

DATE: 22 September 2013

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

for

OrCam Technologies Ltd.

Equipment under test:

Image Processing Vision System

ORC0011013

Written by: <u>Pait Pinchuck</u> R. Pinchuck, Documentation

Approved by: _

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

See Customer's Declaration on Page 6.

Measurement/Technical Report for OrCam Technologies Ltd.

Image Processing Vision System

ORC0011013

FCC ID: 2AAWI00113

This report concerns:

Original Grant: Class I Change: Class II Change:

Equipment type:

Spread Spectrum Transmitter

Х

Limits used:

47CFR15 Section 15.247

Measurement procedure used is DA 00-705 and ANSI C63.4-2003.

Application for Certification	Applicant for this device:		
prepared by:	(different from "prepared by")		
Ishaishou Raz	Erez Naaman		
ITL (Product Testing) Ltd.	13 Hartom Street		
Kfar Bin Nun	Jerusalem, 91450		
D.N. Shimshon 99780	Israel		
Israel	Tel: +972-2-591-7805		
e-mail Sraz@itl.co.il	Fax: +972-2-586-0121 e-mail: erez.naaman@orcam.com		

TABLE OF CONTENTS

1.	GENERAL INFORMATION	5
	1.1 Administrative Information	5
	1.2 List of Accreditations	7
	1.3 Product Description	8
	1.4 Lest Methodology	8
	1.5 Lest Facility	88 ہ
		0
2.	SYSTEM TEST CONFIGURATION	9
	2.1 Justification	9
	2.2 EUT Exercise Software	9
	2.3 Special Accessories	9
	2.4 Equipment Mouncations	9 Q
3.	CONDUCTED AND RADIATED MEASUREMENT TEST SET-UP PHOTO	10
4.	CONDUCTED EMISSION DATA	13
	4.1 Test Specification	13
	4.2 Test Procedure	
	4.3 Measured Data	
	4.4 Lest Instrumentation Used, Conducted Measurement	18
5.	6DB MINIMUM BANDWIDTH	19
	5.1 Test Specification	19
	5.2 Test procedure	19
	5.3 Lest Results	21
	5.4 Test Equipment Used. 6dB Bandwidth	
6.	26DB BANDWIDTH	23
	6.1 Test Specification	23
	6.2 Test procedure	23
	6.3 Lest Results	
		20
7.	20DB BANDWIDTH	27
	7.1 Test Specification	27
	7.2 Test procedure	21
	7.5 Test Results	29 30
-		
8.	NUMBER OF HOPPING FREQUENCIES SECTION 15.247(A)(1)(III)	31
9.	CHANNEL FREQUENCY SEPARATION	38
	9.1 Test Specification	38
10.	RADIATED POWER OUTPUT	41
	10.1 Test Specification	41
	10.2 Test procedure	41
	10.3 Results Calculation	45
	10.4 Test Equipment Used, Radiated Maximum Power Output	46
11.	DWELL TIME ON EACH CHANNEL	47
	11.1 Lest Specification	
	11.2 Lest Procedure	47
	11.0 Test Results	47 40
12.	BAND EDGE	50
	12.1 Lest procedure	
	12.2 Kesuits table	
	12.5 Lest Equipment Usea, Bana eage Spectrum	53

