

DATE: 22 April 2019

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

For

Orcam Technologies Ltd.

Equipment under test:

Wearable Device

ORCAM MYME

Tested by:

M. Zohar

Approved by:

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd. This report relates only to items tested.

Measurement/Technical Report for Orcam Technologies Ltd.

Wearable Device

ORCAM MYME

FCC ID: 2AAWI-ORCAM-MYME

This report concerns:

Original Grant: X Class I Change: Class II Change:

Equipment type:

FCC: DSS Part 15 Spread Spectrum Transmitter

Limits used:

47CFR15 Section 15.247

Measurement procedures used are KDB 558074 D01 v05 and ANSI C63.10: 2013.

Application for Certification prepared by: R. Pinchuck ITL (Product Testing) Ltd. 1 Bat Sheva St. Lod 7116002 e-mail <u>Rpinchuck@itlglobal.org</u> Applicant for this device: (different from "prepared by") Ram Ben Yehuda 3 Kiryat Mada St. PO Box 45157 Jerusalem, 9777603, Israel Tel: +972-2-591-7805 Fax: +972-2-586-0121 e-mail: : <u>Rami.Ben-Yehuda@orcam.com</u>

TABLE OF CONTENTS

1.	GENERAL INFORMATION	-
	1.1 Administrative Information	5
	1.2 List of Accreditations	6
	1.3 Product Description	7
	1.4 Test Methodology	7
	1.5 Test Facility	7
	1.6 Measurement Uncertainty	7
2.	SYSTEM TEST CONFIGURATION	9
	2.1 Justification	
	2.2 EUT Exercise Software	
	2.3 Special Accessories	
	2.4 Equipment Modifications	
	2.5 Configuration of Tested System	
3.	CONDUCTED & RADIATED MEASUREMENT TEST SET-UP PHOTOS	·11
4.	CONDUCTED EMISSION FROM AC MAINS	
	4.1 Test Specification	
	4.2 Test Procedure	
	4.3 Test Limit	
	4.4 Test Results	
	4.5 Test Equipment Used; Conducted Emission from AC Mains	
5.	20DB MINIMUM BANDWIDTH	
	5.1 Test Specification	
	5.2 Test Procedure	
	5.3 Test Limit	
	5.4 Test Results	
	5.5 Test Equipment Used, 20 dB Minimum Bandwidth	
6.	OCCUPIED BANDWIDTH	-
	6.1 Test Specification	
	6.2 Test Procedure	
	6.3 Test Limit	
	6.4 Test Results	
	6.5 Test Equipment Used, Occupied Bandwidth	
7.	NUMBER OF HOPPING FREQUENCIES	
	7.1 Test Specification	
	7.2 Test Procedure	
	7.3 Test Limit	
	7.4 Test Results7.5 Test Equipment Used, Number of Hopping Frequencies	
•		
8.	CHANNEL FREQUENCY SEPARATION 8.1 Test Specification	
	8.2 Test Procedure	
	8.3 Test Limit	
	8.4 Test Results	
	8.5 Test Equipment Used, Channel Frequency Separation Test	
9.	PEAK OUTPUT POWER	40
	9.1 Test Specification	-
	9.2 Test Procedure	
	9.3 Test Limit	
	9.4 Test Results	
	9.5 Test Equipment Used, Peak Output Power	43

10.	DWELL TIME ON EACH CHANNEL	44
	10.1 Test Specification	
	10.2 Test Procedure	
	10.3 Test Limit	
	10.4 Test Results	
	10.5 Test Equipment Used, Dwell Time on Each Channel	
11.	BAND EDGE	-
	11.1 Test Specification	
	11.2 Test Procedure	
	11.3 Test Limit	
	11.4 Test Results 11.5 Test Equipment Used, Band Edge	
12.	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
	12.1 Test Specification	
	12.2 Test Procedure	-
	12.3 Test Limit 12.4 Test Results	
13.	EMISSIONS IN RESTRICTED FREQUENCY BANDS	
	13.1 Test Specification	
	13.2 Test Procedure 13.3 Test Limit	
	13.4 Test Results	
	13.5 Test Equipment Used, Emissions in Restricted Frequency Bands	
14.	AVG. FACTOR CALCULATION	
	14.1 Test Equipment Used, Average Factor	
15.	ANTENNA GAIN/INFORMATION	65
16.	R.F EXPOSURE/SAFETY	66
17.	APPENDIX A - CORRECTION FACTORS	67
	17.1 Correction factors for RF OATS Cable 35m ITL #1911	
	17.2 Correction factor for RF CABLE for Semi Anechoic Chamber	68
	17.3 Correction factors for Active Loop Antenna	69
	17.4 Correction factors for biconical antenna – ITL # 1356	
	17.5 Correction factors for log periodic antenna – ITL # 1349	
	17.6 Correction factors for Horn Antenna	
	17.7 Correction factors for Double – Ridged Waveguide Horn ANTENNA	
	17.8 Correction factors for Horn Antenna	74

1. General Information

1.1 Administrative Information

Manufacturer:	Orcam Technologies Ltd.
Manufacturer's Address:	3 Kiryat Mada St. P.O. Box 45157 Jerusalem, 9777603, Israel Tel: +972-2-591-7805 Fax: +972-2-586-0121
Manufacturer's Representative:	Ram Ben-Yehuda
Equipment Under Test (E.U.T):	Wearable Device
Model:	ORCAM MYME
Equipment Serial No.:	18380173
Date of Receipt of E.U.T:	December 6, 2018
Start of Test:	December 6, 2018
End of Test:	January 23, 2019
Test Laboratory Location:	I.T.L (Product Testing) Ltd. 1 Batsheva St., Lod ISRAEL 7120101
Test Specifications:	FCC Part 15, Subpart C, Section 15.247

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 *Product Description*

OrCam MyMe is a wearable device that uses smart artificial vision technology to recognize people.

Working voltage	3.7VDC Rechargeable battery operated via AC/DC adapter
Mode of operation	Transceiver
Modulation	STD(Basic)/EDR
Assigned Frequency Range	2400.0-2483.5MHz
Operating Frequency Range	2402.0-2480.0MHz
Transmit power	~10.0dBm
Antenna Gain	-2dBi
Modulation BW	~1MHz

1.4 *Test Methodology*

Radiated testing was performed according to the procedures in KDB 558074 D01 v05 and ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 *Measurement Uncertainty*

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.6 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site: 30-1000MHz: Expanded Uncertainty (95% Confidence, K=2): ± 4.96 dB

1 GHz to 6 GHz Expanded Uncertainty (95% Confidence, K=2): ±5.19 dB

>6 GHz Expanded Uncertainty (95% Confidence, K=2): ±5.51 dB

2. System Test Configuration

2.1 Justification

- 1. The E.U.T contains an IEEE 802.15.1 standard (STD/EDR) transceiver.
- 2. The unit was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz).
- 3. The evaluation was performed with the E.U.T connected to a typical AC/DC adapter via laptop in charge mode as the "worst case".
- 4. Conducted AC line emission testing was performed with 2 optional charge modes: AC/DC adapter via laptop & AC/DC adapter wall charger.
- 5. Final radiated emission test was performed after exploratory emission testing that was performed in 3 orthogonal polarities to determine the "worst case" radiation.

