br>angdong, China                                                                                            |
| Manufacturer:                         |                                   | ng Electron Technology Co., Ltd<br>ilin Town, Zhongkai Hi-tech Development Zone,<br>angdong, China                                                                                            |
| Description of Sample(s):             | Product:                          | Bluetooth Speaker                                                                                                                                                                             |
|                                       | Brand Name:                       | Sakar                                                                                                                                                                                         |
|                                       | Model Number:                     | SP2-17716                                                                                                                                                                                     |
|                                       | FCC ID:                           | 2AAWNSP217716BTS                                                                                                                                                                              |
| Date Sample(s) Received:              | 2018-01-03                        |                                                                                                                                                                                               |
| Date Tested:                          | 2018-02-07 to 201                 | 18-02-22                                                                                                                                                                                      |
| Investigation Requested:              | with FCC 47 CF                    | Iagnetic Interference measurement in accordanceR [Codes of Federal Regulations] Part 15: 2017: 2013 for FCC Certification.                                                                    |
| Conclusion(s):                        | Federal Commu<br>Regulations Part | product <u>COMPLIED</u> with the requirements of<br>unications Commission [FCC] Rules and<br>15. The tests were performed in accordance with<br>scribed above and on Section 2.2 in this Test |
| Remark(s):                            | Bluetooth FHSS (                  | GFSK/ π/4-DQPSK)                                                                                                                                                                              |

CHEUNG Chi, Kennedigo CHEUNG Chi, Kennedigo CHEUNG Chi, Kennedigo Chi, Kennedigo Chi, Kennedigo Chi, Kennedigo Chever, Authorized Signatory ElectroMagnetic Compatibility Department For and on behalf of The Hong Kong Standards and Testing Centre Ltd.



### Date : 2018-03-02 No. : HM18010011

Page 2 of 62

| CONT       | 'ENT:                                                      |                              |
|------------|------------------------------------------------------------|------------------------------|
|            | Cover<br>Content                                           | Page 1 of 62<br>Page 2 of 62 |
| <u>1.0</u> | <u>General Details</u>                                     |                              |
| 1.1        | Test Laboratory                                            | Page 3 of 62                 |
| 1.2        | Equipment Under Test [EUT]<br>Description of EUT operation | Page 3 of 62                 |
| 1.3        | Date of Order                                              | Page 3 of 62                 |
| 1.4        | Submitted Sample                                           | Page 3 of 62                 |
| 1.5        | Test Duration                                              | Page 3 of 62                 |
| 1.6        | Country of Origin                                          | Page 4 of 62                 |
| 1.7        | Antenna Details                                            | Page 4 of 62                 |
| 1.8        | Channel List                                               | Page 4 of 62                 |
| <u>2.0</u> | Technical Details                                          |                              |
| 2.1        | Investigations Requested                                   | Page 5 of 62                 |
| 2.2        | Test Standards and Results Summary                         | Page 5 of 62                 |
| 2.3        | Table for Test Modes                                       | Page 6 of 62                 |
| <u>3.0</u> | Test Results                                               |                              |
| 3.1        | Emission                                                   | Page 7 - 58 of 62            |
|            | Appendix A                                                 |                              |
|            | List of Measurement Equipment                              | Page 59 of 62                |
|            | Appendix B                                                 |                              |
|            | Photographs                                                | Page 60 - 62 of 62           |
|            |                                                            |                              |



## Date : 2018-03-02

## No. : HM18010011

### **<u>1.0</u>** General Details

#### 1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd. EMC Laboratory 10 Dai Wang Street, Taipo Industrial Estate

Telephone:(852) 26661888Fax:(852) 26644353

#### 1.2 Equipment Under Test [EUT] Description of Sample(s)

| Product:      | Bluetooth Speaker                                                                                          |
|---------------|------------------------------------------------------------------------------------------------------------|
| Manufacturer: | Huizhou Qing Teng Electron Technology Co., Ltd<br>He-Bei Village, Lilin Town, Zhongkai Hi-tech Development |
|               | Zone, Huizhou City, Guangdong, China                                                                       |
| Brand Name:   | Sakar                                                                                                      |
| Model Number: | SP2-17716                                                                                                  |
| Rating:       | Input: Li-ion Rechargeable battery x1: 3.7Vd.c / 110Va.c,                                                  |
|               | 5Vd.c (USB Micro B), (Adaptor was not provided by                                                          |
|               | manufacturer, universal adaptor was used for tests. Adaptor                                                |
|               | info: Model no., SP-12-UK, Input: 100-240Va.c, Output:                                                     |
|               | 5V, 14.4VA)                                                                                                |

### 1.2.1 Description of EUT Operation

The Equipment Under Test (EUT) is Bluetooth Speaker. The transmission signal is digital modulated with channel frequency range 2402-2480MHz. The R.F. signal was modulated by IC; the type of modulation used was frequency hopping spread spectrum Modulation.

## 1.3 Date of Order

2018-01-03

### **1.4** Submitted Sample(s):

2 Samples

### 1.5 Test Duration

2018-02-07 to 2018-02-22

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 3 of 62



# Date : 2018-03-02

No. : HM18010011

Page 4 of 62

### **1.6** Country of Origin

China

### 1.7 Antenna Details

Antenna Type (Bluetooth):Circuit board printed meander line antennaAntenna Gain (Bluetooth):-0.58dBi

## 1.8 Channel List

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 0       | 2402            | 42      | 2444            |
| 1       | 2403            | 43      | 2445            |
| 2       | 2404            | 44      | 2446            |
| 3       | 2405            | 45      | 2447            |
| 4       | 2406            | 46      | 2448            |
| 5       | 2407            | 47      | 2449            |
| 6       | 2408            | 48      | 2450            |
| 7       | 2409            | •••     |                 |
| 8       | 2410            | 67      | 2469            |
| 9       | 2411            | 68      | 2470            |
|         |                 | 69      | 2471            |
| 33      | 2435            | 70      | 2472            |
| 34      | 2436            | 71      | 2473            |
| 35      | 2437            | 72      | 2474            |
| 36      | 2438            | 73      | 2475            |
| 37      | 2439            | 74      | 2476            |
| 38      | 2440            | 75      | 2477            |
| 39      | 2441            | 76      | 2478            |
| 40      | 2442            | 77      | 2479            |
| 41      | 2443            | 78      | 2480            |



## Date : 2018-03-02

No. : HM18010011

### 2.0 <u>Technical Details</u>

## 2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2017 Regulations. ANSI C63.10:2013 for FCC Certification.

### 2.2 Test Standards and Results Summary Tables

| EMISSION (BLUETOOTH)<br>Results Summary |                                |                                         |          |             |      |             |
|-----------------------------------------|--------------------------------|-----------------------------------------|----------|-------------|------|-------------|
| Test Condition                          | Test Requirement               | irement Test Method Class / Test Result |          |             |      |             |
|                                         |                                |                                         | Severity | Pass        | Fail | N/A         |
| Maximum Peak Conducted<br>Output Power  | FCC 47CFR<br>15.247(b)(1)      | ANSI C63.10:2013                        | N/A      | $\boxtimes$ |      |             |
| Radiated Spurious<br>Emissions          | FCC 47CFR 15.209               | ANSI C63.10:2013                        | N/A      | $\boxtimes$ |      |             |
| AC Mains Conducted<br>Emissions         | FCC 47CFR 15.207               | ANSI C63.10:2013                        | N/A      |             |      |             |
| Number of Hopping<br>Frequency          | FCC 47CFR 15.247<br>(b)(1)     | ANSI C63.10:2013                        | N/A      |             |      |             |
| 20dB Bandwidth                          | FCC 47CFR<br>15.247(a)(2)      | ANSI C63.10: 2013                       | N/A      | $\boxtimes$ |      |             |
| Hopping Channel<br>Separation           | FCC 47CFR<br>15.247(a)(1)      | ANSI C63.10: 2013                       | N/A      | $\boxtimes$ |      |             |
| Band-edge measurement<br>(Radiated)     | FCC 47CFR 15.247(d)            | ANSI C63.10: 2013                       | N/A      | $\boxtimes$ |      |             |
| Pseudorandom Hopping<br>Algorithm       | FCC 47CFR<br>15.247(a)(1)      | N/A                                     | N/A      | $\boxtimes$ |      |             |
| Time of Occupancy<br>(Dwell Time)       | FCC 47CFR<br>15.247(a)(1)(iii) | ANSI C63.10: 2013                       | N/A      | $\boxtimes$ |      |             |
| Antenna requirement                     | FCC 47CFR 15.203               | N/A                                     | N/A      | $\boxtimes$ |      |             |
| RF Exposure                             | FCC 47CFR 15.247(i)            | N/A                                     | N/A      |             |      | $\boxtimes$ |

Note: N/A – Not Applicable

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 5 of 62



Page 6 of 62

## Date : 2018-03-02 No. : HM18010011

## 2.3 Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate in the table below is the worst case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

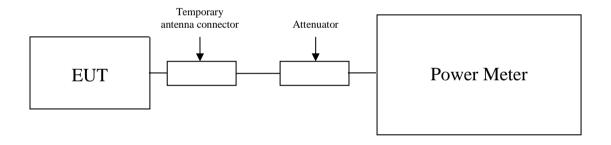
| Test Items                          |                             |  |  |
|-------------------------------------|-----------------------------|--|--|
| Maximum Peak Conducted Output Power | GFSK / π/4-DQPSK            |  |  |
| Hopping Channel Separation          | GFSK / π/4-DQPSK            |  |  |
| Number of Hopping Frequency         | GFSK / π/4-DQPSK            |  |  |
| Time of Occupancy(Dwell Time)       | π/4-DQPSK (DH1 / DH3 / DH5) |  |  |
| Radiated Spurious Emissions         | GFSK / π/4-DQPSK            |  |  |



## Date : 2018-03-02

No. : HM18010011

- <u>3.0</u> <u>Test Results</u>
- 3.1 Emission


### 3.1.1 Maximum Peak Conducted Output Power

| Test Requirement:  | FCC 47CFR 15.247(b)(2)  |
|--------------------|-------------------------|
| Test Method:       | ANSI C63.10:2013        |
| Test Date:         | 2018-02-22              |
| Mode of Operation: | Tx mode :GFSK/π/4-DQPSK |

## **Test Method:**

The RF output of the EUT was connected to the Power Meter. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in dBm.

### **Test Setup:**



The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 7 of 62



### Date : 2018-03-02 No. : HM18010011

Limits for Maximum Peak Conducted Output Power [FCC 47CFR 15.247]:

#### 2400-2483.5 MHz band:

The maximum peak output power shall not exceeded the following limits: For frequency hopping systems employing at least 75 hopping channels: 1 Watt For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts For Digital Transmission systems in 2400-2483.5 MHz Band: 1 Watt

#### **Results of Bluetooth Communication mode (GFSK) (Fundamental Power): Pass** Maximum conducted output power

| Channel | Frequency(MHz) | Output Power(Watt) |
|---------|----------------|--------------------|
| 0       | 2402           | 0.000178           |
| 39      | 2441           | 0.000186           |
| 78      | 2480           | 0.000231           |

Results of Bluetooth Communication mode ( $\pi$ /4-DQPSK) (Fundamental Power): Pass Maximum conducted output power

| Channel | Frequency(MHz) | Output Power(Watt) |
|---------|----------------|--------------------|
| 0       | 2402           | 0.000134           |
| 39      | 2441           | 0.000156           |
| 78      | 2480           | 0.000201           |

Calculated measurement uncertainty

 30MHz to 1GHz
 1.7dB

 1GHz to 18GHz
 1.7dB

Remark:

1. All test data for each data rate were verified, but only the worst case was reported.

:

2. The EUT is programmed to transmit signals continuously for all testing.

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 8 of 62

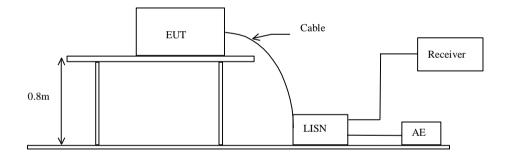


Date : 2018-03-02

Page 9 of 62

No. : HM18010011

3.1.2 Conducted Emissions (0.15MHz to 30MHz)


| Test Requirement: | FCC 47CFR 15.207 |
|-------------------|------------------|
| Test Method:      | ANSI C63.10:2013 |
| Test Date:        | 2018-02-07       |
| Test Method:      |                  |

Mode of Operation: Tx mode

### **Test Method:**

The test was performed in accordance with ANSI C63.10:2013, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

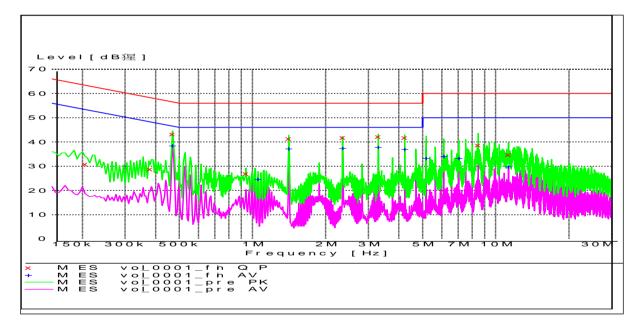
### **Test Setup:**





Page 10 of 62

Date : 2018-03-02 No. : HM18010011


Limit for Conducted Emissions (FCC 47CFR 15.207):

| Frequency Range<br>[MHz] | Quasi-Peak Limits<br>[dBµV] | Average<br>[dBµV] |
|--------------------------|-----------------------------|-------------------|
| 0.15-0.5                 | 66 to 56*                   | 56 to 46*         |
| 0.5-5.0                  | 56                          | 46                |
| 5.0-30.0                 | 60                          | 50                |

\* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

## **Results of Tx mode – Live: PASS**





### Date : 2018-03-02 No. : HM18010011

Page 11 of 62

### MEASUREMENT RESULT: "vol\_0001\_fin QP"

| Frequency<br>MHz                                                                                          | Level<br>dBµV                                                                          | Transd<br>dB                                                              | Limit<br>dBµV                                | Margin<br>dB                                                                 | Line                                                     | PE                                                          |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| 0.205000<br>0.380000<br>0.940000<br>1.410000<br>2.355000<br>3.295000<br>4.235000<br>8.470000<br>11.300000 | 30.80<br>28.80<br>43.10<br>26.90<br>41.40<br>41.70<br>42.30<br>41.80<br>38.70<br>34.80 | 9.9<br>10.0<br>10.0<br>9.8<br>9.9<br>10.2<br>10.4<br>10.5<br>10.5<br>10.5 | 63<br>58<br>56<br>56<br>56<br>56<br>60<br>60 | 32.6<br>29.5<br>13.4<br>29.1<br>14.6<br>14.3<br>13.7<br>14.2<br>21.3<br>25.2 | L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1 | GND<br>GND<br>GND<br>GND<br>GND<br>GND<br>GND<br>GND<br>GND |

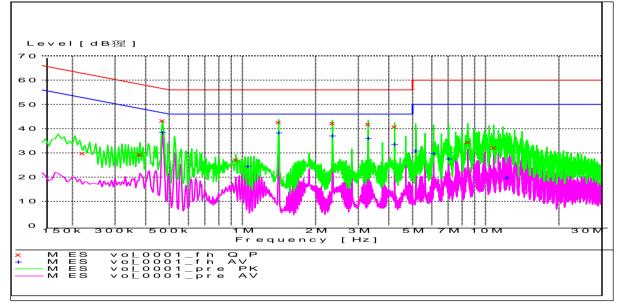
#### MEASUREMENT RESULT: "vol 0001 fin AV"

| Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|------------------|---------------|--------------|---------------|--------------|------|-----|
| 0.470000         | 38.50         | 10.0         | 47            | 8.0          | L1   | GND |
| 1.055000         | 24.60         | 9.8          | 46            | 21.4         | L1   | GND |
| 1.410000         | 37.30         | 9.9          | 46            | 8.7          | L1   | GND |
| 2.355000         | 37.50         | 10.2         | 46            | 8.5          | L1   | GND |
| 3.295000         | 37.80         | 10.4         | 46            | 8.2          | L1   | GND |
| 4.235000         | 37.00         | 10.5         | 46            | 9.0          | L1   | GND |
| 5.175000         | 33.30         | 10.5         | 50            | 16.7         | L1   | GND |
| 6.120000         | 34.20         | 10.6         | 50            | 15.8         | L1   | GND |
| 7.060000         | 33.40         | 10.5         | 50            | 16.6         | L1   | GND |
| 11.295000        | 29.80         | 10.5         | 50            | 20.2         | L1   | GND |



Page 12 of 62

Date : 2018-03-02 No. : HM18010011


Limit for Conducted Emissions (FCC 47CFR 15.207):

| Frequency Range<br>[MHz] | Quasi-Peak Limits<br>[dBµV] | Average<br>[dBµV] |
|--------------------------|-----------------------------|-------------------|
| 0.15-0.5                 | 66 to 56*                   | 56 to 46*         |
| 0.5-5.0                  | 56                          | 46                |
| 5.0-30.0                 | 60                          | 50                |

\* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

### **Results of Tx mode –Neutral: PASS**





### Date : 2018-03-02 No. : HM18010011

Page 13 of 62

#### MEASUREMENT RESULT: "vol\_0001\_fin QP"

| Frequency<br>MHz                                                     | Level<br>dBµV                                      | Transd<br>dB                              | Limit<br>dBµV                    | Margin<br>dB                                 | Line                  | PE                                     |
|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------|-----------------------|----------------------------------------|
| 0.220000<br>0.380000<br>0.470000<br>0.940000<br>1.410000<br>2.350000 | 29.90<br>29.30<br>43.20<br>27.20<br>42.60<br>42.30 | 9.9<br>10.0<br>10.0<br>9.8<br>9.9<br>10.2 | 63<br>58<br>57<br>56<br>56<br>56 | 32.9<br>29.0<br>13.3<br>28.8<br>13.4<br>13.7 | N<br>N<br>N<br>N<br>N | GND<br>GND<br>GND<br>GND<br>GND<br>GND |
| 3.290000<br>4.230000<br>8.460000<br>10.810000                        | 41.90<br>40.80<br>34.50<br>32.10                   | 10.4<br>10.5<br>10.5<br>10.4              | 56<br>56<br>60<br>60             | 14.1<br>15.2<br>25.5<br>27.9                 | N<br>N<br>N<br>N      | GND<br>GND<br>GND<br>GND               |

#### MEASUREMENT RESULT: "vol 0001 fin AV"

| Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|------------------|---------------|--------------|---------------|--------------|------|-----|
| 0.470000         | 38.60         | 10.0         | 47            | 7.9          | N    | GND |
| 1.055000         | 24.60         | 9.8          | 46            | 21.4         | Ν    | GND |
| 1.410000         | 38.30         | 9.9          | 46            | 7.7          | Ν    | GND |
| 2.350000         | 37.20         | 10.2         | 46            | 8.8          | Ν    | GND |
| 3.290000         | 36.10         | 10.4         | 46            | 9.9          | N    | GND |
| 4.230000         | 33.70         | 10.5         | 46            | 12.3         | N    | GND |
| 5.170000         | 30.90         | 10.5         | 50            | 19.1         | Ν    | GND |
| 6.110000         | 29.80         | 10.6         | 50            | 20.2         | Ν    | GND |
| 7.050000         | 27.50         | 10.5         | 50            | 22.5         | N    | GND |
| 12.220000        | 19.80         | 10.6         | 50            | 30.2         | Ν    | GND |



### Date : 2018-03-02 No. : HM18010011

Page 14 of 62

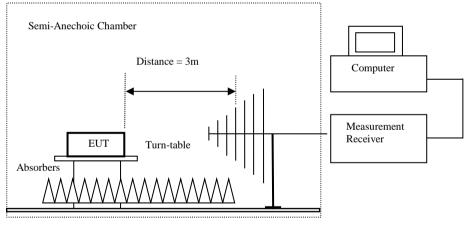
### 3.1.3 Radiated Spurious Emissions

| Test Requirement:  | FCC 47CFR 15.209              |
|--------------------|-------------------------------|
| Test Method:       | ANSI C63.10:2013              |
| Test Date:         | 2018-02-07 and 2018-02-22     |
| Mode of Operation: | Tx mode :GFSK/ $\pi$ /4-DQPSK |

### **Test Method:**

For emission measurements at or below 1 GHz, the sample was placed 0.8m above the ground plane of semianechoic Chamber\*. For emission measurements above 1 GHz, the sample was placed 1.5m above the ground plane of semi-anechoic Chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

\* Semi-anechoic chamber located on the G/F of "The Hong Kong Standards and Testing Centre Ltd." with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Designation Number: HK0001.




Page 15 of 62

### Date : 2018-03-02 No. : HM18010011 Spectrum Analyzer Setting:

| 9KHz – 30MHz (Pk & Av) | RBW:<br>VBW:<br>Sweep:<br>Span:<br>Trace: | 10kHz<br>30kHz<br>Auto<br>Fully capture the emissions being measured<br>Max. hold   |
|------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
| 30MHz – 1GHz (QP)      | RBW:<br>VBW:<br>Sweep:<br>Span:<br>Trace: | 120kHz<br>120kHz<br>Auto<br>Fully capture the emissions being measured<br>Max. hold |
| Above 1GHz (Pk & Av)   | RBW:<br>VBW:<br>Sweep:<br>Span:<br>Trace: | 1MHz<br>3MHz<br>Auto<br>Fully capture the emissions being measured<br>Max. hold     |

#### **Test Setup:**



Ground Plane

- Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

- Measurements between 30MHz to 1000MHz made with Bi-log antennas, above 1000MHz horn antennas are used,

9kHz to 30MHz loop antennas are used.

The Hong Kong Standards and Testing Centre Limited



Page 16 of 62

#### Date : 2018-03-02 No. : HM18010011 Limits for Padiatad Emissions (ECC 4

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

| Frequency Range | Quasi-Peak Limits |
|-----------------|-------------------|
| [MHz]           | [µV/m]            |
| 0.009-0.490     | 2400/F (kHz)      |
| 0.490-1.705     | 24000/F (kHz)     |
| 1.705-30        | 30                |
| 30-88           | 100               |
| 88-216          | 150               |
| 216-960         | 200               |
| Above960        | 500               |

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.



Page 17 of 62

Date : 2018-03-02 No. : HM18010011

Result of Tx mode (GFSK: 2402.0 MHz) (9kHz - 30MHz): Pass

| Field Strength of Spurious Emissions                        |          |            |          |          |       |          |  |
|-------------------------------------------------------------|----------|------------|----------|----------|-------|----------|--|
| Peak Value                                                  |          |            |          |          |       |          |  |
| Frequency                                                   | Measured | Correction | Field    | Field    | Limit | E-Field  |  |
|                                                             | Level    | Factor     | Strength | Strength |       | Polarity |  |
| MHz                                                         | dBuV     | dB/m       | dBuV/m   | uV/m     | uV/m  | -        |  |
| Emissions detected are more than 20 dB below the FCC Limits |          |            |          |          |       |          |  |

### Result of Tx mode (GFSK: 2402.0 MHz) (30MHz - 1GHz): Pass

| Field Strength of Spurious Emissions |                                                             |            |          |          |       |          |  |
|--------------------------------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|
| Quasi-Peak Value                     |                                                             |            |          |          |       |          |  |
| Frequency                            | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |
|                                      | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |
| MHz                                  | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |
|                                      | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |

### Result of Tx mode (GFSK: 2402.0 MHz) (Above 1GHz): Pass

| Field Strength of Spurious Emissions |           |            |            |        |        |          |  |
|--------------------------------------|-----------|------------|------------|--------|--------|----------|--|
|                                      |           |            | Peak Value |        |        |          |  |
| Frequency                            | Measured  | Correction | Field      | Limit  | Margin | E-Field  |  |
|                                      | Level @3m | Factor     | Strength   | @3m    |        | Polarity |  |
| MHz                                  | dBuV      | dB/m       | dBuV/m     | dBuV/m | dB     |          |  |
| 2402.0                               | 57.6      | 27.8       | 85.4       | N/A    | N/A    | Vertical |  |
| 4804.0                               | 2.3       | 42.4       | 44.7       | 74.0   | 29.3   | Vertical |  |
| 7206.0                               | 2.1       | 46.7       | 48.8       | 74.0   | 25.2   | Vertical |  |
| 9608.0                               | 1.3       | 48.4       | 49.7       | 74.0   | 24.3   | Vertical |  |
| 12010.0                              | 0.6       | 53.1       | 53.7       | 74.0   | 20.3   | Vertical |  |

### Result of Tx mode (GFSK: 2402.0 MHz) (Above 1GHz): Pass

| Field Strength of Spurious Emissions |           |            |             |        |        |          |
|--------------------------------------|-----------|------------|-------------|--------|--------|----------|
|                                      |           | Α          | verage Valu | e      |        |          |
| Frequency                            | Measured  | Correction | Field       | Limit  | Margin | E-Field  |
|                                      | Level @3m | Factor     | Strength    | @3m    |        | Polarity |
| MHz                                  | dBuV      | dB/m       | dBuV/m      | dBuV/m | dB     |          |
| 2402.0                               | 45.7      | 27.8       | 73.5        | N/A    | N/A    | Vertical |
| 4804.0                               | -8.6      | 42.4       | 33.8        | 54.0   | 20.2   | Vertical |
| 7206.0                               | -10.3     | 46.7       | 36.4        | 54.0   | 17.6   | Vertical |
| 9608.0                               | -11.8     | 48.4       | 36.6        | 54.0   | 17.4   | Vertical |
| 12010.0                              | -12.3     | 53.1       | 40.8        | 54.0   | 13.2   | Vertical |

The Hong Kong Standards and Testing Centre Limited



Page 18 of 62

Date : 2018-03-02 No. : HM18010011 Described of The mode (CES)

Result of Tx mode (GFSK: 2441.0 MHz) (9kHz – 30MHz): Pass

| Field Strength of Spurious Emissions                        |          |            |          |          |       |          |  |
|-------------------------------------------------------------|----------|------------|----------|----------|-------|----------|--|
| Peak Value                                                  |          |            |          |          |       |          |  |
| Frequency                                                   | Measured | Correction | Field    | Field    | Limit | E-Field  |  |
|                                                             | Level    | Factor     | Strength | Strength |       | Polarity |  |
| MHz                                                         | dBuV     | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |
| Emissions detected are more than 20 dB below the FCC Limits |          |            |          |          |       |          |  |

### Results of Tx mode (GFSK: 2441.0 MHz) (30MHz - 1000MHz): PASS

| Field Strength of Spurious Emissions |                                                             |            |          |          |       |          |  |  |
|--------------------------------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|--|
| Quasi-Peak Value                     |                                                             |            |          |          |       |          |  |  |
| Frequency                            | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |  |
|                                      | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |  |
| MHz                                  | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |  |
|                                      | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |  |