13.	RADIATED	D EMISSION, 9 KHZ – 30 MHZ	54
	13.1	Test Specification	54
	13.2	Test Procedure	54
	13.3	Measured Data	54
	13.4	Test Instrumentation Used, Radiated Measurements	55
	13.5	Field Strength Calculation	56
14.	SPURIOUS	S RADIATED EMISSION 30 – 25,000 MHZ	57
	14.1	Test Specification	57
	14.2	Test Procedure	57
	14.3	Test Data	58
	14.4	Test Instrumentation Used, Radiated Measurements	61
	14.5	Field Strength Calculation 30 – 1000 MHz	62
15.	ANTENNA	GAIN/INFORMATION	63
16.	R.F EXPO	SURE/SAFETY	64
17.	APPENDI)	(B - CORRECTION FACTORS	65
	17.1	Correction factors for CABLE	65
	17.2	Correction factors for CABLE	66
	17.3	Correction factors for CABLE	67
	17.4	Correction factors for CABLEError! Bookmark not de	fined.
	12.6	Correction factors for LOG PERIODIC ANTENNA	68
	17.5	Correction factors for LOG PERIODIC ANTENNAError! Bookmark not	defined.
	17.6	Correction factors for BICONICAL ANTENNA	69
	17.7	Correction factors for BICONICAL ANTENNA Error! Bookmark not de	fined.
	17.8	Correction factors for Double-Ridged Waveguide Horn	70
	17.9	Correction factors for Horn Antenna	71
	17.10	Correction factors for Horn Antenna Error! Bookmark not de	fined.
	17.11	Correction factors for ACTIVE LOOP ANTENNA	72

1. General Information

1.1	Administrative Information	
	Manufacturer:	OrCam Technologies Ltd.
	Manufacturer's Address: Manufacturer's Representative:	13 Hartom St., Jerusalem, 91450 Israel Tel: +972-2-591-7805 Fax: +972-2-586-0121 Erez Naaman
	Equipment Under Test (E.U.T):	Image Processing Vision System
	Equipment Model No.:	ORC0011013
	Equipment Serial No.:	OB014
	Date of Receipt of E.U.T:	04.08.2013
	Start of Test:	04.08.2013
	End of Test:	08.08.2013
	Test Laboratory Location:	I.T.L (Product Testing) Ltd. Kfar Bin Nun, ISRAEL 99780
	Test Specifications:	FCC Part 15 Sub-part C

Date 15.9.13

DECLARATION

I hereby declare that the name, model, and serial number of the E.U.T. tested at the I.T.L. EMC laboratory between August 4, 2013 and August 8, 2013 is as follows:

E.U.T. Name:	Image Processing Vision System
Model Name:	ORC0011013
Serial Number:	OB014

Please use the above names and serial number in the test report and certificate.

Thank you,

Signature:		
Printed Nar	ne: EREZ NAAMAN	
Títle: VP of	Engineering and Business Developmen	t

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The OrCam ORC0011013 is an assistance device for the visually impaired. It is comprised of two units connected by a shielded cable. The head unit includes a camera with sLVDS output, a microphone and a bone conduction head phone. The base unit includes a quadcore 1.2 GHz processor and LPDDR2 at 533 MHz. The outside connections are USB2, Bluetooth, a custom connector for possible addons in the future and a power jack. The unit comes with a 2A 5V power supply.

The Bluetooth is used for one of two functions: 1. Sending audio to hearing aids that support Bluetooth. 2. Sending and receiving information from a cell phone – such as GPS data or results of our OCR.

The Bluetooth is discoverable whenever the device is on. The data rate is up to 700 Kb/sec.

1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in DA 00-705 and ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing November 21, 2012). I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 3.6 dB

Note: See ITL Procedure No. PM 198.

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 5.2 \text{ dB}$

Note: See ITL Procedure No. PM 198.

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

2. System Test Configuration

2.1 Justification

Radiated emission screening was performed in 3 orthogonal orientations. The worst case orientation was the vertical position.

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

No special accessories were needed to achieve compliance.

2.4 Equipment Modifications

No modifications were needed in order to achieve compliance

2.5 Configuration of Tested System

Figure 1. Configuration of Tested System

3. Conducted and Radiated Measurement Test Set-up Photo

Figure 2. Conducted Emission Test

Figure 3. Radiated Emission Test

Figure 4. Radiated Emission Test

Figure 5. Radiated Emission Test

Figure 6. Radiated Emission Test

Figure 7. Radiated Emission Test

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

4. Conducted Emission Data

4.1 Test Specification

F.C.C., Part 15, Subpart C

4.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 3. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall.

The E.U.T was powered from 115 V AC / 60 Hz via a 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, and using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Measured Data

JUDGEMENT: Passed by 11.58 dB

The margin between the emission levels and the specification limit is, in the worst case, 11.96 dB for the phase line at 0.194 MHz and 11.58 dB at 0.194 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in *Figure 8* to *Figure 11*.