Orientation	Frequency	2 nd Harmonic	3 rd Harmonic	Band Edge
Orientation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)
	2402.0	55.1	68.2	64.3
X axis	2440.0	57.5	64.9	-
	2480.0	59.1	68.9	63.0
	2402.0	55.1	67.9	63.8
Y axis	2440.0	56.7	63.5	-
	2480.0	58.8	67.8	62.9
	2402.0	53.2	64.8	64.5
Z axis	2440.0	55.0	60.2	-
	2480.0	55.4	62.2	63.1

6. According to the below results the "worst case" was the X axis

Figure 1. Screening Results

7. Conducted emission tests were performed with the E.U.T. antenna terminal connected by a RF cable to the Spectrum Analyzer through a 30dB external attenuator.

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

Equipment	Manufacturer	Part Number	Serial Number
Laptop	DELL	LATITUDE E5440	14290776829
AC/DC adapter	DELL	LA90PM130	N/A
Wall charger	EDACPOWER ELEC.	EM1005AVEU	001626

2.4 Equipment Modifications

No modifications were needed in order to achieve compliance.

2.5 Configuration of Tested System

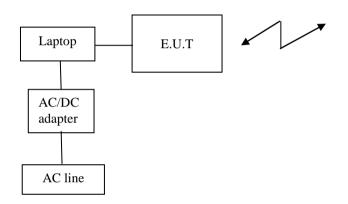
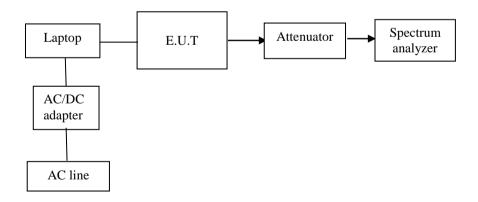



Figure 2. Configuration of Tested System – Radiated

Figure 3. Configuration of Tested System - Conducted

3. Conducted & Radiated Measurement Test Set-Up Photos

Figure 4. Conducted Emission from AC Line Test, AC/DC adapter via laptop charge mode

Figure 5. Conducted Emission from AC line Test, AC/DC wall charger mode

Figure 6. Radiated Emission Test, 0.009-30MHz

Figure 7. Radiated Emission Test, 30-200MHz

Figure 8. Radiated Emission Test, 200-1000MHz

Figure 9. Radiated Emission Test, 1-18GHz

Figure 10. Radiated Emission Test, 18-25GHz

4. Conducted Emission From AC Mains

4.1 *Test Specification*

FCC Part 15, Subpart C, Section 15.207

4.2 *Test Procedure*

(Temperature (20°C)/ Humidity (50%RH))

The E.U.T operation mode and test setup are as described in Section 2 of this report. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall. In the case of a floor-standing E.U.T., it was placed on the horizontal ground plane.

The E.U.T was powered from 115 V AC / 60 Hz via 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T.

The center of the E.U.T.'s AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The effect of varying the position of the cables was investigated to find the configuration that produces maximum emission. The configuration tested is shown in the photographs, *Figure 4* and *Figure 5*.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver and are displayed on the receiver's spectrum display.

The E.U.T was evaluated in TX operation mode.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

Frequency of emission (MHz)	Conducted limit (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

4.3 Test Limit

* Decreases with the logarithm of the frequency.

4.4 Test Results

JUDGEMENT: Passed by 6.32 dB

The margin between the emission levels and the specification limit is, in the worst case, 6.32 dB for the phase line at 0.366MHz and 9.14 dB at 0.442 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

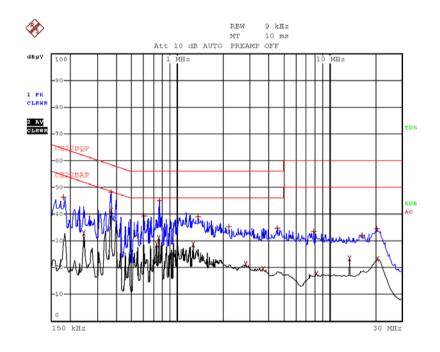
The details of the highest emissions are given in Figure 11 to Figure 18.

E.U.T Description Type Serial Number: Wearable Device ORCAM MYME 18380173

Specification:FCC Part 15, Subpart CLead:PhaseDetectors: :Peak, Quasi-peak, AveragePower OperationWall charger

	EDI	IT PEAK LIST (Fina	il Measurement Re	sults)
Tra	icel:	CE22BQP		
Tra	ice2:	CE22BAP		
Tra	ice3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT de
1	Quasi Peak	182 kHz	43.26	-21.13
2	Average	242 kHz	30.30	-21.72
1	Quasi Peak	366 kHz	45.79	-12.79
2	Average	366 kHz	42.27	-6.32
1	Quasi Peak	606 kHz	30.61	-25.38
2	Average	730 kHz	21.54	-24.45
2	Average	758 kHz	21.97	-24.02
1	Quasi Peak	762 kHz	35.22	-20.78
2	Average	1.274 MHz	22.42	-23.57
1	Quasi Peak	1.366 MHz	30.84	-25.15
1	Quasi Peak	2.19 MHz	26.50	-29.49
2	Average	2.822 MHz	19.45	-26.54
2	Average	3.662 MHz	17.94	-28.05
1	Quasi Peak	4.522 MHz	24.54	-31.45
1	Quasi Peak	7.882 MHz	22.72	-37.27
2	Average	8.19 MHz	16.31	-33.69
2	Average	13.558 MHz	23.14	-26.85
1	Quasi Peak	16.394 MHz	23.54	-36.45
1	Quasi Peak	20.538 MHz	27.66	-32.33
2	Average	20.662 MHz	22.57	-27.42

Date: 17.JAN.2019 15:26:34


Figure 11. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description	Wearable Device
Туре	ORCAM MYME
Serial Number:	18380173

Specification:	FCC Part 15, Subpart C
Lead:	Phase
Detectors:	Peak, Quasi-peak, Average
Power Operation	Wall charger

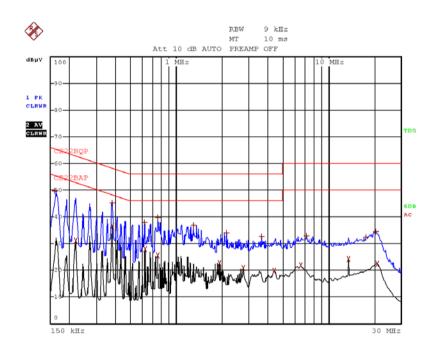
Date: 17.JAN.2019 15:25:18

E.U.T Description	Wearable Device
Туре	ORCAM MYME
Serial Number:	18380173

Specification:	FCC Part 15, Subpart C
Lead:	Neutral
Detectors:	Peak, Quasi-peak, Average
Power Operation	Wall charger