### Result of Tx mode (GFSK: 2441.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|
|           | Peak Value                           |            |          |        |        |          |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |
| 2441.0    | 56.7                                 | 27.8       | 84.5     | N/A    | N/A    | Vertical |  |  |
| 4882.0    | 2.4                                  | 42.5       | 44.9     | 74.0   | 29.1   | Vertical |  |  |
| 7323.0    | 1.8                                  | 47.1       | 48.9     | 74.0   | 25.1   | Vertical |  |  |
| 9764.0    | 1.6                                  | 49.3       | 50.9     | 74.0   | 23.1   | Vertical |  |  |
| 12205.0   | 0.7                                  | 53.1       | 53.8     | 74.0   | 20.2   | Vertical |  |  |

### Result of Tx mode (GFSK: 2441.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|
|           | Average Value                        |            |          |        |        |          |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |
| 2441.0    | 45.7                                 | 27.8       | 73.5     | N/A    | N/A    | Vertical |  |  |
| 4882.0    | -8.6                                 | 42.5       | 33.9     | 54.0   | 20.1   | Vertical |  |  |
| 7323.0    | -9.3                                 | 47.1       | 37.8     | 54.0   | 16.2   | Vertical |  |  |
| 9764.0    | -10.9                                | 49.3       | 38.4     | 54.0   | 15.6   | Vertical |  |  |
| 12205.0   | -12.0                                | 53.1       | 41.1     | 54.0   | 12.9   | Vertical |  |  |

The Hong Kong Standards and Testing Centre Limited



Page 19 of 62

Date : 2018-03-02 No. : HM18010011 Desult of Ty mode (CESH

Result of Tx mode (GFSK: 2480.0 MHz) (9kHz – 30MHz): Pass

| Field Strength of Spurious Emissions |                                                             |            |          |          |       |          |  |
|--------------------------------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|
| Peak Value                           |                                                             |            |          |          |       |          |  |
| Frequency                            | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |
|                                      | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |
| MHz                                  | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |
|                                      | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |

### Results of Tx mode (GFSK: 2480.0 MHz) (30MHz - 1000MHz): Pass

| Field Strength of Spurious Emissions |                                                             |            |          |          |       |          |  |  |
|--------------------------------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|--|
| Quasi-Peak Value                     |                                                             |            |          |          |       |          |  |  |
| Frequency                            | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |  |
|                                      | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |  |
| MHz                                  | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |  |
|                                      | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |  |

### Result of Tx mode (GFSK: 2480.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|
|           | Peak Value                           |            |          |        |        |          |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |
| 2480.0    | 58.9                                 | 27.8       | 86.7     | N/A    | N/A    | Vertical |  |  |
| 4960.0    | 2.6                                  | 43.2       | 45.8     | 74.0   | 28.2   | Vertical |  |  |
| 7440.0    | 1.5                                  | 46.2       | 47.7     | 74.0   | 26.3   | Vertical |  |  |
| 9920.0    | 1.3                                  | 50.9       | 52.2     | 74.0   | 21.8   | Vertical |  |  |
| 12400.0   | 0.7                                  | 54.3       | 55.0     | 74.0   | 19.0   | Vertical |  |  |

### Result of Tx mode (GFSK: 2480.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|
|           | Average Value                        |            |          |        |        |          |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |
| 2480.0    | 45.9                                 | 27.8       | 73.7     | N/A    | N/A    | Vertical |  |  |
| 4960.0    | -9.1                                 | 43.2       | 34.1     | 54.0   | 19.9   | Vertical |  |  |
| 7440.0    | -10.8                                | 46.2       | 35.4     | 54.0   | 18.6   | Vertical |  |  |
| 9920.0    | -11.7                                | 50.9       | 39.2     | 54.0   | 14.8   | Vertical |  |  |
| 12400.0   | -11.9                                | 54.3       | 42.4     | 54.0   | 11.6   | Vertical |  |  |

The Hong Kong Standards and Testing Centre Limited



Page 20 of 62

Date : 2018-03-02 No. : HM18010011

Result of Tx mode ( $\pi$ /4-DQPSK: 2402.0 MHz) (9kHz – 30MHz): Pass

| Field Strength of Spurious Emissions |                                                             |            |          |          |       |          |  |  |
|--------------------------------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|--|
| Peak Value                           |                                                             |            |          |          |       |          |  |  |
| Frequency                            | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |  |
|                                      | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |  |
| MHz                                  | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |  |
|                                      | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |  |

## Result of Tx mode (π/4-DQPSK: 2402.0 MHz) (30MHz – 1GHz): Pass

| Field Strength of Spurious Emissions |           |                |              |              |            |          |  |
|--------------------------------------|-----------|----------------|--------------|--------------|------------|----------|--|
| Quasi-Peak Value                     |           |                |              |              |            |          |  |
| Frequency                            | Measured  | Correction     | Field        | Field        | Limit      | E-Field  |  |
|                                      | Level     | Factor         | Strength     | Strength     |            | Polarity |  |
| MHz                                  | dBuV      | dB/m           | dBuV/m       | uV/m         | uV/m       |          |  |
|                                      | Emissions | detected are r | nore than 20 | dB below the | FCC Limits |          |  |

### Result of Tx mode (π/4-DQPSK: 2402.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|--|
|           | Peak Value                           |            |          |        |        |          |  |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |  |
| 2402.0    | 56.4                                 | 27.8       | 84.2     | N/A    | N/A    | Vertical |  |  |  |
| 4804.0    | 2.5                                  | 42.4       | 44.9     | 74.0   | 29.1   | Vertical |  |  |  |
| 7206.0    | 1.7                                  | 46.7       | 48.4     | 74.0   | 25.6   | Vertical |  |  |  |
| 9608.0    | 1.8                                  | 48.4       | 50.2     | 74.0   | 23.8   | Vertical |  |  |  |
| 12010.0   | 0.9                                  | 53.1       | 54.0     | 74.0   | 20.0   | Vertical |  |  |  |

#### Result of Tx mode (*π*/4-DQPSK: 2402.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |          |        |        |          |  |  |
|-----------|--------------------------------------|------------|----------|--------|--------|----------|--|--|
|           | Average Value                        |            |          |        |        |          |  |  |
| Frequency | Measured                             | Correction | Field    | Limit  | Margin | E-Field  |  |  |
|           | Level @3m                            | Factor     | Strength | @3m    |        | Polarity |  |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |
| 2402.0    | 44.6                                 | 27.8       | 72.4     | N/A    | N/A    | Vertical |  |  |
| 4804.0    | -9.3                                 | 42.4       | 33.1     | 54.0   | 20.9   | Vertical |  |  |
| 7206.0    | -10.8                                | 46.7       | 35.9     | 54.0   | 18.1   | Vertical |  |  |
| 9608.0    | -11.5                                | 48.4       | 36.9     | 54.0   | 17.1   | Vertical |  |  |
| 12010.0   | -12.4                                | 53.1       | 40.7     | 54.0   | 13.3   | Vertical |  |  |

The Hong Kong Standards and Testing Centre Limited



Page 21 of 62

Date : 2018-03-02 No. : HM18010011

Result of Tx mode ( $\pi$ /4-DQPSK: 2441.0 MHz) (9kHz – 30MHz): Pass

|            | Field Strength of Spurious Emissions                        |            |          |          |       |          |  |  |
|------------|-------------------------------------------------------------|------------|----------|----------|-------|----------|--|--|
| Peak Value |                                                             |            |          |          |       |          |  |  |
| Frequency  | Measured                                                    | Correction | Field    | Field    | Limit | E-Field  |  |  |
|            | Level                                                       | Factor     | Strength | Strength |       | Polarity |  |  |
| MHz        | dBuV                                                        | dB/m       | dBuV/m   | uV/m     | uV/m  |          |  |  |
|            | Emissions detected are more than 20 dB below the FCC Limits |            |          |          |       |          |  |  |

### Results of Tx mode ( $\pi$ /4-DQPSK: 2441.0 MHz) (30MHz – 1000MHz): Pass

| Field Strength of Spurious Emissions                        |          |            |          |          |       |          |
|-------------------------------------------------------------|----------|------------|----------|----------|-------|----------|
| Quasi-Peak Value                                            |          |            |          |          |       |          |
| Frequency                                                   | Measured | Correction | Field    | Field    | Limit | E-Field  |
|                                                             | Level    | Factor     | Strength | Strength |       | Polarity |
| MHz                                                         | dBuV     | dB/m       | dBuV/m   | uV/m     | uV/m  |          |
| Emissions detected are more than 20 dB below the FCC Limits |          |            |          |          |       |          |

### Result of Tx mode (π/4-DQPSK: 2441.0 MHz) (Above 1GHz): Pass

| Field Strength of Spurious Emissions |           |            |            |        |        |          |
|--------------------------------------|-----------|------------|------------|--------|--------|----------|
|                                      |           |            | Peak Value |        |        |          |
| Frequency                            | Measured  | Correction | Field      | Limit  | Margin | E-Field  |
|                                      | Level @3m | Factor     | Strength   | @3m    |        | Polarity |
| MHz                                  | dBuV      | dB/m       | dBuV/m     | dBuV/m | dB     |          |
| 2441.0                               | 56.2      | 27.8       | 84.0       | N/A    | N/A    | Vertical |
| 4882.0                               | 2.1       | 42.5       | 44.6       | 74.0   | 29.4   | Vertical |
| 7323.0                               | 1.5       | 47.1       | 48.6       | 74.0   | 25.4   | Vertical |
| 9764.0                               | 1.3       | 49.3       | 50.6       | 74.0   | 23.4   | Vertical |
| 12205.0                              | 0.9       | 53.1       | 54.0       | 74.0   | 20.0   | Vertical |

### Result of Tx mode (π/4-DQPSK: 2441.0 MHz) (Above 1GHz): Pass

|           | Field Strength of Spurious Emissions |            |             |        |        |          |  |
|-----------|--------------------------------------|------------|-------------|--------|--------|----------|--|
|           |                                      | A          | verage Valu | e      |        |          |  |
| Frequency | Measured                             | Correction | Field       | Limit  | Margin | E-Field  |  |
|           | Level @3m                            | Factor     | Strength    | @3m    |        | Polarity |  |
| MHz       | dBuV                                 | dB/m       | dBuV/m      | dBuV/m | dB     |          |  |
| 2441.0    | 43.4                                 | 27.8       | 71.2        | N/A    | N/A    | Vertical |  |
| 4882.0    | -8.9                                 | 42.5       | 33.6        | 54.0   | 20.4   | Vertical |  |
| 7323.0    | -10.4                                | 47.1       | 36.7        | 54.0   | 17.3   | Vertical |  |
| 9764.0    | -11.5                                | 49.3       | 37.8        | 54.0   | 16.2   | Vertical |  |
| 12205.0   | -12.2                                | 53.1       | 40.9        | 54.0   | 13.1   | Vertical |  |

The Hong Kong Standards and Testing Centre Limited



Page 22 of 62

Date : 2018-03-02 No. : HM18010011

Result of Tx mode ( $\pi$ /4-DQPSK: 2480.0 MHz) (9kHz – 30MHz): Pass

| Field Strength of Spurious Emissions                        |          |            |          |          |       |          |
|-------------------------------------------------------------|----------|------------|----------|----------|-------|----------|
| Peak Value                                                  |          |            |          |          |       |          |
| Frequency                                                   | Measured | Correction | Field    | Field    | Limit | E-Field  |
|                                                             | Level    | Factor     | Strength | Strength |       | Polarity |
| MHz                                                         | dBuV     | dB/m       | dBuV/m   | uV/m     | uV/m  |          |
| Emissions detected are more than 20 dB below the FCC Limits |          |            |          |          |       |          |

### Results of Tx mode (π/4-DQPSK: 2480.0 MHz) (30MHz – 1000MHz): Pass

| Field Strength of Spurious Emissions                        |          |            |          |          |       |          |
|-------------------------------------------------------------|----------|------------|----------|----------|-------|----------|
| Quasi-Peak Value                                            |          |            |          |          |       |          |
| Frequency                                                   | Measured | Correction | Field    | Field    | Limit | E-Field  |
|                                                             | Level    | Factor     | Strength | Strength |       | Polarity |
| MHz                                                         | dBuV     | dB/m       | dBuV/m   | uV/m     | uV/m  |          |
| Emissions detected are more than 20 dB below the FCC Limits |          |            |          |          |       |          |

### Result of Tx mode (π/4-DQPSK: 2480.0 MHz) (Above 1GHz): Pass

| Field Strength of Spurious Emissions |           |            |            |        |        |          |
|--------------------------------------|-----------|------------|------------|--------|--------|----------|
|                                      |           |            | Peak Value |        |        |          |
| Frequency                            | Measured  | Correction | Field      | Limit  | Margin | E-Field  |
|                                      | Level @3m | Factor     | Strength   | @3m    |        | Polarity |
| MHz                                  | dBuV      | dB/m       | dBuV/m     | dBuV/m | dB     |          |
| 2480.0                               | 56.3      | 27.8       | 84.1       | N/A    | N/A    | Vertical |
| 4960.0                               | 2.7       | 43.2       | 45.9       | 74.0   | 28.1   | Vertical |
| 7440.0                               | 1.8       | 46.2       | 48.0       | 74.0   | 26.0   | Vertical |
| 9920.0                               | 1.6       | 50.9       | 52.5       | 74.0   | 21.5   | Vertical |
| 12400.0                              | 0.9       | 54.3       | 55.2       | 74.0   | 18.8   | Vertical |