TEST PERSONNEL:

Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

E.U.T Description	Image Processing Vision System
Туре	ORC0011013
Serial Number:	OB014
Specification:	F.C.C., Part 15, Subpart C
Lead:	Phase
Detectors:	Peak, Quasi-peak, Average

EDIT PEAK	LIST	(Final	Measurement	Results)	
 					_

Trace1:		cel:	CEZZBQP		
	Tra	ce2:	CE22BAP		
Trace3:		ce3:			
		TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT de
	1	Quasi Peak	150 kHz	35.96	-30.03
	1	Quasi Peak	190 kHz	50.74	-13.29
	2	Average	194 kHz	41.90	-11.96
	1	Quasi Peak	226 kHz	29.10	-33.48
	2	Average	254 kHz	35.74	-15.88
	1	Quasi Peak	258 kHz	46.57	-14.92
	1	Quasi Peak	318 kHz	37.25	-22.50
	2	Average	318 kHz	25.44	-24.31
	1	Quasi Peak	374 kHz	38.59	-19.81
	2	Average	382 kHz	26.09	-22.14
	2	Average	3.33 MHz	21.88	-24.11
	2	Average	5.494 MHz	21.44	-28.55
	2	Average	8.886 MHz	21.12	-28.87
	2	Average	15.406 MHz	20.13	-29.86
	1	Quasi Peak	23.05 MHz	30.93	-29.06
	2	Average	24.014 MHz	23.52	-26.48
	1	Quasi Peak	25.586 MHz	27.29	-32.70
	1	Quasi Peak	25.978 MHz	26.70	-33.30
	1	Quasi Peak	26.17 MHz	26.39	-33.60
	2	Tuesage	27 724 MTH	21 10	20.00

Date: 24.JUL.2013 12:36:24

Figure 8. Detectors: Peak, Quasi-peak, AVERAGE .

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description	Image Processing Vision System
Гуре	ORC0011013
Serial Number:	OB014
Specification: Lead: Detectors:	F.C.C., Part 15, Subpart C Phase Peak, Quasi-peak, Average

Date: 24.JUL.2013 12:35:13

Figure 9. Detectors: Peak, Quasi-peak, Average

E.U.T Descriptio	n Image Processing Vision System
Туре	ORC0011013
Serial Number:	OB014
Specification: Lead:	F.C.C., Part 15, Subpart C Neutral
Detectors:	Peak, Quasi-peak, Average

		a anana ar ar ar ann (an 1-1		1. A
	EDIT	PEAK LIST (Final	. Measurement Resul	ts)
Trad	cel:	CESSBOL		
Trad	ce2:	CE22BAP		
Trad	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	190 kHz	51.33	-12.69
2	Average	194 kHz	42.28	-11.58
1	Quasi Peak	266 kHz	47.09	-14.14
2	Average	266 kHz	36.37	-14.87
2	Average	314 kHz	26.54	-23.32
1	Quasi Peak	330 kHz	36.92	-22.52
2	Average	378 kHz	27.71	-20.60
1	Quasi Peak	394 kHz	38.80	-19.17
1	Quasi Peak	442 kHz	31.14	-25.88
1	Quasi Peak	502 kHz	33.58	-22.41
2	Average	502 kHz	20.38	-25.61
1	Quasi Peak	566 kHz	30.96	-25.03
2	Average	746 kHz	18.26	-27.73
1	Quasi Peak	1.07 MHz	30.90	-25.09
1	Quasi Peak	3.154 MHz	31.43	-24.56
2	Average	3.386 MHz	20.93	-25.06
1	Quasi Peak	5.094 MHz	27.81	-32.18
2	Average	13.002 MHz	24.81	-25.18
2	Average	24.014 MHz	22.94	-27.05
2	Average	24.034 MHz	21.31	-28.68