	ED1	T PEAK LIST (Fina	l Measurement Rea	sults)
Tra	cel:	CE22BQP		
Tra	ice2:	CE22BAP		
Tra	ice3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT d
1	Quasi Peak	162 kHz	47.02	-18.33
2	Average	218 kHz	31.26	-21.62
1	Quasi Peak	378 kHz	38.55	-19.76
2	Average	378 kHz	31.86	-16.46
1	Quasi Peak	618 kHz	25.81	-30.18
2	Average	622 kHz	19.96	-26.03
1	Quasi Peak	758 kHz	29.94	-26.05
2	Average	758 kHz	18.22	-27.77
1	Quasi Peak	1.294 MHz	22.53	-33.46
2	Average	1.918 MHz	14.22	-31.77
1	Quasi Peak	2.138 MHz	22.75	-33.25
2	Average	2.758 MHz	18.06	-27.93
1	Quasi Peak	3.654 MHz	25.52	-30.47
2	Average	4.414 MHz	16.84	-29.15
2	Average	6.582 MHz	20.59	-29.40
1	Quasi Peak	7.182 MHz	24.65	-35.34
2	Average	13.562 MHz	23.92	-26.07
1	Quasi Peak	17.586 MHz	24.97	-35.02
1	Quasi Peak	20.458 MHz	27.64	-32.35
2	Average	20.814 MHz	21.88	-28.11

Date: 17.JAN.2019 15:15:11


Figure 13. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description	Wearable Device
Туре	ORCAM MYME
Serial Number:	18380173

Specification:	FCC Part 15, Subpart C
Lead:	Neutral
Detectors:	Peak, Quasi-peak, Average
Power Operation	Wall charger

Date: 17.JAN.2019 15:12:16

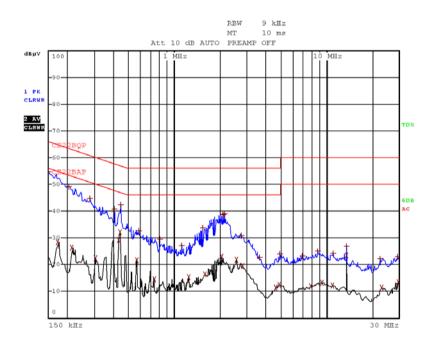
Figure 14 Detectors: Peak, Quasi-peak, Average

E.U.T Description Type Serial Number: Wearable Device ORCAM MYME 18380173

Specification:	FCC Part 15, Subpart C
Lead:	Phase
Detectors: :	Peak, Quasi-peak, Average
Power Operation	AC/DC adapter

	EDI	T PEAK LIST (Fin	al Measurement Re	sults)
Tra	cel:	CE22BQP		
Tra	ice2:	CE22BAP		
Tra	ice3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT di
1	Quasi Peak	150 kHz	47.58	-18.41
2	Average	174 kHz	25.72	-29.04
1	Quasi Peak	206 kHz	42.12	-21.23
2	Average	214 kHz	25.63	-27.41
1	Quasi Peak	278 kHz	36.58	-24.28
2	Average	302 kHz	20.67	-29.51
1	Quasi Peak	402 kHz	33.96	-23.84
2	Average	430 kHz	29.70	-17.54
2	Average	438 kHz	32.30	-14.79
1	Quasi Peak	442 kHz	38.46	-18.56
2	Average	566 kHz	20.72	-25.27
1	Quasi Peak	586 kHz	23.39	-32.60
2	Average	738 kHz	12.53	-33.46
1	Quasi Peak	806 kHz	21.44	-34.55
1	Quasi Peak	1.118 MHz	20.56	-35.43
2	Average	1.242 MHz	15.08	-30.91
1	Quasi Peak	1.538 MHz	27.30	-28.69
2	Average	1.594 MHz	15.13	-30.87
2	Average	2.058 MHz	21.35	-24.64
1	Quasi Peak	2.102 MHz	33.16	-22.83

Date: 17.JAN.2019 14:56:06


Figure 15. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description	Wearable Device
Туре	ORCAM MYME
Serial Number:	18380173

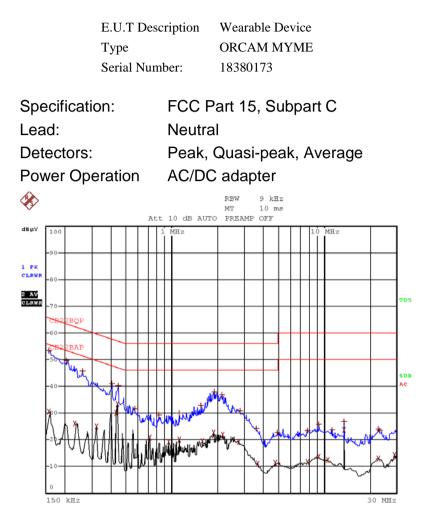
Specification:	FCC Part 15, Subpart C	
Lead:	Phase	
Detectors:	Peak, Quasi-peak, Average	
Power Operation	AC/DC adapter	

Date: 17.JAN.2019 14:52:45

E.U.T Description Type Serial Number:

Wearable Device ORCAM MYME 18380173

Specification:	FCC Part 15, Subpart C
Lead:	Neutral
Detectors:	Peak, Quasi-peak, Average
Power Operation	AC/DC adapter


	EDI	T PEAK LIST (Fina	il Measurement Re	sults)
Tra	cel:	CE22BQP		
Tra	ice2:	CE22BAP		
Tra	ice3:			
	TRACE	FREQUENCY	LEVEL dBuV	DELTA LIMIT d
1	Quasi Peak	154 kHz	47.51	-18.27
2	Average	170 kHz	29.03	-25.93
1	Quasi Peak	258 kHz	39.23	-22.26
2	Average	402 kHz	32.14	-15.66
1	Quasi Peak	442 kHz	38.27	-18.74
2	Average	442 kHz	37.88	-9.14
1	Quasi Peak	970 kHz	30.95	-25.04
2	Average	970 kHz	30.19	-15.80
2	Average	1.37 MHz	28.44	-17.55
1	Quasi Peak	1.982 MHz	31.83	-24.16
1	Quasi Peak	2.51 MHz	35.90	-20.09
2	Average	2.51 MHz	30.47	-15.52
2	Average	4.45 MHz	18.15	-27.84
1	Quasi Peak	4.722 MHz	20.98	-35.01
1	Quasi Peak	10.214 MHz	29.31	-30.68
2	Average	10.338 MHz	24.09	-25.90
2	Average	10.466 MHz	23.50	-26.49
1	Quasi Peak	10.474 MHz	29.98	-30.01
1	Quasi Peak	29.122 MHz	23.36	-36.63
2	Average	29.122 MHz	19.42	-30.57

Date: 23.JAN.2019 13:02:26

Figure 17. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

Date: 17.JAN.2019 15:01:10

Figure 18 Detectors: Peak, Quasi-peak, Average

4.5 Test Equipment Used; Conducted Emission from AC Mains	;
---	---

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
LISN	Fischer	FCC-LISN- 25A	127	July 20, 2018	July 31, 2019
Transient Limiter	HP	11947A	3107A03041	June 25, 2018	June 25, 2019
EMI Receiver	Rohde & Schwarz	ESCI7	100724	February 19, 2018	February 19, 2019
Cable CE Chamber 3M + 3M	Testline 18 + RJ214	11556	-	March 31, 2018	March 31, 2019

Figure 19 Test Equipment Used

5. 20dB Minimum Bandwidth

5.1 Test Specification

FCC, Part 15, Subpart C, Section 15.247(a)(1)

5.2 *Test Procedure*

(Temperature (22°C)/ Humidity (56%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. The transmitter unit operated with normal modulation.