## Result of Tx mode (*π*/4-DQPSK: 2480.0 MHz) (Above 1GHz): Pass

| Field Strength of Spurious Emissions |           |            |             |        |        |          |
|--------------------------------------|-----------|------------|-------------|--------|--------|----------|
|                                      |           | A          | verage Valu | e      |        |          |
| Frequency                            | Measured  | Correction | Field       | Limit  | Margin | E-Field  |
|                                      | Level @3m | Factor     | Strength    | @3m    |        | Polarity |
| MHz                                  | dBuV      | dB/m       | dBuV/m      | dBuV/m | dB     |          |
| 2480.0                               | 44.3      | 27.8       | 72.1        | N/A    | N/A    | Vertical |
| 4960.0                               | -8.9      | 43.2       | 34.3        | 54.0   | 19.7   | Vertical |
| 7440.0                               | -10.4     | 46.2       | 35.8        | 54.0   | 18.2   | Vertical |
| 9920.0                               | -11.8     | 50.9       | 39.1        | 54.0   | 14.9   | Vertical |
| 12400.0                              | -12.3     | 54.3       | 42.0        | 54.0   | 12.0   | Vertical |

The Hong Kong Standards and Testing Centre Limited



### Date : 2018-03-02 No. : HM18010011

Page 23 of 62

### Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

| Frequency Range<br>[MHz] | Quasi-Peak Limits<br>[µV/m] |
|--------------------------|-----------------------------|
| 0.009-0.490              | 2400/F (kHz)                |
| 0.490-1.705              | 24000/F (kHz)               |
| 1.705-30                 | 30                          |
| 30-88                    | 100                         |
| 88-216                   | 150                         |
| 216-960                  | 200                         |
| Above960                 | 500                         |

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

|           | Field Strength of Fundamental and Harmonics Emissions |            |              |           |           |            |  |
|-----------|-------------------------------------------------------|------------|--------------|-----------|-----------|------------|--|
|           |                                                       | Qı         | iasi-Peak Va | lue       |           |            |  |
| Frequency | Measured                                              | Correction | Field        | Field     | Limit @3m | E-Field    |  |
|           | Level @3m                                             | Factor     | Strength     | Strength  |           | Polarity   |  |
| MHz       | dBµV/m                                                | dBµV/m     | dBµV/m       | $\mu V/m$ | $\mu V/m$ |            |  |
| 60.0      | 24.5                                                  | 6.8        | 31.3         | 36.7      | 100       | Vertical   |  |
| 120.0     | 22.1                                                  | 7.8        | 29.9         | 31.3      | 150       | Vertical   |  |
| 240.0     | 15.6                                                  | 12.4       | 28.0         | 25.1      | 150       | Horizontal |  |
| 360.0     | 10.4                                                  | 16.1       | 26.5         | 21.1      | 200       | Horizontal |  |
| 420.0     | 8.5                                                   | 17.3       | 25.8         | 19.5      | 200       | Horizontal |  |
| 540.0     | 12.4                                                  | 20.0       | 32.4         | 41.7      | 200       | Horizontal |  |

#### **Result of Bluetooth communication mode (30MHz – 1GHz)** PASS

## Result of Bluetooth communication mode, (9kHz - 30MHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

### **Result of Bluetooth communication mode.** (1GHz – 26GHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

Remarks:

Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation. Calculated measurement uncertainty:

(9kHz - 30MHz): 2.4dB

(30MHz - 18GHz): 5.0dB

(18GHz - 26GHz): 5.24dB

Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.



### Date : 2018-03-02 No. : HM18010011

Page 24 of 62

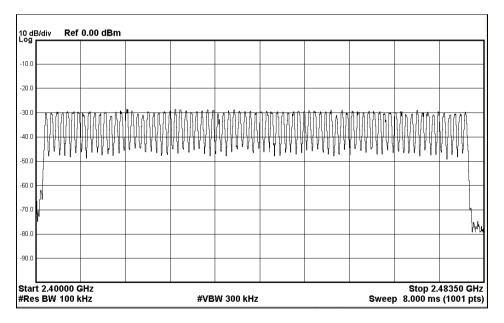
## 3.1.4 Number of Hopping Frequency

### Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

#### **Test Method:**

The RF output of the EUT was connected to the spectrum analyzer by a low loss cable.


#### **Spectrum Analyzer Setting:**

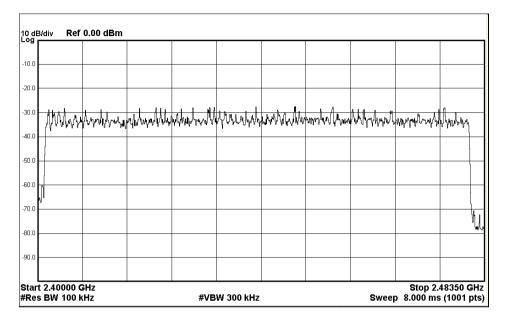
RBW = 100kHz,  $VBW \ge RBW$ , Sweep = Auto, Span = the frequency band of operation Detector = Peak, Trace = Max. hold

#### **Test Setup:**

As Test Setup of clause 3.1.1 in this test report.

#### Measurement Data: GFSK: 79 of 79 Channel




The Hong Kong Standards and Testing Centre Limited



## Date : 2018-03-02 No. : HM18010011

Page 25 of 62

## $\pi$ /4-DQPSK: 79 of 79 Channel





### Date : 2018-03-02 No. : HM18010011 3.1.5 20dB Bandwidth

Page 26 of 62

| Test Requirement:  | FCC 47CFR 15.247(a)(1)        |
|--------------------|-------------------------------|
| Test Method:       | ANSI C63.10:2013              |
| Test Date:         | 2018-02-22                    |
| Mode of Operation: | Tx mode :GFSK/ $\pi$ /4-DQPSK |

### **Remark:**

The result has been done on all the possible configurations for searching the worst cases.

### **Test Method:**

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

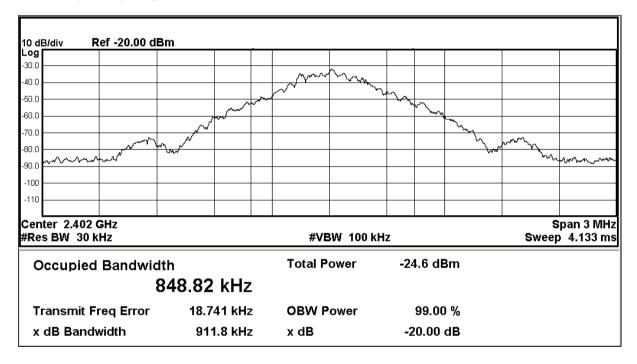
#### **Spectrum Analyzer Setting:**

RBW = 30kHz,  $VBW \ge RBW$ , Sweep = Auto, Span = two times and five times the OBW Detector = Peak, Trace = Max. hold

### **Test Setup:**

As Test Setup of clause 3.1.1 in this test report.

Uncertainty: ±1.0x10<sup>-8</sup>




Page 27 of 62

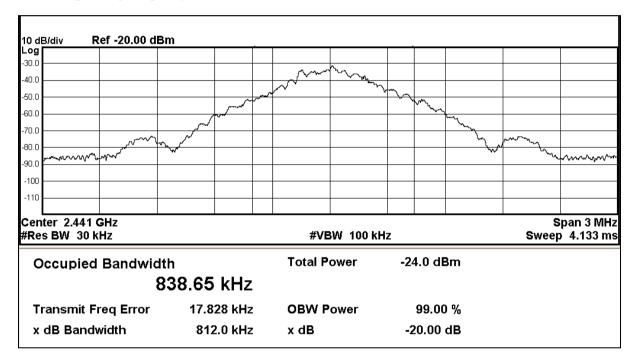
| No. | : HM18010011          |                | 5                  |
|-----|-----------------------|----------------|--------------------|
|     | Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
|     | [MHz]                 | [MHz]          | [MHz]              |
|     | 2402                  | 0.91           | Within 2400-2483.5 |

(Lowest Operating Frequency) - (GFSK)

Date : 2018-03-02






Page 28 of 62

| No. : HM18010011      |                |                    |
|-----------------------|----------------|--------------------|
| Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
| [MHz]                 | [MHz]          | [MHz]              |
| 2441                  | 0.81           | Within 2400-2483.5 |

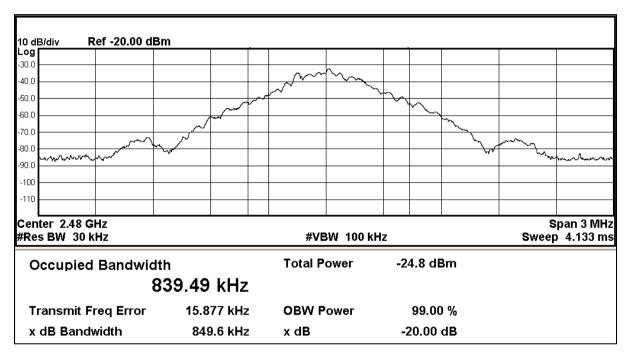
(Middle Operating Frequency) - (GFSK)

Date : 2018-03-02

-----






Page 29 of 62

| No. : HM18010011      |                |                    |
|-----------------------|----------------|--------------------|
| Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
| [MHz]                 | [MHz]          | [MHz]              |
| 2480                  | 0.85           | Within 2400-2483.5 |

(Highest Operating Frequency) - (GFSK)

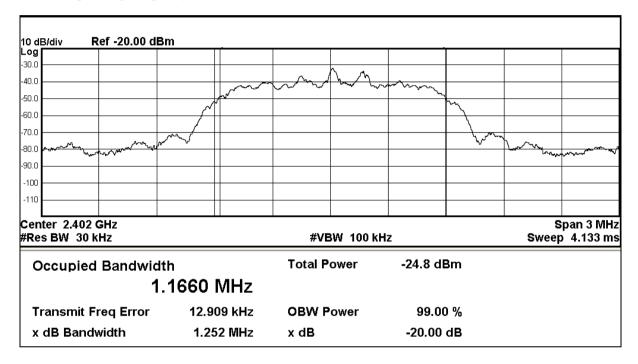
Date : 2018-03-02

-----





Page 30 of 62


| NO. : HM18010011      |                |                    |
|-----------------------|----------------|--------------------|
| Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
| [MHz]                 | [MHz]          | [MHz]              |
| 2402                  | 1.25           | Within 2400-2483.5 |

(Lowest Operating Frequency) - ( $\pi/4$  DQPSK)

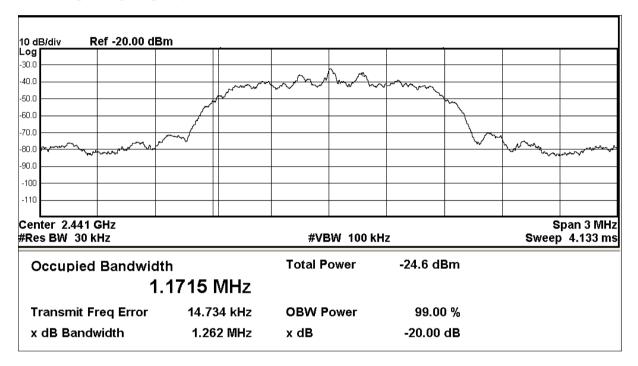
Date : 2018-03-02

ът

TT #10010014






Page 31 of 62

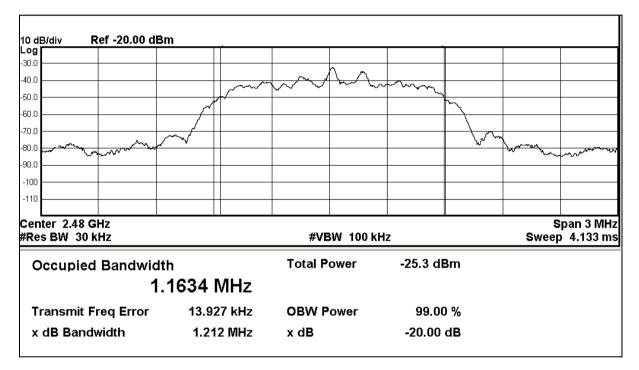
| No. : HM18010011      |                |                    |
|-----------------------|----------------|--------------------|
| Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
| [MHz]                 | [MHz]          | [MHz]              |
| 2441                  | 1.26           | Within 2400-2483.5 |

(Middle Operating Frequency) - ( $\pi/4$  DQPSK)

Date : 2018-03-02

-----






### Date : 2018-03-02 No. : HM18010011

Page 32 of 62

| Fundamental Frequency | 20dB Bandwidth | FCC Limits         |
|-----------------------|----------------|--------------------|
| [MHz]                 | [MHz]          | [MHz]              |
| 2480                  | 1.21           | Within 2400-2483.5 |

## (Highest Operating Frequency) - ( $\pi/4$ DQPSK)





### Date : 2018-03-02 No. : HM18010011 3.1.6 Hopping Channel Separation

#### **Requirements:**

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### **Spectrum Analyzer Setting:**

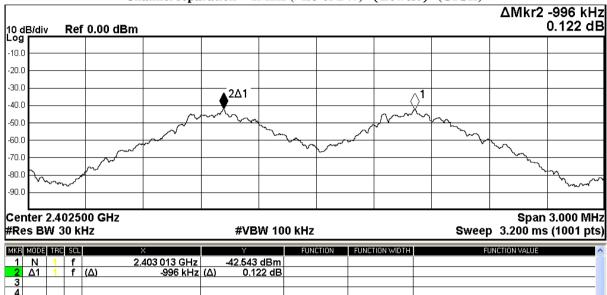
RBW = 30kHz,  $VBW \ge RBW$ , Sweep = Auto, Span = Wide enough to captur the peaks of two adjacent channels Detector = Peak, Trace = Max. hold