Date: 24.JUL.2013 12:41:35

Figure 10. Detectors: Peak, Quasi-peak, AVERAGE

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Descriptio	n Image Processing Vision System
Туре	ORC0011013
Serial Number:	OB014
Specification:	F.C.C., Part 15, Subpart C
Lead:	Neutral

Detectors:	Peak, Quasi-peak, Average
Deteotors.	i cun, adusi peun, menuge

Date: 24.JUL.2013 12:40:20

Figure 11 Conducted Emission: NEUTRAL Detectors: Peak, Quasi-peak, Average

		•			
Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Period
LISN	EMCO	3810/2BR	1297	December 16, 2012	1 Year
Transient Limiter	HP	11947A	3107A03041	February 25, 2013	1Year
EMI Receiver	Rohde & Schwarz	ESCI7	100724	December 27, 2012	1Year

4.4 Test Instrumentation Used, Conducted Measurement

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

5. 6dB Minimum Bandwidth

5.1 Test Specification

F.C.C. Part 15, Subpart C: 15.247(a)(2)

5.2 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters. The transmitter unit operated with normal modulation. The EMI receiver was set to 100 kHz resolution BW. The spectrum bandwidth of the transmitter unit was measured and recorded. The test was performed to measure the transmitter occupied bandwidth. The EUT was set up as shown in Figure 3, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on modulation envelope. The E.U.T. was tested in three frequencies: Low, Mid and High.

Figure 12. Low Channel

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR⊾ 8B8 kHz .40 dB

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR⊾ 913 kHz .62 dB

Figure 14. High Channel

5.3 Test Results

E.U.T Description: Image Processing Vision System Model: ORC0011013 Serial Number: OB014

Operation	Bandwidth	Specification
Frequency	Reading	
(MHz)	(MHz)	(MHz)
2402.00	0.913	>0.5
2441.00	0.888	>0.5
2488.00	0.913	>0.5

Figure 15 Test Results

JUDGEMENT:

Passed

TEST PERSONNEL: Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

5.4 Test Equipment Used. 6dB Bandwidth

Figure 16 Test Equipment Used

6. 26dB Bandwidth

6.1 Test Specification

F.C.C. Part 15, Subpart C: 15.247(a)(2)

6.2 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters. The transmitter unit operated with normal modulation. The EMI receiver was set to 100 kHz resolution BW. The spectrum bandwidth of the transmitter unit was measured and recorded. The test was performed to measure the transmitter occupied bandwidth. The EUT was set up as shown in Figure 3, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on modulation envelope. The E.U.T. was tested in three frequencies: Low, Mid and High

Figure 17. Low Channel

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR⊾ 1.370 MHz -.30 dB

Figure 19. High Channel

6.3 Test Results

E.U.T Description: Image Processing Vision System Model: ORC0011013 Serial Number: OB014

Operation	Bandwidth
Frequency	Reading
(MHz)	(MHz)
2402.00	1.375
2441.00	1.370
2480.00	1.355

Figure 20 Test Results

JUDGEMENT:

Passed

TEST PERSONNEL:

Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

6.4 Test Equipment Used.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 21 Test Equipment Used

7. 20dB Bandwidth

7.1 Test Specification

Specification: FCC Part 15, Subpart C (15.247-a2)

7.2 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters. The transmitter unit operated with normal modulation. The EMI receiver was set to 100 kHz resolution BW. The spectrum bandwidth of the transmitter unit was measured and recorded. The test was performed to measure the transmitter occupied bandwidth. The EUT was set up as shown in Figure 3, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on modulation envelope. The E.U.T. was tested in three frequencies : Low, Middle and High.

Figure 22. Low Channel

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR₄ 1.190 MHz .81 dB

Figure 24. High Channel

7.3 Test Results

E.U.T Description: Image Processing Vision System Model: ORC0011013 Serial Number: OB014

Operation	Bandwidth
Frequency	Reading
(MHz)	(MHz)
2402.00	1.295
2441.00	1.190
2480.00	1.250

Figure 25 Test Results

JUDGEMENT:

Passed

TEST PERSONNEL:

Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

7.4 Test Equipment Used.

20dB Bandwidth

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 26 Test Equipment Used

8.1 Test Specification

F.C.C., Part 15, Subpart C

8.2 Test Procedure

The E.U.T. was set to hopping mode. The spectrum analyzer was set to the following parameters:

Span: Every 40 MHz Frequency Band of Operation: 2402-2481 MHz RBW: 100kHz VBW: 300kHz Detector Function: Peak Trace: Maximum Hold The number of hopping frequencies is 79 (See plots).