The spectrum analyzer was set to the following parameters:

Span = ~ 2 to 3 times the 20dB bandwidth, centered on a hopping channel RBW $\geq 1\%$ of the 20dB bandwidth

Detector Function: Peak, Trace: Maximum Hold.

5.3 Test Limit

N/A

5.4 Test Results

Modulation	Operation Frequency	Bandwidth Reading	
(STD/EDR)	(MHz)	(kHz)	
	2402.0	882.2	
STD	2440.0	882.2	
510	2480.0	882.2	
	2402.0	1311.4	
EDR	2440.0	1311.4	
	2480.0	1311.4	


Figure 20 Test Results

JUDGEMENT:

Passed

For additional information see *Figure 21* to *Figure 26*.

Date: 4.DEC.2018 10:23:12

Figure 21. 2402MHz, STD

Date: 4.DEC.2018 10:26:59

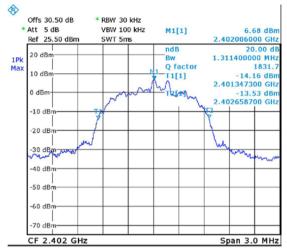



Figure 23. 2480MHz, STD Orcam Technologies Ltd.

Date: 4.DEC.2018 10:36:15

Date: 4.DEC.2018 10:33:32

Figure 24. 2402MHz, EDR

Figure 25. 2440MHz, EDR

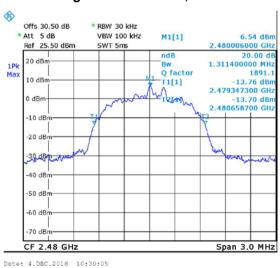


Figure 26. 2480MHz, EDR

5.5 Test Equipment Used, 20 dB Minimum Bandwidth

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below

Note: Testing was performed December 4, 2018

Figure 27 Test Equipment Used

6. Occupied Bandwidth

6.1 Test Specification

FCC, Part 15, Subpart C, Section 2.1048

6.2 Test Procedure

(Temperature $(22^{\circ}C)$ / Humidity (56%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. The transmitter unit operated with normal modulation.

The spectrum analyzer was set to the following parameters:

Span = ~ 2 to 3 times the 20dB bandwidth, centered on a hopping channel RBW $\geq 1\%$ of the 20dB bandwidth

Detector Function: Peak, Trace: Maximum Hold.

The E.U.T. was tested at Low, Mid and High channels.

6.3 Test Limit

N/A

6.4 Test Results

Modulation	Operation Frequency	Bandwidth Reading	
(STD/EDR)	(MHz)	(kHz)	
	2402.0	886.2	
STD	2440.0	892.2	
510	2480.0	904.2	
	2402.0	1197.6	
EDR	2440.0	1197.6	
	2480.0	1197.6	

Figure 28 Test Results

JUDGEMENT:

Passed

For additional information see Figure 29 to Figure 34.

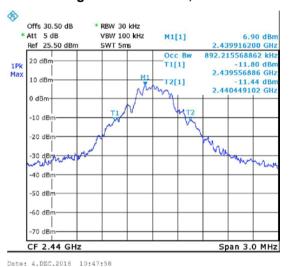



Figure 29. 2402MHz, STD

Figure 30. 2440MHz, STD

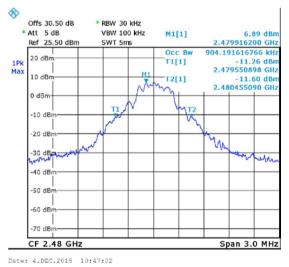
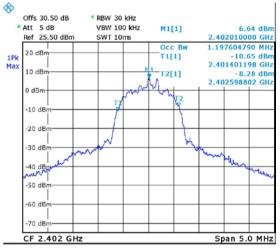
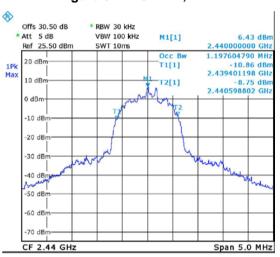




Figure 31. 2480MHz, STD

Date: 4.DEC.2018 10:43:23

Figure 32. 2402MHz, EDR

Date: 4.DEC.2018 10:44:44

Figure 33. 2440MHz, EDR

Figure 34. 2480MHz, EDR

6.5 Test Equipment Used, Occupied Bandwidth

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below

Note: Testing was performed December 4, 2018

Figure 35 Test Equipment Used

7. Number of Hopping Frequencies

7.1 *Test Specification*

FCC, Part 15, Subpart C Section 15.247(a)(1)(iii)

7.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH)) The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The E.U.T. was set to hopping mode. The spectrum analyzer was set to the following parameters: Band of Operation: 2400M-2483.5 MHz RBW: 30 kHz, VBW: 100 kHz Detector Function: Peak, Trace: Maximum Hold

7.3 Test Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15/75 Channels.

7.4 Test Results

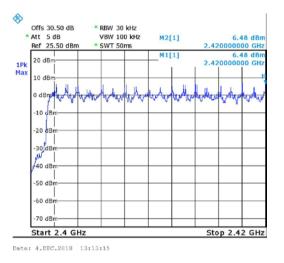
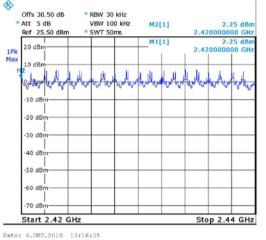
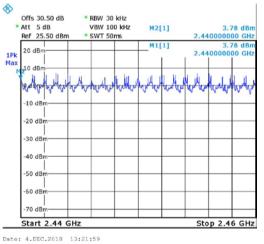
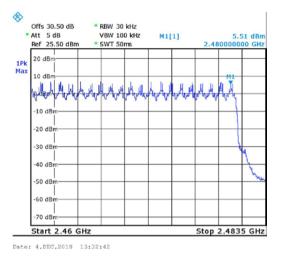
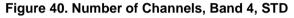
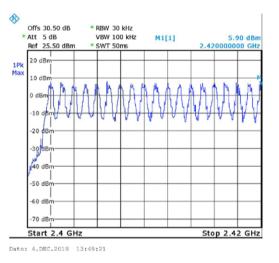
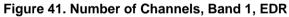

Modulation	Number of Hopping Frequencies	Limit	
STD	79	≥15/75	
EDR	79	≥15/75	

Figure 36 Test Results


JUDGEMENT: Passed

For additional information see Figure 37 to Figure 44.