### Limit:

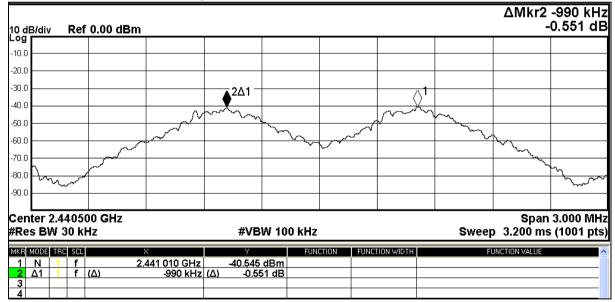
GFSK: The measured maximum bandwidth\* 2/3 =0.91MHz \* 2/3 =606.7kHz

 $\pi/4$  DQPSK: The measured maximum bandwidth \* 2/3 = 1.26MHz \* 2/3 = 840.0kHz

Uncertainty: ±1.0x10<sup>-8</sup>


Page 33 of 62




Page 34 of 62

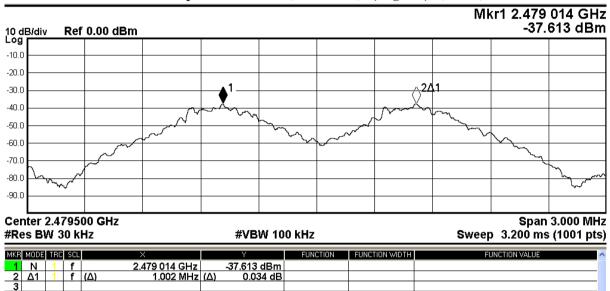
Date : 2018-03-02 No. : HM18010011

Channel separation = 1MHz (>2/3 of BW) (Lowest) (GFSK)

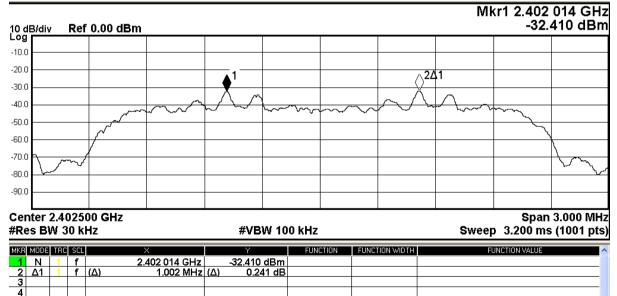


### Channel separation = 1MHz (>2/3 of BW) (Mid) (GFSK)




The Hong Kong Standards and Testing Centre Limited




Page 35 of 62

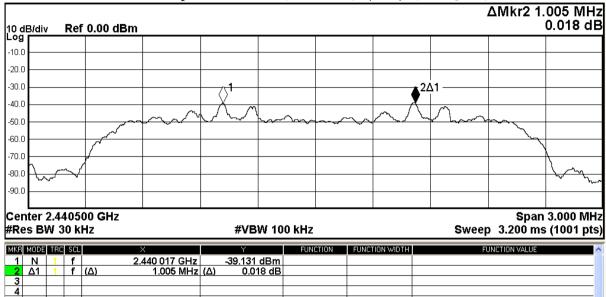
Date : 2018-03-02 No. : HM18010011

Channel separation = 1MHz (>2/3 of BW) (Highest) (GFSK)

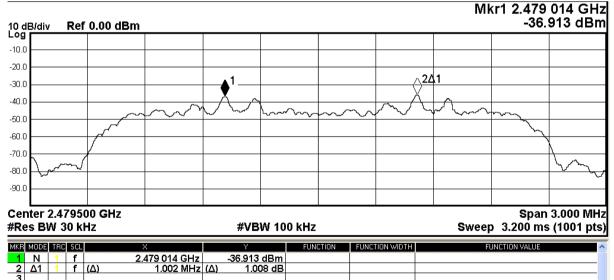


## Channel separation = 1MHz (>2/3 of BW) (Lowest) ( $\pi/4$ DQPSK)




The Hong Kong Standards and Testing Centre Limited




Page 36 of 62

Date : 2018-03-02 No. : HM18010011

Channel separation = 1MHz (>2/3 of BW) (Mid) ( $\pi/4$  DQPSK)



## Channel separation = 1MHz (>2/3 of BW) (Highest) ( $\pi/4$ DQPSK)



The Hong Kong Standards and Testing Centre Limited



### Date : 2018-03-02 No. : HM18010011

Page 37 of 62

### 3.1.7 Band-edge Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.



## Date : 2018-03-02 No. : HM18010011

Page 38 of 62

| Frequency Range<br>[MHz]         | Radiated Emission Attenuated below the Fundamental [dB] |
|----------------------------------|---------------------------------------------------------|
| 2400 – Lowest Fundamental (2402) | 37.2                                                    |

### Band-edge Compliance of RF Emissions, GFSK (Hopping Off) – Lower Band Edge

|                                      | t6 dB<br>.99 dBµV              |                            |          |                | N                              | /kr3 2.39<br>51.8   | 8 18 GF<br>840 dBµ      |
|--------------------------------------|--------------------------------|----------------------------|----------|----------------|--------------------------------|---------------------|-------------------------|
| <b>og</b><br>93.0                    |                                |                            |          |                |                                |                     | <b>1</b>                |
| 33.0                                 |                                |                            |          |                |                                |                     |                         |
| 73.0                                 |                                |                            |          |                |                                |                     |                         |
| 63.0                                 |                                |                            |          |                |                                |                     | <u>_</u>                |
| 3.0                                  |                                |                            |          |                |                                |                     | <sup>3</sup> ∧2         |
|                                      |                                |                            |          |                |                                |                     |                         |
| 3.0                                  |                                |                            |          |                |                                |                     | կի Մեխդ                 |
| 33.0                                 | margh & Angeron the margh      | want home and have         | man      | Marthenson     | The work as her when the first | men W               |                         |
| 3.0                                  |                                |                            |          |                |                                |                     |                         |
| 3.0                                  |                                |                            |          |                |                                |                     |                         |
| art 2.30000 GHz<br>Res BW 100 kHz    |                                | #VBW 3                     | 00 kHz   |                | Swee                           | Stop 2<br>p 10.53 m | .41000 Gl<br>s (1001 pi |
| KR MODE TRC SCL                      | Х                              | Y                          | FUNCTION | FUNCTION WIDTH | F                              | UNCTION VALUE       |                         |
| 1 N 1 f<br>2 N 1 f                   | 2.402 024 GHz                  | 84.323 dBµ\                |          |                |                                |                     |                         |
| 2 N 1 f<br><mark>3</mark> N 1 f<br>4 | 2.400 000 GHz<br>2.398 176 GHz | 47.082 dBµ\<br>51.840 dBµ\ |          |                |                                |                     |                         |

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.



Date : 2018-03-02 No. : HM18010011 Page 39 of 62

| Frequency Range<br>[MHz]         | Radiated Emission Attenuated below the Fundamental [dB] |
|----------------------------------|---------------------------------------------------------|
| 2400 – Lowest Fundamental (2402) | 32.4                                                    |

### Band-edge Compliance of RF Emissions, GFSK (Hopping On) – Lower Band Edge

| 0 dB/div            | Ref Offset<br>Ref 102.9 |                                                           |                                         |                 |                 | Γ                     | Mkr3 2.398<br>51.6 | 3 07 GH:<br>75 dBµ\   |
|---------------------|-------------------------|-----------------------------------------------------------|-----------------------------------------|-----------------|-----------------|-----------------------|--------------------|-----------------------|
| . <b>og</b><br>93.0 |                         |                                                           |                                         |                 |                 |                       |                    | 1                     |
| 83.0                |                         |                                                           |                                         |                 |                 |                       |                    |                       |
| 73.0                |                         |                                                           |                                         |                 |                 |                       |                    |                       |
| 63.0                |                         |                                                           |                                         |                 |                 |                       |                    |                       |
| 53.0                |                         |                                                           |                                         |                 |                 |                       | •                  | 32<br>\/              |
| 43.0                |                         |                                                           |                                         |                 |                 |                       |                    | W/                    |
|                     |                         |                                                           |                                         | 1               |                 | nationarcall          | ANNAN A            | ·1                    |
| 23.0                | Marcontabala            | ular out and a second and a second for the second for the | ՠՠՠֈՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ | չուղուրդություն | Ուլնննիրերձգութ | shido and a shid ta a |                    |                       |
| 3.0                 |                         |                                                           |                                         |                 |                 |                       |                    |                       |
|                     |                         |                                                           |                                         |                 |                 |                       |                    |                       |
|                     | 000 GHz<br>100 kHz      |                                                           | #VBW 30                                 | 0 kHz           |                 | Swee                  |                    | 41000 GH<br>(1001 pts |
| KR MODE TR          | RC SCL                  | X                                                         | Y                                       | FUNCTION        | FUNCTION WIDTH  |                       | FUNCTION VALUE     |                       |
| 1 N 1<br>2 N 1      | f                       | 2.402 024 GHz<br>2.400 000 GHz                            | 83.506 dBµV<br>51.075 dBµV              |                 |                 |                       |                    |                       |
| 2 N 1               | f                       | 2.398 07 GHz                                              | 51.675 dBµV                             |                 |                 |                       |                    |                       |



Date : 2018-03-02 No. : HM18010011 Page 40 of 62

| Frequency Range                     | Radiated Emission Attenuated below the Fundamental |
|-------------------------------------|----------------------------------------------------|
| [MHz]                               | [dB]                                               |
| 2483.5 - Highest Fundamental (2480) | 44.5                                               |

|                       | Ban           | d-edge C               | ompliance                  | of RF Em         | nissions, G               | FSK (H  | Iopping Of     | ff) – Upper          | <b>Band Edge</b>     |                           |
|-----------------------|---------------|------------------------|----------------------------|------------------|---------------------------|---------|----------------|----------------------|----------------------|---------------------------|
| 10 dB/div             |               | ffset 6 dB<br>02.99 dB | ٧u                         |                  |                           |         |                |                      | Mkr1 2.48<br>84.9    | 80 05 GHz<br>915 dBµV     |
| 93.0                  |               |                        |                            | • 1              |                           |         |                |                      |                      |                           |
|                       |               |                        |                            | !                |                           |         |                |                      |                      |                           |
| 83.0                  |               |                        |                            | $\square$        |                           |         |                |                      |                      |                           |
| 73.0                  |               |                        |                            | +                |                           |         |                |                      |                      |                           |
| 63.0                  |               |                        |                            | +                |                           |         |                |                      |                      |                           |
| 53.0                  |               | r                      | ٦                          |                  |                           |         |                |                      |                      |                           |
| 43.0                  |               | /                      |                            | 1 4              | $ \bigcirc^2 \bigcirc^3 $ | ۹<br>   |                |                      |                      |                           |
| 33.0                  | / <b>*</b> V\ | M /                    | \ {\m\                     | L.M              | y Mary                    |         |                |                      | 0.1                  |                           |
| ·/~                   | ملد           |                        | han and y                  |                  | Land L                    | www.www | many provine   | -alah-playahuharahan | man way              |                           |
| 23.0                  |               |                        |                            |                  |                           |         |                |                      |                      |                           |
| 13.0                  |               |                        |                            |                  |                           |         |                |                      |                      |                           |
| Start 2.47<br>#Res BW |               |                        |                            | #VB              | W 300 kHz                 |         |                | Swe                  | Stop 2<br>ep 2.933 m | .50000 GHz<br>s (1001 pts |
| MKR MODE T            | RC SCL        | ×                      |                            | Y                |                           | CTION   | FUNCTION WIDTH |                      | FUNCTION VALUE       | ^                         |
| 1 N 1<br>2 N 1        | f             |                        | .480 05 GHz<br>.483 50 GHz | 84.915<br>40.401 |                           |         |                |                      |                      |                           |
| 2 N<br>3 N 1          | f             |                        | 483 50 GHZ                 | 40.401           |                           |         |                |                      |                      |                           |
| 4                     |               |                        |                            |                  |                           |         |                |                      |                      |                           |



## Date : 2018-03-02 No. : HM18010011

Page 41 of 62

| Frequency Range<br>[MHz]            | Radiated Emission Attenuated below the Fundamental [dB] |
|-------------------------------------|---------------------------------------------------------|
| 2483.5 - Highest Fundamental (2480) | 46.6                                                    |

### Band-edge Compliance of RF Emissions, GFSK (Hopping On) – Upper Band Edge

| 10 dB/div Ref                  | Dffset 6 dB<br>102.99 dB | μV                           |                             |                   |               |             | М     | kr1 2.480<br>83.8   | 0 05 GH:<br>66 dBµ\  |
|--------------------------------|--------------------------|------------------------------|-----------------------------|-------------------|---------------|-------------|-------|---------------------|----------------------|
| 93.0                           |                          |                              | 1                           |                   |               |             |       |                     |                      |
| 83.0 4                         |                          |                              |                             |                   |               |             |       |                     |                      |
| 73.0                           | { {///                   | $\{ f \} \} \}$              |                             |                   |               |             |       |                     |                      |
| G3.0 YVV                       | $\forall \forall V$      | γνγ                          | Ψų                          |                   |               |             |       |                     |                      |
|                                |                          |                              |                             |                   |               |             |       |                     |                      |
| 53.0                           |                          |                              |                             | ∧2 ∧3             |               |             |       |                     |                      |
| 43.0                           |                          |                              |                             | $\longrightarrow$ |               |             |       |                     |                      |
| 33.0                           |                          |                              | (/ አላ                       | տքիմ՝՝՝՝ կտույնը  | Ուոգաթունեներ | Awara       |       | ᢦᡂᡘᢇᡐᡘᡘᠬᢧᢥᡃᢇᡨᡘᠶᡟ    | ᡧᢦᡏᡃᡐᡗᠯᢘᠵᢦ᠁ᡛ         |
| 23.0                           |                          |                              |                             |                   |               |             |       |                     |                      |
| 13.0                           |                          |                              |                             |                   |               |             |       |                     |                      |
|                                |                          |                              |                             |                   |               |             |       |                     |                      |
| tart 2.47000 G<br>Res BW 100 k |                          |                              | #VBI                        | N 300 kHz         |               |             | Sweep | Stop 2.<br>2.933 ms | 50000 GH<br>(1001 pt |
| IKR MODE TRC SCL               | >                        | K                            | Y                           | FUN               | CTION FUNC    | CTION WIDTH | FU    | NCTION VALUE        |                      |
| 1 N 1 f<br>2 N 1 f             |                          | 2.480 05 GHz<br>2.483 50 GHz | 83.866 0                    |                   |               |             |       |                     |                      |
| 2 N 1 F<br>3 N 1 F             |                          | 2.483 50 GHZ                 | <u>37.602 c</u><br>37.655 c |                   |               |             |       |                     |                      |
| 4                              |                          |                              |                             |                   |               |             |       |                     |                      |