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Ø

Figure 27. Frequency Hopping

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Figure 28. Frequency Hopping

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Ø

Figure 29. Frequency Hopping

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Figure 30. Frequency Hopping

8.3 Results table

E.U.T. Description: Image Processing Vision System Model No.: ORC0011013 Serial Number: OB014 Specification: FCC Part 15, Subpart C, 15.247(a)(1)(iii)

Number of Hopping Frequencies	Specification
79	>75

Figure 31 Number of Hopping Frequencies

TEST PERSONNEL:

Tester Signature: ______ Typed/Printed Name: A. Sharabi

Date: 17.09.13

8.4 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial	Calibration	
			Number	Last Calibration Date	Period
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	August 28, 2012	1 year

9. Channel Frequency Separation

9.1 Test Specification

Specification: FCC Part 15, Subpart C, 15.247(a) (1)

9.2 Test procedure

The E.U.T. was set to hopping mode. The spectrum analyzer was set to the following parameters: Span: 2 MHz RBW: 10kHz VBW: 10kHz Detector Function: Peak Trace: Maximum Hold The marker delta function to determine the separation between the peaks of the adjacent channels was used.

9.3 Results table

E.U.T. Description: Image Processing Vision System Model No.: ORC0011013 Serial Number: OB014

Specification: FCC Part 15, Subpart C, 15.247(a) (1)

Channel	Specification	Result	Margin
Frequency			
Separation			
(kHz)	(kHz)	(kHz)	(kHz)
2475.00	>793.00	1005.00	212.00

Figure 33 Channel Frequency Separation

JUDGEMENT:

Passed by 212.00 kHz

TEST PERSONNEL: Tester Signature: _ Typed/Printed Name: A. Sharabi

Date: 17.09.13

9.4 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial	Calibration	
			Number	Last Calibration Date	Period
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	August 28, 2012	1 year

10. Radiated Power Output

10.1 Test Specification

F.C.C. Part 15, Subpart C: 15.247(b)

10.2 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters. The transmitter unit operated with normal modulation. The EMI receiver was set to 1 MHz resolution BW. The EUT was set up as shown in Figure 3, and its proper operation was checked.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The E.U.T. was tested in three operating channels and frequencies (1 (2.402 GHz); 8 (2.441 GHz); 14 (2.480 GHz)).

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} [W]$$

(dep

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 2.401925 GHz B9.41 dBµV∕m

Figure 35 2402.00 MHz - Horizontal

ISRAEL TESTING LABORATORIES **Global Certifications You Can Trust**

Ø

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 2.440725 GHz 90.64 dBµV/m

Figure 37 2441.00 MHz - Horizontal

(i)

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 2.479875 GHz B9.36 dBµV/m

Figure 39 2480.00 MHz - Horizontal

10.3 Results Calculation

E.U.T. Description: Image Processing Vision System Model No.: ORC0011013 Serial Number: OB014 Specification: F.C.C. Part 15, Subpart C

The following calculations were used to determine maximum radiated power output.

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} [W]$$

Operation	Polarization	Power	Power	Specification	Margin
Frequency					
(MHz)		(dBuV/m)	(mW)	(mW)	(mW)
2402.00	V	94.28	0.80	1000	-999.20
2441.00	V	90.64	0.30	1000	-999.70
2480.00	V	89.36	0.30	1000	-999.70

Figure 40 Radiated Power Output

JUDGEMENT:

Passed

TEST PERSONNEL: Tester Signature:

150

Date: 17.09.13

Typed/Printed Name: A. Sharabi

10.4 Test Equipment Used, Radiated Maximum Power Output

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 41 Test Equipment Used

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

11. Dwell Time on Each Channel

11.1 Test Specification

FCC Part 15, Section 15.247(a)(1)(iii)

11.2 Test Procedure

The E.U.T. was tested in radiated mode using the substitutional antenna. The spectrum analyzer was set to 100 kHz RBW and 100 kHz VBW.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

11.3 Test Results

The E.U.T met the requirements of the FCC Part 15, Section 15.247(a)(1)(iii). Additional information of the results is given in *Figure 42 to Figure 43*.