Figure 39. Number of Channels, Band 3, STD

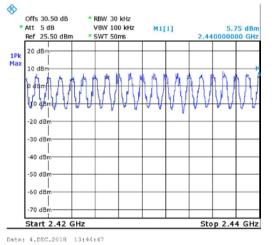
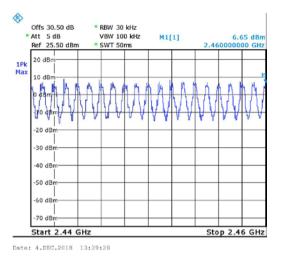
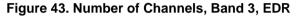




Figure 42. Number of Channels, Band 2, EDR

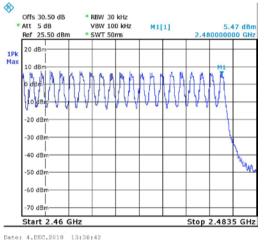


Figure 44. Number of Channels, Band 4, EDR

7.5 Test Equipment Used, Number of Hopping Frequencies

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below

Note: Testing was performed December 4, 2018

Figure 45 Test Equipment Used

8. Channel Frequency Separation

8.1 *Test Specification*

FCC Part 15, Subpart C, 15.247(a) (1)

8.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters: Span = wide enough to capture two adjacent channels, $RBW \ge 1\%$ of the span Detector Function: Peak, Trace: Maximum Hold.

8.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

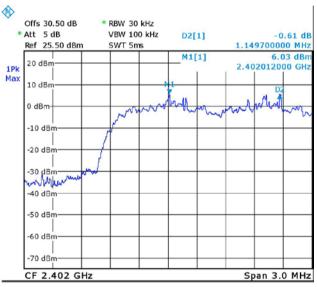
8.4 Test Results

Modulation	Channel Frequency Separation	Specification
(STD/EDR)	(kHz)	(kHz)
STD	1000.0	882.2
EDR	1149.7	2/3*(1311.4)=865

Figure 46 Test Results

JUDGEMENT:

Passed by 865 kHz


For additional information see *Figure 47* and *Figure 48*.

Date: 9.DEC.2018 09:54:16

Figure 48. Channel Frequency Separation, EDR

8.5	8.5 Test Equipment Used, Channel Frequency Separation Test								
Instrument Manufacturer		Model Serial Number		Last Calibration Date	Next Calibration Due				
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019				
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below				
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below				

8.5 Test Equipment Used, Channel Frequency Separation Test

Note: Testing was performed December 9, 2018

Figure 49 Test Equipment Used

9. Peak Output Power

9.1 *Test Specification*

FCC Part 15, Subpart C: section 15.247(b)(1)

9.2 Test Procedure

(Temperature (22°C)/ Humidity (54%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss= 30.5dB). The spectrum analyzer was set to the following parameters: Span = ~5 times the 20dB bandwidth, centered on a hopping channel RBW \geq of the 20dB bandwidth of the emission being measured Detector Function: Peak, Trace: Maximum Hold.

9.3 Test Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts. (The limits above applies to antenna gain until 6dBi).

Modulation	Operation Frequency	Power	Power	Limit	Margin
(STD/EDR)	(MHz)	(dBm)	(mW)	(mW)	(mW)
	2402.0	9.8	9.55	1000.0	-990.45
STD	2440.0	9.7	9.33	1000.0	-990.67
	2480.0	9.6	9.12	1000.0	-990.88
	2402.0	10.2	10.5	125.0	-114.50
EDR	2440.0	10.1	10.2	125.0	-114.80
	2480.0	10.0	10.0	125.0	-115.00

9.4 Test Results

Figure 50 Radiated Power Output Test Results

JUDGEMENT:

Passed by 114.5mW

For additional information see Figure 51 to Figure 56.

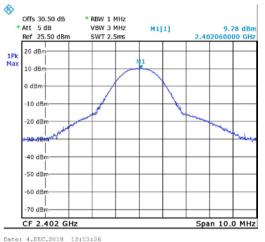
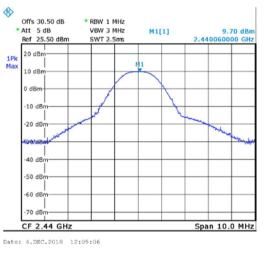
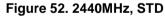
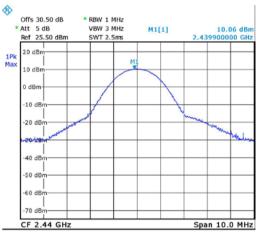



Figure 51. 2402MHz, STD





Figure 53. 2480MHz, STD

Peak Output Power

Date: 4.DEC.2018 12:38:26

Figure 55. 2440MHz, EDR

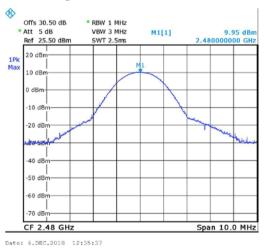


Figure 56. 2480MHz, EDR

9.5 Test Equipment Used, Peak Output Power

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019	
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below	
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below	

Note: Testing was performed December 4, 2018

10. Dwell Time on Each Channel

10.1 Test Specification

FCC Part 15, Part C, Section 15.247(a)(1)(iii)

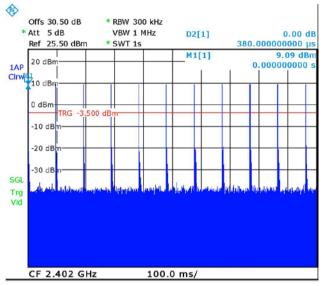
10.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH)) The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. The spectrum analyzer was set to the following parameters: Span = zero span, centered on a hopping channel, RBW \geq 1MHz Detector Function: Peak, Trace: Maximum Hold

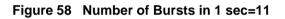
10.3 Test Limit

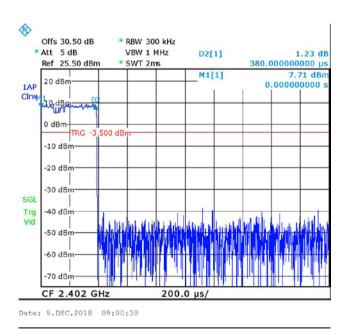
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

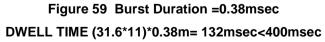
10.4 Test Results


JUDGEMENT: Passed

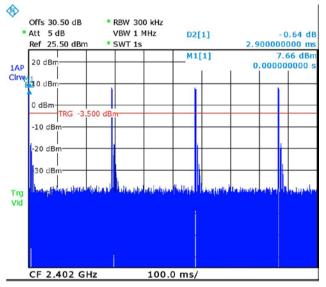
The E.U.T met the requirements of the FCC Part 15, Section 15.247(d).

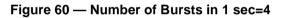

Additional information of the results is given in Figure 58 to Figure 61.




Results for STD:

Date: 9.DEC.2018 09:02:32





Results for EDR:

Date: 9.DEC.2018 09:44:31

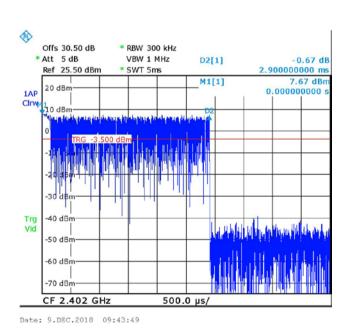


Figure 61 — Burst Duration =2.9msec DWELL TIME =(31.6*4)*2.9m = 366.6msec<400msec

10.5 Test Equipment Used, Dwell Time on Each Channel

Instrument	strument Manufacturer Model Serial N		Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note Below
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note Below

Note: Testing was performed December 9, 2018

Figure 62 Test Equipment Used

11. Band Edge

11.1 *Test Specification*

FCC Part 15, Section 15.247(d)

11.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The transmitter unit operated in 2 modes: hopping enabled and hopping disabled. The RBW was set to 100 kHz.