The Hong Kong Standards and Testing Centre Limited



## Date : 2018-03-02 No. : HM18010011

**Band-edge Emissions Measurement:** 

## Result: RF Radiated Emissions - GFSK

|                                                          | Field Strength of Band-edge Compliance |        |          |        |      |          |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------------------------|--------|----------|--------|------|----------|--|--|--|--|--|--|
| Peak Value                                               |                                        |        |          |        |      |          |  |  |  |  |  |  |
| Frequency Measured Correction Field Limit Margin E-Field |                                        |        |          |        |      |          |  |  |  |  |  |  |
|                                                          | Level @3m                              | Factor | Strength | @3m    |      | Polarity |  |  |  |  |  |  |
| MHz                                                      | dBuV                                   | dB/m   | dBuV/m   | dBuV/m | dB   |          |  |  |  |  |  |  |
| 2398.2                                                   | 25.3                                   | 27.8   | 53.1     | 74.0   | 20.9 | Vertical |  |  |  |  |  |  |
| 2398.1                                                   | 25.8                                   | 27.8   | 53.6     | 74.0   | 20.4 | Vertical |  |  |  |  |  |  |
| 2484.5                                                   | 13.1                                   | 27.9   | 41.0     | 74.0   | 33.0 | Vertical |  |  |  |  |  |  |
| 2484.5                                                   | 10.4                                   | 27.9   | 38.3     | 74.0   | 35.7 | Vertical |  |  |  |  |  |  |

|           | Field Strength of Band-edge Compliance<br>AverageValue   |        |          |        |      |          |  |  |  |  |  |  |
|-----------|----------------------------------------------------------|--------|----------|--------|------|----------|--|--|--|--|--|--|
| Frequency | Frequency Measured Correction Field Limit Margin E-Field |        |          |        |      |          |  |  |  |  |  |  |
|           | Level @3m                                                | Factor | Strength | @3m    |      | Polarity |  |  |  |  |  |  |
| MHz       | dBuV                                                     | dB/m   | dBuV/m   | dBuV/m | dB   |          |  |  |  |  |  |  |
| 2398.2    | 6.7                                                      | 27.8   | 34.5     | 54.0   | 19.5 | Vertical |  |  |  |  |  |  |
| 2398.1    | 6.9                                                      | 27.8   | 34.7     | 54.0   | 19.3 | Vertical |  |  |  |  |  |  |
| 2484.5    | -2.1                                                     | 27.9   | 25.8     | 54.0   | 28.2 | Vertical |  |  |  |  |  |  |
| 2484.5    | -1.9                                                     | 27.9   | 26.0     | 54.0   | 28.0 | Vertical |  |  |  |  |  |  |

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 42 of 62



Date : 2018-03-02 No. : HM18010011 Page 43 of 62

| Frequency Range<br>[MHz]         | Radiated Emission Attenuated below the Fundamental [dB] |
|----------------------------------|---------------------------------------------------------|
| 2400 – Lowest Fundamental (2402) | 50.9                                                    |

|                    | Band             | -edge Con                | pliance of                  | RF Emiss                    | ions, π/4 l | DQPS     | K (Hopping                   | g Off) – Low                        |                   | 0                             |
|--------------------|------------------|--------------------------|-----------------------------|-----------------------------|-------------|----------|------------------------------|-------------------------------------|-------------------|-------------------------------|
| 10 dB/d            |                  | Offset 6 dB<br>102.99 dB | μV                          |                             |             |          |                              |                                     | Mkr3 2.39<br>51.8 | 7 96 GHz<br>399 dBµV          |
| <b>Log</b><br>93.0 |                  |                          |                             |                             |             |          |                              |                                     |                   | ~1                            |
| 83.0               |                  |                          |                             |                             |             |          |                              |                                     |                   | \?'                           |
| 73.0               |                  |                          |                             |                             |             |          |                              |                                     |                   | $  \wedge$                    |
| 63.0               |                  |                          |                             |                             |             |          |                              |                                     |                   |                               |
| 53.0               |                  |                          |                             |                             |             |          |                              |                                     |                   | 3                             |
|                    |                  |                          |                             |                             |             |          |                              |                                     | , A               |                               |
| 43.0 —             |                  |                          |                             |                             |             |          |                              |                                     | M                 | μ <sup>τ</sup> η <sub>μ</sub> |
|                    | -,ulyma,y~y4-m   | James John also          | www.internation             | Married Lyrandla            | hered       | get mari | when the and here the second | - when a way a start and the second | margan V          | 1 <sup>1</sup> 14 14          |
| 23.0 —             |                  |                          |                             |                             |             |          |                              |                                     |                   |                               |
| 13.0 —             |                  |                          |                             |                             |             |          |                              |                                     |                   |                               |
| Start 2            | 2.30000 <b>C</b> | GHz                      |                             |                             |             |          |                              |                                     | Stop 2.           | 41000 GHz                     |
| #Res E             | BW 100 H         | Hz                       |                             | #VB                         | W 300 kHz   |          |                              | Swe                                 | ep 10.53 ms       |                               |
|                    | DE TRC SCL       | ;                        | <                           | Y                           |             | ICTION   | FUNCTION WIDTH               |                                     | FUNCTION VALUE    | ^                             |
| 1 N<br>2 N         |                  |                          | 2.402 02 GHz<br>400 000 GHz | <u>84.354 (</u><br>46.108 ( |             |          |                              |                                     |                   |                               |
| 3 N                |                  |                          | 2.397 96 GHz                | 51.899 (                    |             |          |                              |                                     |                   |                               |
| 4                  |                  |                          |                             |                             |             |          |                              |                                     |                   |                               |



Date : 2018-03-02 No. : HM18010011 Page 44 of 62

| Frequency Range<br>[MHz]         | Radiated Emission Attenuated below the Fundamental [dB] |
|----------------------------------|---------------------------------------------------------|
| 2400 – Lowest Fundamental (2402) | 48.1                                                    |

| 0 dB/div R                                    | tef Offset 6 dE<br>tef 102.99 d |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            | η                           | Mkr1 2.402 02 GF<br>83.159 dBµ         |
|-----------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------|----------------------------|-----------------------------|----------------------------------------|
| - <b>og</b><br>93.0                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             | <u> </u>                               |
| B3.0                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
| 73.0                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             | - WWW                                  |
| 3.0                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
| 53.0                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
| 3.0                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
|                                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . h ll-                                                                                                    |                  |                            | . le - 1 hen dun            |                                        |
| 23.0                                          | ก.โ                             | and an and the second and the second s | <sup>┍</sup> ┺┲┲┲┲┲┲ <sup>┲</sup> ┚ <mark>┙</mark> ╲╊╱ <b>┖</b> ╼╏ <sup>┖</sup> ┓╗┲ <mark>┲</mark> ┹┝╿╲╢╠┛ | վեծ ուղել առեւսե | Turn Million to the to the | Nutr f Andrews - L date out | 1 Proceed                              |
| 3.0                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
| 3.0                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                  |                            |                             |                                        |
| tart 2.3000<br>Res BW 10                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VBW 3                                                                                                     | 300 kHz          |                            | Swee                        | Stop 2.41000 GH<br>p 10.53 ms (1001 pt |
|                                               | SCL                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                                                                          | FUNCTION         | FUNCTION WIDTH             |                             | FUNCTION VALUE                         |
| IKR MODE TRC 9                                |                                 | 2.402 02 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.159 dBµ                                                                                                 | V                |                            |                             |                                        |
| ikr mode trc s<br><mark>1</mark> N 1<br>2 N 1 | f<br>F                          | 2.400 000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.346 dBu                                                                                                 |                  |                            |                             |                                        |



Date : 2018-03-02 No. : HM18010011 Page 45 of 62

| Frequency Range                     | Radiated Emission Attenuated below the Fundamental |
|-------------------------------------|----------------------------------------------------|
| [MHz]                               | [dB]                                               |
| 2483.5 - Highest Fundamental (2480) | 58.2                                               |

| 84 49 GH<br>332 dBµ          | /lkr3 2.48<br>41.3      | N                                      |            |                          |                          |                               | ٧u                           | Offset 6 dB<br>102.99 dB |                        |
|------------------------------|-------------------------|----------------------------------------|------------|--------------------------|--------------------------|-------------------------------|------------------------------|--------------------------|------------------------|
|                              |                         |                                        |            |                          |                          | <b>1</b>                      |                              |                          |                        |
|                              |                         |                                        |            |                          |                          | $\langle \cdot \rangle$       |                              |                          |                        |
|                              |                         |                                        |            |                          |                          | <del>_ 1<sup>4</sup></del> کر |                              |                          |                        |
|                              |                         |                                        |            |                          |                          | +                             |                              |                          |                        |
|                              |                         | _                                      |            |                          |                          |                               |                              |                          |                        |
|                              |                         |                                        |            |                          |                          |                               | v,                           | 0                        |                        |
|                              |                         |                                        |            |                          | (2 <b>♦</b> <sup>3</sup> | í h.                          | 5 A.                         | ſ                        | л П. л                 |
|                              |                         |                                        |            |                          | W. AAA                   | ٧W                            |                              | www.                     | مى مى الى مى الى<br>مى |
| Jugost and the second second | -                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Vicense -  | <sup>Q</sup> anghan Mara | - have -                 |                               | - tr-my                      | W/WW Galer               | J.                     |
| -                            |                         |                                        |            |                          |                          |                               |                              |                          |                        |
|                              |                         |                                        |            |                          |                          |                               |                              |                          |                        |
|                              |                         |                                        |            |                          |                          |                               |                              |                          |                        |
| .50000 GH<br>s (1001 pts     | Stop 2.<br>p   2.933 ms | Swee                                   |            |                          | W 300 kHz                | #\/B)                         |                              |                          | 2.47000 C<br>BW 100 k  |
| 3 (1001 pts                  | •                       |                                        |            |                          |                          | # <b>VD</b>                   |                              |                          |                        |
|                              | UNCTION VALUE           | F                                      | TION WIDTH | TION FUNC                |                          | 05 204 /                      |                              | >                        | DE TRC SCL             |
|                              |                         |                                        |            |                          |                          | 85.294 (<br>40.424 (          | 2.480 02 GHz<br>2.483 50 GHz |                          | l <u>1</u> f<br>l 1 f  |
|                              |                         |                                        |            |                          |                          | 41.332 0                      | .484 49 GHz                  |                          | i 1 f                  |



Date : 2018-03-02 No. : HM18010011 Page 46 of 62

| Frequency Range                     | Radiated Emission Attenuated below the Fundamental |
|-------------------------------------|----------------------------------------------------|
| [MHz]                               | [dB]                                               |
| 2483.5 - Highest Fundamental (2480) | 50.3                                               |

|                   | B             | and               | -edge Coi             | npliance o                                   | f RF Em | issions                    | , π/4 DQ            | PSK       | (Hopping     | On) – Upp                |                | 0                            |
|-------------------|---------------|-------------------|-----------------------|----------------------------------------------|---------|----------------------------|---------------------|-----------|--------------|--------------------------|----------------|------------------------------|
| 10 dB/            |               |                   | )ffset6dB<br>102.99dB | μV                                           |         |                            |                     |           |              |                          |                | 78 04 GHz<br>411 dBµV        |
| 93.0              |               |                   |                       | <b></b> 1-                                   |         |                            |                     |           |              |                          |                |                              |
| 83.0 A            | Aral Marin    | 'n <sub>u</sub> n | ᠰᡁᢔᠰ᠋ᢦᢇᡗ᠁             | w-hyler                                      | hand    |                            |                     |           |              |                          |                |                              |
| 63.0 —            |               |                   |                       |                                              |         |                            |                     |           |              |                          |                |                              |
| 53.0 -            |               |                   |                       |                                              |         |                            | _                   |           |              |                          |                |                              |
| 43.0 -            |               |                   |                       |                                              |         | (                          | > <mark>2 ∧3</mark> |           |              |                          |                |                              |
| 33.0 -            |               |                   |                       |                                              | 1 V.    | hand                       | handlager           | արհրդումի | -            | بمعاجمة مساحمهم المحاصية | www.www.www    | -                            |
| 23.0 —            |               |                   |                       |                                              |         |                            |                     |           |              |                          |                |                              |
| 13.0              |               |                   |                       |                                              |         |                            |                     |           |              |                          |                |                              |
|                   | 2.470<br>BW 1 |                   |                       |                                              | ∣<br>#V | BW 30                      | ) kHz               |           |              | Swe                      |                | 2.50000 GHz<br>ns (1001 pts) |
|                   | IDE TRC       | SCL               |                       | X<br>0.470.04.011-                           | Y       | 4 40.04                    | FUNCTIO             | N FU      | NCTION WIDTH |                          | FUNCTION VALUE | <u>^</u>                     |
| 1 N<br>2 N<br>3 N | <b>i</b> 1    | f<br>f            |                       | 2.478 04 GHz<br>2.483 50 GHz<br>2.484 49 GHz | 39.45   | 1 dBµV<br>6 dBµV<br>8 dBµV |                     |           |              |                          |                |                              |
| 4                 |               |                   |                       | 2.404 49 GHZ                                 | 30.80   | οασμν                      |                     |           |              |                          |                |                              |