Figure 42 — Ton=2.9msec

Figure 43 — Dwell time at 2.480GHz [32 X 2.9msec = 92.8msec, limit 400msec]

JUDGEMENT:

Passed

TEST PERSONNEL: Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

11.4 Test Equipment Used, Dwell Time.

Instrument	nstrument Manufacturer Model Serial		Serial	Calibratio	n
			Number	Last Calibration Date	Period
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 year

Figure 44 Test Equipment Used

12. Band Edge

[In Accordance with section 15.247(d)]

12.1 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters.

The transmitter unit operated with normal modulation. The EMI receiver was set to 1 MHz resolution BW. The EUT was set up as shown in Figure 3, and its proper operation was checked.

The EMI receiver was adjusted to the transmission channel at the maximum radiated level. The display line was set to 20 dBc and the EMI receiver was set to the band edge frequencies.

Maximum power level below 2400 MHz and above 2483.5 MHz was measured relative to power level at 2410 MHz, and 2475 MHz correspondingly.

The E.U.T. was tested in 2 operating channels and frequencies (1 (2.410 GHz); 14 (2.475 GHz)).

The E.U.T. was tested at 2410 and 2475 MHz with QPSK modulation.

Figure 45 — Lower Band Edge

Figure 46 — Upper Band Edge

12.2 Results table

E.U.T. Description: Image Processing Vision System Model No.: ORC0011013 Serial Number: OB014 Specification: F.C.C. Part 15, Subpart C (15.247 (d))

Operation Frequency	Band Edge	Spectrum Level	Specification	Margin
(MHz)	(MHz)	(dBuV/m)	(dBuV/m)	(dB)
2410	2400.0	55.55	74.3	-18.80
2475	2483.5	56.17	69.4	-13.23

Figure 47 Band Edge

JUDGEMENT:

Passed by 13.23 dB

TEST PERSONNEL:

Tester Signature: _____

Date: 17.09.13

Typed/Printed Name: A. Sharabi

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A
Antenna-Log Periodic	A.H.System	SAS-200/511	253	April 2, 2013	2 years

12.3 Test Equipment Used, Band edge Spectrum

Figure 48 Test Equipment Used

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

13. Radiated Emission, 9 kHz – 30 MHz

13.1 Test Specification

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

13.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 3 meters.

The E.U.T. was tested in three operating channels and frequencies (1 (2.410 GHz); 8 (2.445 GHz; 14 (2.475 GHz)).

13.3 Measured Data

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 specification.

The results for all three channels were the same.

No signals were detected in the frequency range of 9 kHz – 30 MHz.

TEST PERSONNEL:

Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 21, 2012	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

13.4 Test Instrumentation Used, Radiated Measurements

Figure 49 Test Equipment Used

13.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

FS = RA + AF + CF

FS:	Field Strength [dBµv/m]
RA:	Receiver Amplitude [dBµv]
AF:	Receiving Antenna Correction Factor [dB/m]
CF:	Cable Attenuation Factor [dB]

Example: $FS = 30.7 dB\mu V (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB\mu V$

No external pre-amplifiers are used.

14.1 Test Specification

30 MHz- 25,000 MHz, F.C.C., Part 15, Subpart C

14.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground.