The EMI receiver was adjusted to the transmission channel at the maximum level. The display line was set to 20 dBc and the EMC analyzer was set to the band edge frequencies.

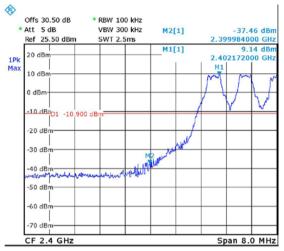
The E.U.T. was tested at the lower and the upper channels.

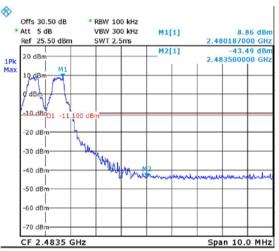
11.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Modulation	Mode	Operation Frequency	Band Edge Frequency	Spectrum Level	Limit	Margin
(STD/EDR)		(MHz)	(MHz)	(dBm)	(dBm)	(dB)
	Honging	2402 2480	2400.0	-37.5	-10.9	-26.6
	Hopping	2402-2480	2483.5	-43.5	-11.1	-32.4
STD	Non- Hopping	2402	2400.0	-35.2	-10.9	-24.3
		2480	2483.5	-42.1	-10.9	-31.2
		2402-2480	2400.0	-39.6	-12.4	-27.2
	Hopping		2483.5	-43.7	-11.9	-31.8
EDR	Non-	2402	2400.0	-35.9	-11.9	-24.0
	Hopping	2480	2483.5	-41.8	-11.9	-29.9

11.4 Test Results


Figure 63 Band Edge Test Results


JUDGEMENT: Passed by 24.0dB

For additional information see Figure 64 to Figure 71.

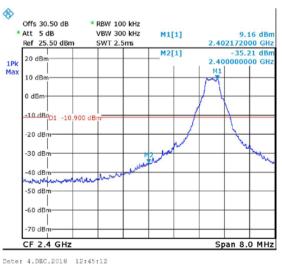
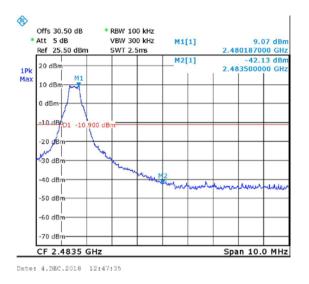

Date: 4.DEC.2018 12:57:00

Figure 64 Hopping, Band Edge Low, STD


Date: 4.DEC.2018 12:53:48

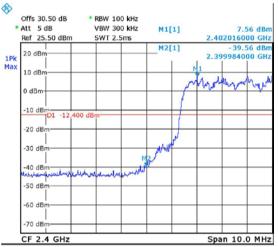
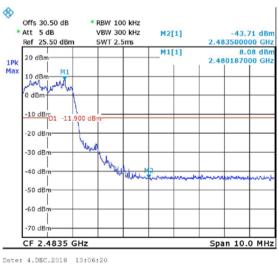
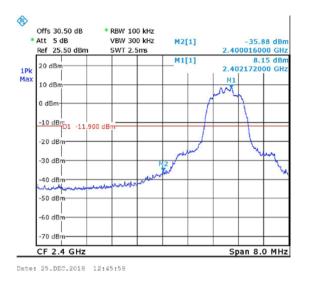
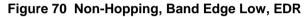


Figure 66 Non-Hopping, Band Edge Low, STD




Date: 4.DEC.2018 13:01:20



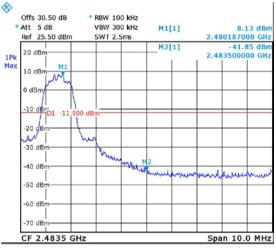

Figure 68 Hopping, Band Edge Low, EDR

Figure 69 Hopping, Band Edge High, EDR

Date: 4.DEC.2018 12:49:11

Figure 71 Non-Hopping, Band Edge High, EDR

11.5 Test Equipment Used, Band Edge

Instrument	nt Manufacturer Model		Serial Number	Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019	
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note below	
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note below	

Note: Testing was performed December 4 and 25, 2018

Figure 72 Test Equipment Used

12. Emissions in Non-Restricted Frequency Bands

12.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

12.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (max loss=44.0dB).

The frequency range 0.009-25,000.0 MHz was scanned to find other emissions that don't fall in the restricted band.

RBW was set to 100 kHz, detector set to max peak and trace to "max hold". These frequencies were measured using a peak detector.

12.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

12.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247 (d) specification.

For additional information see *Figure 73* to *Figure 78*.

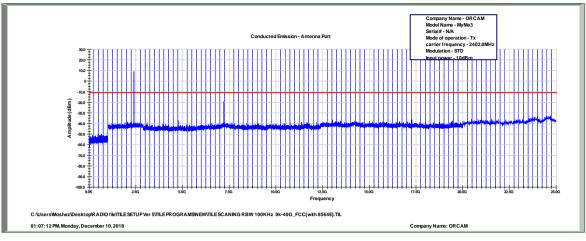
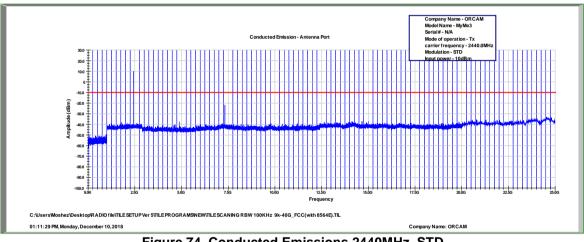



Figure 73. Conducted Emissions 2402MHz, STD

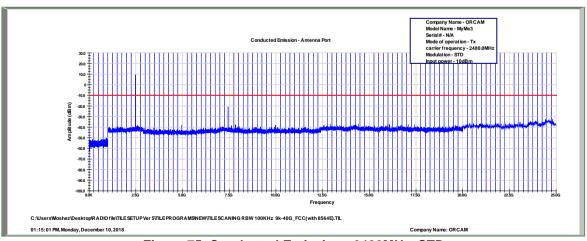
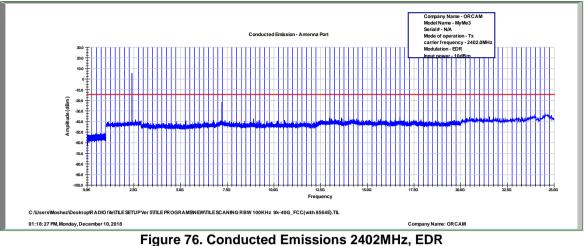
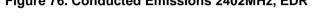
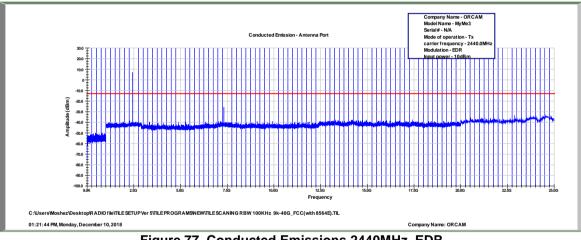