## Date : 2018-03-02 No. : HM18010011

**Band-edge Emissions Measurement:** 

## **Result:** RF Radiated Emissions $-\pi/4$ DQPSK

|            | Field Strength of Band-edge Compliance |            |          |        |        |          |  |  |  |  |  |  |
|------------|----------------------------------------|------------|----------|--------|--------|----------|--|--|--|--|--|--|
| Peak Value |                                        |            |          |        |        |          |  |  |  |  |  |  |
| Frequency  | Measured                               | Correction | Field    | Limit  | Margin | E-Field  |  |  |  |  |  |  |
|            | Level @3m                              | Factor     | Strength | @3m    |        | Polarity |  |  |  |  |  |  |
| MHz        | dBuV                                   | dB/m       | dBuV/m   | dBuV/m | dB     |          |  |  |  |  |  |  |
| 2398.0     | 25.8                                   | 27.8       | 53.6     | 74.0   | 20.4   | Vertical |  |  |  |  |  |  |
| 2397.7     | 23.7                                   | 27.8       | 51.5     | 74.0   | 22.5   | Vertical |  |  |  |  |  |  |
| 2484.5     | 14.9                                   | 27.9       | 42.8     | 74.0   | 31.2   | Vertical |  |  |  |  |  |  |
| 2484.5     | 11.4                                   | 27.9       | 39.3     | 74.0   | 34.7   | Vertical |  |  |  |  |  |  |

|                                                          | Field Strength of Band-edge Compliance |        |          |        |      |          |  |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------------------------|--------|----------|--------|------|----------|--|--|--|--|--|--|--|
|                                                          | AverageValue                           |        |          |        |      |          |  |  |  |  |  |  |  |
| Frequency Measured Correction Field Limit Margin E-Field |                                        |        |          |        |      |          |  |  |  |  |  |  |  |
|                                                          | Level @3m                              | Factor | Strength | @3m    |      | Polarity |  |  |  |  |  |  |  |
| MHz                                                      | dBuV                                   | dB/m   | dBuV/m   | dBuV/m | dB   |          |  |  |  |  |  |  |  |
| 2398.0                                                   | 6.5                                    | 27.8   | 34.3     | 54.0   | 19.7 | Vertical |  |  |  |  |  |  |  |
| 2397.7                                                   | 6.7                                    | 27.8   | 34.5     | 54.0   | 19.5 | Vertical |  |  |  |  |  |  |  |
| 2484.5                                                   | -2.3                                   | 27.9   | 25.6     | 54.0   | 28.4 | Vertical |  |  |  |  |  |  |  |
| 2484.5                                                   | -2.1                                   | 27.9   | 25.8     | 54.0   | 28.2 | Vertical |  |  |  |  |  |  |  |

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 47 of 62



Page 48 of 62

### Date : 2018-03-02 No. : HM18010011 3.1.8 Time of Occupancy (Dwell Time)

### **Requirements:**

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed. No requirements for Digital Transmission System.

### **Spectrum Analyzer Setting:**

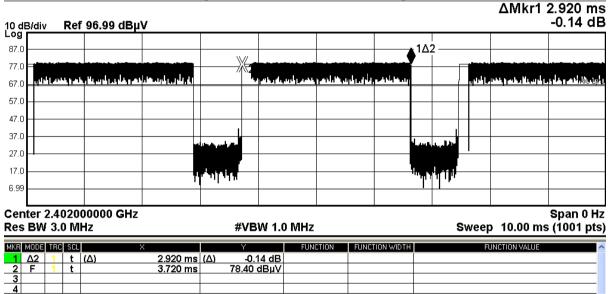
RBW = 300kHz,  $VBW \ge RBW$ , Sweep = A longer sweep time to show two successive hops on a channel, Span = Zero, Detector = Peak, Trace = Max. hold

Dwell Time = Pulse Duration \* hop rate / number of channel \* observation duration Observed duration:  $0.4s \ge 79 = 31.6s$ 

## Measurement Data:

Channel Occupied in  $\pi/4$  DQPSK: 79 of 79 Channel

| 10 dE<br>Log i | 3/div | Ref                       | 0.00 dBm   |                  |                                            |           |        |             |         |                       |                       |
|----------------|-------|---------------------------|------------|------------------|--------------------------------------------|-----------|--------|-------------|---------|-----------------------|-----------------------|
| -10.0          |       |                           |            |                  |                                            |           |        |             |         |                       |                       |
| -20.0          |       |                           |            |                  |                                            |           |        |             |         |                       |                       |
| -30.0          |       |                           |            | 1 /11            |                                            | 1         | · 1.   | . 1         |         |                       | 1                     |
| -30.0          | A     | WWY                       | horolyhoun | riliningan hilin | wlynyny yn y | 47Ustahah | uwvvuv | anna fa fan | Whyphym | www.                  | n harbary             |
| -40.0          | ļ     |                           |            |                  |                                            |           |        |             |         |                       |                       |
| -60.0          | ļ     |                           |            |                  |                                            |           |        |             |         |                       |                       |
| -80.0          | Ĵ     |                           |            |                  |                                            |           |        |             |         |                       |                       |
|                |       |                           |            |                  |                                            |           |        |             |         |                       | ١                     |
| -80.0          |       |                           |            |                  |                                            |           |        |             |         |                       |                       |
| -90.0          |       |                           |            |                  |                                            |           |        |             |         |                       |                       |
|                |       | 40000 <b>C</b><br>N 100 H |            |                  | #VB                                        | W 300 kHz |        |             | Swee    | Stop 2.<br>p 8.000 ms | 48350 GH<br>(1001 pts |


The Hong Kong Standards and Testing Centre Limited



### Date : 2018-03-02 No. : HM18010011 DH5 Packet:

DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times  $3.37 \times 31.6 = 106.6$  within 31.6 seconds

Fig. A [Pulse duration of Lowest Channel]



| 0 dB/div Ref                         | <sup>7</sup> 96.99 dBµ |               | <u>1 uise uu</u> | auon            |          |            | interj     |            |           |       | ∆Mkr1 -                                                                                                         | 2.920 ms<br>0.16 dE |
|--------------------------------------|------------------------|---------------|------------------|-----------------|----------|------------|------------|------------|-----------|-------|-----------------------------------------------------------------------------------------------------------------|---------------------|
| 87.0                                 | F                      |               | •                | 1 <u>\</u> 2    |          |            |            | //         |           |       |                                                                                                                 |                     |
| 77.0 =<br>67.0                       | فغريا أرور والانتكار   | . եստղել, դել |                  |                 | ուկլուն։ |            | , <b></b>  | <u>{</u> 2 |           |       | and the first of the state of the |                     |
| 57.0<br>47.0                         |                        |               |                  |                 |          |            |            |            |           |       |                                                                                                                 |                     |
| 37.0                                 |                        |               | i the desided of |                 |          |            |            | 1.4.4      | ي الم الأ |       |                                                                                                                 |                     |
| 17.0                                 |                        |               | i                |                 |          |            |            | , i a pi   | ր-րհի     |       |                                                                                                                 |                     |
| 6.99<br>Center 2.4410                | 00000 GHz              |               |                  |                 |          |            |            |            |           |       |                                                                                                                 | Span 0 H            |
| tes BW 3.0 M                         |                        |               | #V               | BW 1.0          | ) MHz    |            |            |            | S         | Sweep | ) 10.00 ms                                                                                                      |                     |
| MKR MODE TRC SCL<br>$1 \Delta 2 1 t$ | (Δ)                    | -2.920 ms     |                  | 0.1 <u>6</u> dB | FUN      | CTION FUNC | TION WIDTH |            |           | FL    | INCTION VALUE                                                                                                   | ·                   |
| 2 F 1 t<br>3 4                       |                        | 6.640 ms      | 78.7             | 8 dBµV          |          |            |            |            |           |       |                                                                                                                 |                     |

Fig. B [Pulse duration of Middle Channel]

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 49 of 62



## Date : 2018-03-02 No. : HM18010011

Page 50 of 62

Fig. C [Pulse duration of Highest Channel]

|         |         |                          |             | [I uise uu           | 1 auton 01 1            | ingnest Ch         | anner                                                |              |            |      |                          |                    |
|---------|---------|--------------------------|-------------|----------------------|-------------------------|--------------------|------------------------------------------------------|--------------|------------|------|--------------------------|--------------------|
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      | ∆Mkr1                    | 2.920 m            |
| dB/div  | Ref     | <sup>,</sup> 96.99 dBµ   | v           |                      |                         |                    |                                                      |              |            |      |                          | -0.18 d            |
|         | 1101    | <u> </u>                 | ·           |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      | <u>∎</u> 1Δ2 | 2          |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      | <b>)</b>     | _          |      |                          |                    |
|         |         | u. I I                   | المالية معل |                      |                         | والمراجع والمتحدين |                                                      |              |            |      |                          | h                  |
| 1111    | ייקיייי | فرو والروب والمرود والرو |             |                      | ويتبطل باريش القراريا و | יקשויקי הייקרי     | <b>1 - 1 - 1 - 1</b> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |              |            | 1111 | وأوالا بالأربطان والطالة | <u>איי דן ייזא</u> |
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             | uluturus l           |                         |                    |                                                      |              | و امریند و | -    |                          | +                  |
| 1       |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             | ղել՝ սի <sup>լ</sup> |                         |                    |                                                      | 116          | նըրդ       |      |                          |                    |
|         |         |                          | •           |                      |                         |                    |                                                      | <u>'</u>     | -11-1      |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      |              | •          |      |                          |                    |
| ter 2.4 | 4800    | 00000 GHz                |             |                      |                         |                    |                                                      |              |            |      |                          | Span 0             |
| BW 3    | 8.0 MI  | Hz                       |             | #VE                  | 3W 1.0 MHz              | Z                  |                                                      |              | S          | weep | p 10.00 ms               | s (1001 pi         |
| MODE TR | ad sa l |                          | x           | I Y                  | E E I I                 | NCTION FUNC        | TION WIDTH                                           |              |            | 13   | UNCTION VALUE            |                    |
| Δ2 1    |         | (Δ)                      | 2.920 ms    | (Δ) -0               | .18 dB                  |                    |                                                      |              |            |      |                          |                    |
| F 1     | t       |                          | 3.720 ms    |                      | dBµV                    |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             |                      |                         |                    |                                                      |              |            |      |                          |                    |
|         |         |                          |             | 1                    |                         |                    |                                                      |              |            |      |                          |                    |



### Date : 2018-03-02 No. : HM18010011 DH3 Packet:

DH3 Packet permit maximum 1600/79/4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times  $5.06 \times 31.6 = 160$  within 31.6 seconds

|                                                 |                          | [Pulse du                                    | ration of I     | Lowest Cha                                    | annel]     |                   | ΔMkr′     | 1 1.670 m<br>-1.61 dE |
|-------------------------------------------------|--------------------------|----------------------------------------------|-----------------|-----------------------------------------------|------------|-------------------|-----------|-----------------------|
| 0 dB/div Ref 96.<br>99                          | .99 dBµV                 |                                              |                 |                                               |            |                   |           | -1.01 u               |
| 77.0<br>87.0 <mark></mark>                      |                          | <b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b> |                 | ولما <u>به أورو رائد ما ر</u> يك              |            | 1Δ2               |           |                       |
| 57.0 - <b>1140 - 711 F L - 16 - L -</b><br>57.0 |                          |                                              | uline éli elu i | <u>, , , , , , , , , , , , , , , , , , , </u> |            |                   |           | TRIG L                |
| 7.0                                             |                          |                                              |                 |                                               |            |                   |           |                       |
| 7.0                                             | والمرادة القرائد المراجع | ال برياني<br>ا                               |                 |                                               |            | المن وعقا والصغرق |           |                       |
| 99                                              | C.Huth Willien           | •••••••••                                    |                 |                                               |            |                   | 1. m      |                       |
| enter 2.4020000                                 | 00 GHz                   |                                              |                 |                                               |            | _                 |           | Span 0 I              |
| es BW 3.0 MHz<br>R Mode TRC SCL                 | ×                        | #VB                                          | W 1.0 MHz       |                                               | TION WIDTH | -                 | D 5.000 n | ns (1001 pl           |
| 1 Δ2 1 t (Δ)<br>2 F 1 t                         | 1.670 ms<br>1.820 ms     | ( <u>Δ)</u> -1.6<br>76.72                    | δ1 dB<br>dBμV   |                                               |            |                   |           |                       |
| 3 4                                             |                          |                                              |                 |                                               |            |                   |           |                       |

Fig. E [Pulse duration of Middle Channel]