The frequency range 30 MHz-25,000 MHz was scanned and the list of the highest emissions was verified and updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

In the frequency range of 30 MHz - 2.9 GHz, the emissions were measured using a computerized EMI receiver complying with CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9-25.0 GHz, a spectrum analyzer including a low noise amplifier was used. During average measurements the IF bandwidth was 1 MHz and the video bandwidth was 100Hz. During peak measurements the IF bandwidth was 1 MHz and the video bandwidth was 3 MHz. The test distance was 3 meters.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The E.U.T. was tested in three operating channels and frequencies (1 (2.402 GHz); 8 (2.441 GHz; 14 (2480 GHz)).

14.3 Test Data

JUDGEMENT:

Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

For the operation channel 1 (2.402 GHz), the margin between the emission level and the specification limit is 13.0 db in the worst case at the frequency of 2390.00 MHz, horizontal polarization.

For the operation channel 8 (2.441 GHz), the margin between the emission level and the specification limit is 15.0 db in the worst case at the frequency of 4882.00 MHz, vertical polarization.

For the operation channel 14 (2.480 GHz), the margin between the emission level and the specification limit is 14.1 db in the worst case at the frequency of 4960.00 MHz, vertical polarizations.

TEST PERSONNEL:

Tester Signature:

Date: 17.09.13

Typed/Printed Name: A. Sharabi

Radiated Emission

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Test Distance: 3 meters

Frequency range: 1.0 GHz to 25.0 GHz Detector: Peak

Operation Frequency	Freq.	Polarity	Peak Reading	Peak. Specification	Peak. Margin
(MHz)	(MHz)	(H/V)	(dBµV/m)	(dB μ V/m)	(dB)
2402.0	2390.0	Н	40.9	74.0	-33.1
2402.0	2390.0	V	53.8	74.0	-20.2
2402.0	4804.0	Н	48.0	74.0	-26.0
2402.0	4804.0	V	51.6	74.0	-22.4
2441.0	4882.0	Н	57.8	74.0	-16.2
2441.0	4882.0	V	59.0	74.0	-15.0
2480.0	4960.0	Н	58.9	74.0	-15.2
2480.0	4960.0	V	59.9	74.0	-14.1
2480.0	2483.5	Н	50.7	74.0	-23.3
2480.0	2483.5	V	54.0	74.0	-20.0

Figure 50. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

"Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

Radiated Emission

E.U.T DescriptionImage Processing Vision SystemTypeORC0011013Serial Number:OB014

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Test Distance: 3 meters Frequency range: 1.0 GHz to 25.0 GHz Detector: Average

Operation Frequency	Freq.	Polarity	Average Reading	Average Specification	Average Margin
(MHz)	(MHz)	(H/V)	(dBµV/m)	(dB µV/m)	(dB)
2402.0	2390.0	Н	40.9	54.0	-13.1
2402.0	2390.0	V	41.0	54.0	-13.0
2402.0	4804.0	Н	35.0	54.0	-19.0
2402.0	4804.0	V	35.3	54.0	-18.7
2441.0	4882.0	Н	35.6	54.0	-18.4
2441.0	4882.0	V	36.9	54.0	-17.1
2480.0	4960.0	Н	36.3	54.0	-17.7
2480.0	4960.0	V	37.0	54.0	-17.0
2480.0	2483.5	Н	36.8	54.0	-17.2
2480.0	2483.5	V	37.3	54.0	-16.7

Figure 51. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Average Amp" includes correction factor.

"Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1Year
RF Filter Section	HP	85420E	3705A00248	February 26, 2013	1Year
Antenna Biconical	ЕМСО	3104	2606	August 30, 2012	1Year
Antenna Log Periodic	ARA	LPD-2010/A	1038	April 2, 2013	1 Year
Double Ridged Waveguide Horn Antenna	EMCO	3115	29845	March 14, 2012	2 Years
Horn Antenna	ARA	SWH-28	1007	January 26, 2011	3 Years
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	August 21, 2012	1 Year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	August 28, 2012	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	February 28, 2013	1 Year
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 Year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table	ARA	ACU-2/5	1001	N/A	N/A

14.4 Test Instrumentation Used, Radiated Measurements

Controller

14.5 Field Strength Calculation 30 – 1000 MHz

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

 $[dB\mu v/m] FS = RA + AF + CF$

FS:	Field Strength [dBµv/m]
RA:	Receiver Amplitude [dBµv]
AF:	Receiving Antenna Correction Factor [dB/m]
CF:	Cable Attenuation Factor [dB]

Example: $FS = 30.7 dB\mu V (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB\mu V$

No external pre-amplifiers are used.