Figure 75. Conducted Emissions 2480MHz, STD

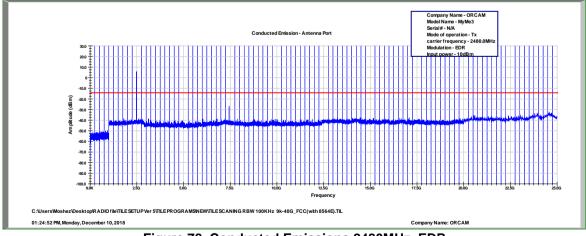


Figure 78. Conducted Emissions 2480MHz, EDR

Test Equipment Used, Emissions in Non-Restricted Frequency Bands

Instrument	Manufacturer	anufacturer Model Serial I Number		Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019	
30dB Attenuator	MCL	BW-S30W5	533	October 1, 2017	December 31, 2018 See Note below	
RF Cable	Huber Suner	Sucofelex	27502/4PEA	October 1, 2017	December 31, 2018 See Note below	

Note: Testing was performed December 10, 2018

Figure 79 Test Equipment Used

13. Emissions in Restricted Frequency Bands

13.1 Test Specification

FCC, Part 15, Subpart C, Sections 247(d), 15.205, 15.209

13.2 Test Procedure

(Temperature (20°C)/ Humidity (40%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-25.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -25.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

13.3 Test Limit

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	Field strength* (dBµV/m)	Field strength* (dBµV/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

13.4 Test Results

JUDGEMENT:

Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 specification.

For additional information see *Figure 80* and *Figure 81*.

Radiated Emission

E.U.T Description Weat Type ORC Serial Number: 1838

Wearable Device ORCAM MYME 18380173

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Modulation: STD

Frequency Range: 9 kHz to 25.0 GHz Detector: Peak, Average

Operation Frequency	Freq.	Pol.	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H / V)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	54.3	74.0	-19.7	45.3	54.0	-8.7
2402.0	2390.0	Н	53.6	74.0	-20.4	46.4	54.0	-7.6
2402.0	7206.0	V	66.0	74.0	-8.0	23.7	54.0	-30.3
	7206.0	Н	67.5	74.0	-6.5	25.2	54.0	-28.8
	4880.0	V	64.6	74.0	-9.4	22.3	54.0	-31.7
2440.0	4880.0	Н	55.4	74.0	-18.6	13.1	54.0	-40.9
2440.0	7320.0	V	64.6	74.0	-9.4	22.3	54.0	-31.7
	7320.0	Н	68.4	74.0	-5.6	26.1	54.0	-27.9
	7440.0	V	62.0	74.0	-12.0	19.7	54.0	-34.3
2400.0	7440.0	Н	67.4	74.0	-6.6	25.1	54.0	-28.9
2480.0	2483.5	V	56.5	74.0	-17.5	49.1	54.0	-4.9
	2483.5	Н	58.1	74.0	-15.9	49.5	54.0	-4.5

Figure 80. Radiated Emission Results - STD

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

* "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

Radiated Emission

E.U.T DescriptionWeatherTypeORSerial Number:183

Wearable Device ORCAM MYME 18380173

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Modulation: EDR

Frequency range: 9 kHz to 25.0 GHz Detector: Peak, Average

Operation Frequency	Freq.	Pol.	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	54.2	74.0	-19.8	45.5	54.0	-8.5
2402.0	2390.0	Н	53.9	74.0	-20.1	45.2	54.0	-8.8
2402.0	7206.0	V	63.6	74.0	-10.4	32.9	54.0	-21.1
	7206.0	Н	68.1	74.0	-5.9	37.4	54.0	-16.6
	4880.0	V	46.6	74.0	-27.4	15.9	54.0	-38.1
2140.0	4880.0	Н	54.0	74.0	-20.0	23.3	54.0	-30.7
2440.0	7320.0	V	62.5	74.0	-11.5	31.8	54.0	-22.2
	7320.0	Н	71.0	74.0	-3.0	40.3	54.0	-13.7
	7440.0	V	62.5	74.0	-11.5	31.8	54.0	-22.2
2400.0	7440.0	Н	71.0	74.0	-3.0	40.3	54.0	-13.7
2480.0	2483.5	V	54.5	74.0	-19.5	48.1	54.0	-5.9
	2483.5	Н	56.6	74.0	-17.4	48.6	54.0	-5.4

Figure 81. Radiated Emission Results - EDR

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

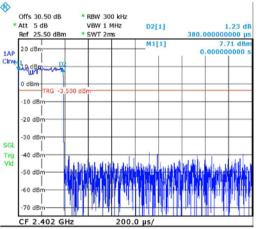
* "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

13.5	Test Equipm	nent Used, Emis	ssions in Res	stricted Frequency	Bands
Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
EMI Receiver	HP	8542E	3906A00276	February 19, 2018	February 19, 2019
RF Filter Section	HP	85420E	3705A00248	February 19, 2018	February 19, 2019
Spectrum Analyzer	HP	8593EM	3536A00120 ADI	February 20, 2018	February 20, 2019
Active Loop Antenna	ЕМСО	6502	9506-2950	October 19, 2018	October 19, 2019
Biconical Antenna	ЕМСО	3110B	9912-3337	May 15, 2017	May 15, 2019
Log Periodic Antenna	ЕМСО	3146	9505-4081	May 31, 2018	May 31, 2019
Horn Antenna	ETS	3115	29845	May 31, 2018	May 31, 2021
Horn Antenna	ARA	SWH-28	1007	December 31, 2017	December 31, 2020
MicroWave System Amplifier	HP	83006A	3104A00589	October 1, 2018	October 31, 2019
Low Noise Amplifier 1GHz-18GHz	Miteq	AFSX4- 02001800-50-8P	-	October 1, 2018	October 31, 2019
RF Cable Chamber	Commscope ORS	0623 WBC-400	G020132	October 1, 2018	December 31, 2018
RF Cable Oats	EIM	RG214-11N(X2)		August 13, 2018	August 31, 2019
Filter Band Pass 4-20 GHz	Meuro	MFL040120H50	902252	December 24, 2018	December 24, 2019
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

13.5 Test Equipment Used, Emissions in Restricted Frequency Bands

Note: Testing was performed December 25, 2018

Figure 82 Test Equipment Used



14. Avg. Factor Calculation

- 1. Pulse period = 1 (worst scenario)
- 2. Pulse duration = 1 (worst scenario)
- 3. STD Burst duration = 0.38msec
- 4. EDR Burst duration= 2.9msec

5. Average Factor = $20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100 \text{msec}} \times \text{Num of burst within 100 msec} \right]$

- 6. STD Average factor = -42.3
- 7. EDR Average factor = -30.7

Date: 9.DEC.2018 09:00:38

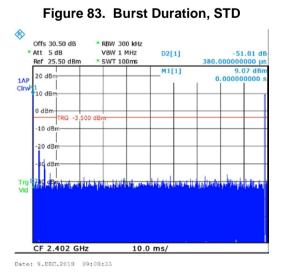
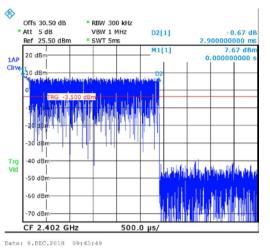



Figure 84. Number of Bursts in 100msec=2, STD

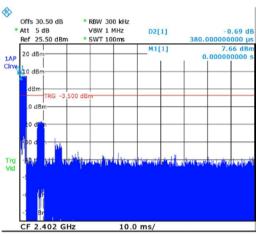


Figure 85. Burst Duration, EDR

Date: 9.DEC.2018 09:42:31

Figure 86. Number of Bursts in 100msec=1, EDR

14.1 Test Equipment Used, Average Factor

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rodhe & Schwarz	FSL6	100194	February 19, 2018	February 19, 2019

Figure 87 Test Equipment Used

Antenna Gain/Information 15.