Fig. D Pulse duration of Lowest Channe

|                       |           |                   |                                      |    | ∆2             |                     |                    |   |                   |                      |                         |
|-----------------------|-----------|-------------------|--------------------------------------|----|----------------|---------------------|--------------------|---|-------------------|----------------------|-------------------------|
|                       |           | 1                 |                                      |    | a plant of the | and provide a state | and the start of a | X | 2                 |                      | al photo your           |
|                       |           |                   |                                      |    |                |                     |                    |   |                   |                      | TRIG L'                 |
|                       |           |                   |                                      |    |                |                     |                    |   |                   |                      |                         |
|                       |           | الله ليتقتدر وروا | لى<br>بايام يوغارون                  |    |                |                     |                    |   | ار و التظیر اور ا | ر<br>مغر الما طرافان |                         |
|                       |           | -<br>-<br>        | ╹<br><del>╵<sup>┛╝</sup>╢╢╢</del> ┇╻ |    |                |                     |                    | - |                   | ╖ <sub>┛┛</sub>      |                         |
|                       |           | 1                 |                                      |    |                |                     |                    | • | •                 |                      |                         |
| er 2.4410<br>3W 3.0 M | 00000 GHz |                   | #\                                   | /B | W 1.0 MHz      |                     |                    |   | Sween             | 5 000 m              | Span 0 F<br>is (1001 pt |

| MK | н мо | леј тн | u su | X             | Ý           | FUNCTION | FUNCTION WIDTH | FUNCTION VALUE |
|----|------|--------|------|---------------|-------------|----------|----------------|----------------|
| 1  | Δ2   | 2 1    | t    | (Δ) -1.670 ms | (Δ) 1.91 dB |          |                |                |
| 2  | 2 F  | 1      | t    | 3.560 ms      | 77.94 dBµV  |          |                |                |
| 3  | 3    |        |      |               |             |          |                |                |
| 2  | 1    |        |      |               |             |          |                |                |
|    |      |        |      |               |             |          |                |                |

The Hong Kong Standards and Testing Centre Limited



Page 52 of 62

Date : 2018-03-02 No. : HM18010011

> Fig. F [Pulse duration of Highest Channel]

| 10 dB/div Ref 9                                        | i6.99 dBμV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       |                     | ∆Mkr1         | 1.670 ms<br>-2.08 dB |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|-----------------------|---------------------|---------------|----------------------|
| 87.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       | ▲1∆2                |               |                      |
| 77.0<br>67.0 <b>1.34 (1.4)</b> (1.4)                   | A Line and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>* 2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | الدأورة والمربقة والاستألاة | يه أو معاد وله العربة |                     |               | al the ball of       |
| 57.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       |                     |               | TRIG LVL             |
| 47.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       |                     |               |                      |
| 37.0                                                   | المتعادية المتعادية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | letiletiset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                             |                       | والمتعادية والمتعاد | a di sa si s  |                      |
| 17.0                                                   | and a state of a state | , the state of the |               |                             |                       |                     |               |                      |
| 5.99                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       |                     |               |                      |
| enter 2.480000<br>es BW 3.0 MHz                        | enter 2.480000000 GHz Span 0 H<br>es BW 3.0 MHz #VBW 1.0 MHz Sweep 5.000 ms (1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                             |                       |                     |               |                      |
| ikr mode trc scl                                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | CTION FUNC                  | TION WIDTH            | F                   | UNCTION VALUE |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>1.670 ms</u><br>1.890 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <u>∆)</u> -2.0<br>78.21 ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l8 dB<br>1BμV |                             |                       |                     |               |                      |



#### Date : 2018-03-02 : HM18010011 No. **DH1 Packet:**

DH1 Packet permit maximum 1600/79/2 = 10.12 hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times  $10.12 \times 31.6 = 320$  within 31.6 seconds

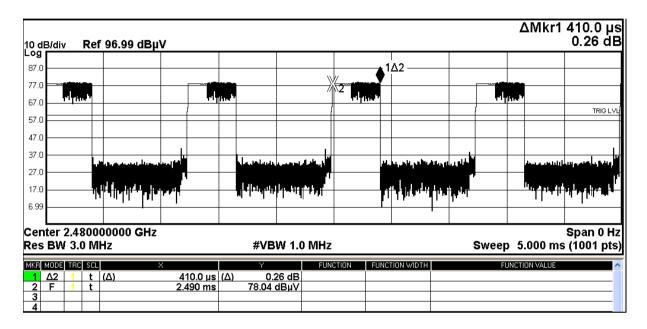
Fig. G [Pulse duration of Lowest Channel] ∆Mkr1 410.0 µs 0.36 dB 10 dB/div Log Ref 96.99 dBµV 87.0 77 f 1Δ2 67.0 **添**2 TRIG L V 57.0 47 f 37.0 27.0 17.0 . 111 6.99 Center 2.402000000 GHz Span 0 Hz Res BW 3.0 MHz #VBW 1.0 MHz Sweep 5.000 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH t (∆) t 410.0 µs (∆) 2.490 ms 0.36 dB 67.00 dBµV <u>Δ2</u> F

Fig. H [Pulse duration of Middle Channel] ΔMkr1 -410.0 μs 10 dB/div Log **F** Ref 96.99 dBµV



The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.


## Page 53 of 62



Date : 2018-03-02 No. : HM18010011

Fig. I[Pulse duration of Highest Channel]

Page 54 of 62



Time of occupancy (Dwell Time):

| Data Packet | Frequency<br>(MHz) | Pulse Duration (ms) | Dwell Time<br>(s) | Limits<br>(s) | Test Results |
|-------------|--------------------|---------------------|-------------------|---------------|--------------|
| DH5         | 2402               | 2.920               | 0.312             | 0.400         | Complies     |
| DH5         | 2441               | 2.920               | 0.312             | 0.400         | Complies     |
| DH5         | 2480               | 2.920               | 0.312             | 0.400         | Complies     |
| DH3         | 2402               | 1.670               | 0.267             | 0.400         | Complies     |
| DH3         | 2441               | 1.670               | 0.267             | 0.400         | Complies     |
| DH3         | 2480               | 1.670               | 0.267             | 0.400         | Complies     |
| DH1         | 2402               | 0.410               | 0.131             | 0.400         | Complies     |
| DH1         | 2441               | 0.410               | 0.131             | 0.400         | Complies     |
| DH1         | 2480               | 0.410               | 0.131             | 0.400         | Complies     |

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.



Page 55 of 62

### Date : 2018-03-02 No. : HM18010011 3.1.9 Channel Centre Frequency

### **Requirements:**

Frequency hopping system in the 2400-2483.5MHz band shall use at least 79 (Channel 1 to 79) non-overlapping channels.

The EUT operates in according with the Bluetooth system specification within the 2400 - 2483.5 MHz frequency band.

RF channels for Bluetooth systems are spaced 1 MHz and are ordered in channel number k. In order to comply with out-of-band regulations, a lower frequency guard band of 2.0 MHz and a higher frequency guard band of 3.5MHz is used.

The operating frequencies of each channel are as follows:

First RF channel start from 2400MHz + 2MHz guard band = 2402MHz Frequency of RF Channel = 2402+k MHz, k = 1,...,79 (Channel separation = 1MHz)



Page 56 of 62

### Date : 2018-03-02 No. : HM18010011 3.1.10 Pseudorandom Hopping Algorithm

### **Requirements:**

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

### **EUT Pseudorandom Hopping Algorithm**

The EUT is a Bluetooth device, the Pseudo-random hopping pattern; hopping characteristics and algorithm are based on the Bluetooth specification.



### Date : 2018-03-02 No. : HM18010011

Page 57 of 62

### 3.1.11 Antenna Requirement

Test Requirements: § 15.203

### **Test Specification:**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### **Test Results:**

This is Circuit printed meander line antenna. There is no external antenna, the antenna gain = -0.58dBi. User is unable to remove or changed the Antenna.



Date : 2018-03-02 No. : HM18010011 3.1.12 RF Exposure

Test Requirement: Test Date: Mode of Operation: FCC 47CFR 15.247(i) 2018-02-22 On mode

### **Requirements:**

In 15.247(i), an equipment shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the limits in §§ 1.1310 and 2.1093 of this chapter.

Applications to the Commission for construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities must contain a statement confirming compliance with the limits unless the facility, operation, or transmitter is categorically excluded, as discussed below. Technical information showing the basis for this statement must be submitted to the Commission upon request.

According to KDB447498 D01 General RF Exposure Guidance v06, unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition.

### **RF Exposure Evaluation**

The Maximum tune-up power = -4.66dBm (0.342mW)

SAR Test Exclusion Thresholds= $0.1 \le 3.0$  for 1-g SAR,

The test separation distances is ≤5 mm The power tune up tolerance is -6.36±1.70dBm Max. duty factor is 100%

The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 58 of 62



## Date : 2018-03-02 No. : HM18010011

Page 59 of 62

## Appendix A

## List of Measurement Equipment

| Radiated Emission |                                                 |                             |           |            |            |            |  |  |
|-------------------|-------------------------------------------------|-----------------------------|-----------|------------|------------|------------|--|--|
| EQP NO.           | DESCRIPTION                                     | MANUFACTURER                | MODEL NO. | SERIAL NO. | LAST CAL   | DUE CAL    |  |  |
| EM299             | DOUBLE-RIDGED WAVEGUIDE<br>HORN ANTENNA         | ETS-LINDGREN                | 3115      | 00114120   | 2016/04/27 | 2018/04/27 |  |  |
| EM215             | MULTIDEVICE CONTROLLER                          | EMCO                        | 2090      | 00024676   | N/A        | N/A        |  |  |
| EM217             | ELECTRIC POWERED<br>TURNTABLE                   | EMCO                        | 2088      | 00029144   | N/A        | N/A        |  |  |
| EM218             | ANECHOIC CHAMBER                                | ETS-LINDGREN                | FACT-3    |            | 2017/04/20 | 2018/04/20 |  |  |
| EM356             | ANTENNA<br>POSITIONING TOWER                    | ETS-LINDGREN                | 2171B     | 00150346   | N/A        | N/A        |  |  |
| EM355             | BICONILOG ANTENNA                               | ETS-LINDGREN                | 3143B     | 00094856   | 2016/03/03 | 2018/03/03 |  |  |
| EM229             | EMI TEST RECEIVER                               | R&S                         | ESIB40    | 100248     | 2017/06/01 | 2018/06/01 |  |  |
| EM353             | LOOP ANTENNA                                    | ETS_LINDGREN                | 6502      | 00206533   | 2016/03/16 | 2018/03/16 |  |  |
| EM302             | PRECISION OMNIDIRECTIONAL<br>DIPOLE (1 – 6GHZ)  | SEIBERSDORF<br>LABORATORIES | POD 16    | 161806/L   | 2016/05/11 | 2018/05/11 |  |  |
| EM303             | PRECISION OMNIDIRECTIONAL<br>DIPOLE (6 – 18GHZ) | SEIBERSDORF<br>LABORATORIES | POD 618   | 6181908/L  | 2016/05/11 | 2018/05/11 |  |  |

### Line Conducted

| EQP NO. | DESCRIPTION                            | MANUFACTURER                        | MODEL NO. | SERIAL<br>NO.       | LAST CAL   | DUE CAL    |
|---------|----------------------------------------|-------------------------------------|-----------|---------------------|------------|------------|
| EM119   | LISN                                   | R & S                               | ESH3-Z5   | 0831.5518.5<br>2    | 2017/11/29 | 2018/11/29 |
| EM181   | EMI TEST RECEIVER                      | ROHDE & SCHWARZ                     | ESIB7     | 100072              | 2017/06/01 | 2018/06/01 |
| EM179   | IMPULSE LIMITER                        | ROHDE & SCHWARZ                     | ESH3-Z2   | 357-<br>8810.52/54  | 2018/01/11 | 2019/01/11 |
| EM154   | SHIELDING ROOM                         | SIEMENS<br>MATSUSHITA<br>COMPONENTS | N/A       | 803-740-<br>057-99A | 2017/02/02 | 2022/02/02 |
| N/A     | MEASUREMENT AND<br>EVALUATION SOFTWARE | ROHDE & SCHWARZ                     | ESIB-K1   | V1.20               | N/A        | N/A        |

### Remarks:-

- CM Corrective Maintenance
- N/A Not Applicable or Not Available
- TBD To Be Determined

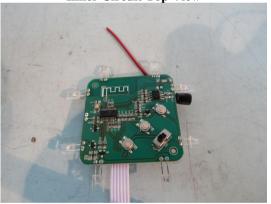
The Hong Kong Standards and Testing Centre Limited



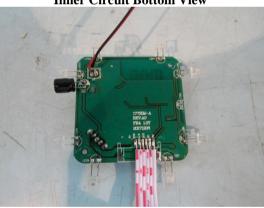
Date : 2018-03-02 No. : HM18010011 Page 60 of 62

## **Appendix B**

### Photographs of EUT


Front View of the product




**Inner Circuit Top View** 



**Inner Circuit Bottom View** 



**Inner Circuit Top View** 



**Inner Circuit Bottom View** 





Date : 2018-03-02 No. : HM18010011 Page 61 of 62

Photographs of EUT





Measurement of Radiated Emission Test Set Up





Date : 2018-03-02 No. : HM18010011

**Photographs of EUT** 

Measurement of Radiated Emission Test Set Up



Measurement of Radiated Emission Test Set Up



The Hong Kong Standards and Testing Centre Limited Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 62 of 62

## **Conditions of Issuance of Test Reports**

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. The Report refers only to the sample tested and does not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 5. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 6. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 7. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 8. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 10. Issuance records of the Report are available on the internet at www.stc-group.org. Further enquiry of validity or verification of the Reports should be addressed to the Company.