15. Antenna Gain/Information

The antenna gain is -0.5 dBi.

16. R.F Exposure/Safety

Typical use of the E.U.T. is as an assistance device for the visually impaired. The typical distance between the E.U.T. and the user is 0.25 cm.

Calculation of Maximum Permissible Exposure (MPE) Based on Section 1.1310 Requirements

(a) FCC limits at MHz is:

 $1\frac{mW}{cm^2}$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$P_t$$
- Transmitted Power 94.28 dBm (Peak) = 0.8 mW

$$S = \frac{P_t G_t}{4\pi R^2}$$

G_T- Antenna Gain, -0.5 dBi =0.891 numeric R- Distance from Transmitter using 0.25 cm worst case

(c) The peak power density is :

$$S_p = \frac{0.8 \times 0.891}{4\pi (0.25)^2} = 0.91 \frac{mW}{cm^2}$$

(d) This is below the FCC limit.

17. APPENDIX B - CORRECTION FACTORS

17.1 Correction factors for CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)	(MHz)	(dB)
	(42)	(1,112)	(42)
10.0	0.3	1200.0	7.3
20.0	0.6	1400.0	7.8
30.0	0.8	1600.0	8.4
40.0	0.9	1800.0	9.1
50.0	1.1	2000.0	9.9
60.0	1.2	2300.0	11.2
70.0	1.3	2600.0	12.2
80.0	1.4	2900.0	13.0
90.0	1.6		
100.0	1.7	-	
150.0	2.0		
200.0	2.3		
250.0	2.7		
300.0	3.1		
350.0	3.4		
400.0	3.7		
450.0	4.0		
500.0	4.3		
600.0	4.7		
700.0	5.3		
800.0	5.9		
900.0	6.3		
1000.0	6.7		

NOTES:

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

17.2 Correction factors for CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION
	FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

NOTES:

1. The cable type is RG-8.

2. The overall length of the cable is 10 meters.

17.3 Correction factors for CABLE

FREQUENCY	CORRECTION	FREQUENCY	CORRECTION
	FACTOR		FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

from spectrum analyzer to test antenna above 2.9 GHz

NOTES:

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- *3. The overall length of the cable is 10 meters.*

12.6 Correction factors for

LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of 3 meters

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.1
250.0	10.2
300.0	12.5
400.0	15.4
500.0	16.1
600.0	19.2
700.0	19.4
800.0	19.9
900.0	21.2
1000.0	23.5

Distance of 10 meters				
FREQUENCY	AFE			
(MHz)	(dB/m)			
200.0	9.0			
250.0	10.1			
300.0	11.8			
400.0	15.3			
500.0	15.6			
600.0	18.7			
700.0	19.1			
800.0	20.2			
900.0	21.1			
1000.0	23.2			

NOTES:

1. Antenna serial number is 1038.

- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

17.4 Correction factors for BICONICAL ANTENNA Type 3104, S/N 2606 at 3 meter range

FREQUENCY	AFE
(MHz)	(dB/m)
30.0	14.5
40.0	12.8
50.0	12.7
60.0	11.2
70.0	8.7
80.0	7.5
90.0	13.0
100.0	12.3
120.0	12.5
140.0	11.2
160.0	14.8
180.0	16.4
200.0	16.0
250.0	17.8
300.0	20.7

17.5 Correction factors for

Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

FREQUENCY	ANTENNA	ANTENN	FREQUENCY	ANTENNA	ANTENNA
	FACTOR	A Gain		FACTOR	Gain
(GHz)	(dB 1/m)	(dBi)	(GHz)	(dB 1/m)	(dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

17.6 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

EDEOLIENCY		Coin
FREQUENCI		Gain
(GHz)	(dB /m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

17.7 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2