The antenna gain is -2 dBi, integral type.

16. R.F Exposure/Safety

Typical use of the E.U.T. is as a wearable device.

The typical distance between the E.U.T. and the user is 0.5 cm.

SAR Testing Exclusion Based on Section 4.3.1 and Appendix A of KDB 447498 D01 V06 Requirements

For FCC

Section 4.3.1 and Appendix A of KDB447498 D01 V06 was used as the guidance as follows:

Conducted power output = 10.2dBm + (-2dBi) (antenna gain) = 8.2dBm = 6.61mW

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $\left[\sqrt{f(GHz)}\right]$

=6.61/5 * 1.55=2.05 this value is less than 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR.

The SAR measurement is not necessary.

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for

RF OATS Cable 35m ITL #1911

Frequency	Cable loss	
(MHz)	(dB)	
1.00	0.5	
10.00	1	
20.00	1.34	
30.00	1.5	
50.00	1.83	
100.00	2.67	
150.00	3.17	
200.00	3.83	
250.00	4.17	
300.00	4.5	
350.00	5.17	
400.00	5.5	
450.00	5.83	
500.00	6.33	
550.00	6.67	
600.00	6.83	
650.00	7.17	
700.00	7.66	
750.00	7.83	
800.00	8.16	
850.00	8.5	
900.00	8.83	
950.00	8.84	
1000.00	9	

17.2 Correction factor for RF CABLE for Semi Anechoic Chamber *ITL # 1840*

Frequency	loss Result		
(GHz)	(dB)		
0.5	-1.0		
1.0	-1.4		
1.5	-1.7		
2.0	-2.0		
2.5	-2.3		
3.0	-2.6		
3.5	-2.8		
4.0	-3.1		
4.5	-3.3		
5.0	-3.6		
5.5	-3.7		
6.0	-4.0		
6.5	-4.4		
7.0	-4.7		
7.5	-4.8		
8.0	-5.0		
8.5	-5.1		
9.0	-5.6		
9.5	-5.8		
10.0	-6.0		
10.5	-6.2		
11.0	-6.2		
11.5	-6.0		
12.0	-6.0		
12.5	-6.1		
13.0	-6.3		
13.5	-6.5		
14.0	-6.7		
14.5	-7.0		
15.0	-7.3		
15.5	-7.5		
16.0	-7.6		
16.5	-8.0		
17.0	-8.0		
17.5	-8.1		
18.0	-8.2		
18.5	-8.2		
19.0	-8.3		
19.5	-8.6		
20.0	-8.5		

NOTES:

- 1. The cable is manufactured by Commscope
- 2. The cable type is 0623 WBC-400, serial # G020132 and 10m long

17.3 Correction factors for Active Loop Antenna ITL # 1075:

f(MHz)	MAF(dBs/m)	AF(dB/m)
0.01	-33.1	18.4
0.02	-37.2	14.3
0.03	-38.2	13.3
0.05	-39.8	11.7
0.1	-40.1	11.4
0.2	-40.3	11.2
0.3	-40.3	11.2
0.5	-40.3	11.2
0.7	-40.3	11.2
1	-40.1	11.4
2	-40	11.5
3	-40	11.5
4	-40.1	11.4
5	-40.2	11.3
6	-40.4	11.1
7	-40.4	11.1
8	-40.4	11.1
9	-40.5	11
10	-40.5	11
20	-41.5	10
30	-43.5	8

17.4 Correction factors for biconical antenna – ITL # 1356

Frequency	AF
[MHz]	[dB/m]
30	14.77
35	13.46
40	12.57
45	11.62
50	10.87
60 9.19	
70	9.52
80 9.55	
90 9.27	
100	10.20
120	11.18
140 12.02	
160 12.62	
180	13.44
200 14.82	

17.5 Correction factors for log periodic antenna – ITL # 1349

Frequency	AF
[MHz]	[dB/m]
200	11.31
250	11.85
300	14.47
400	15.12
500	17.69
600	18.45
700	20.52
800	20.77
900	21.97
1000	23.21

17.6 Correction factors for Horn Antenna

ITL # 1354

Frequency	AF1	
[MHz]	[dB/m]	
1000	23.64	
1500	26.14	
2000	27.20	
2500	28.20	
3000	29.63	
3500	31.28	
4000	31.97	
4500	32.25	
5000	33.34	
5500	33.67	
6000	34.63	
6500	35.71	
7000	35.92	
7500	36.34	
8000	37.21	
8500	37.28	
9000	37.24	
9500	37.28	
10000	37.37	
10500	37.77	
11000	37.96	
11500	38.55	
12000	38.52	
13000	39.30	
14000	40.75	
15000	40.32	
16000	42.51	
17000	42.35	
18000	41.58	

17.7 Correction factors for Double –Ridged Waveguide Horn ANTENNA

		i		
FREQUENCY	AFE		FREQUENCY	AFE
(GHz)	(dB/m)		(GHz)	(dB/m)
0.75	25		9.5	38
1.0	23.5		10.0	38.5
1.5	26.0		10.5	38.5
2.0	29.0		11.0	38.5
2.5	27.5		11.5	38.5
3.0	30.0		12.0	38.0
3.5	31.5		12.5	38.5
4.0	32.5		13.0	40.0
4.5	32.5		13.5	41.0
5.0	33.0		14.0	40.0
5.5	35.0		14.5	39.0
6.0	36.5		15.0	38.0
6.5	36.5		15.5	37.5
7.0	37.5		16.0	37.5
7.5	37.5		16.5	39.0
8.0	37.5		17.0	40.0
8.5	38.0		17.5	42.0
9.0	37.5		18.0	42.5

ITL # 1352

17.8 Correction factors for

Horn Antenna ITL #:1353

CALIBRATION DATA

ALIBRATION DATA	
m distance	
Frequency; MHz	Measured anionna factor, dB/m ¹¹
18000	32.4
18500	32.0
19000	32.3
19500	32.4
20000	32.3
20500	32.8
21000	32.8
21500	32.7
22000	33.1
22500	33.0
23000	33.1
23500	33.8
24000	33.5
24500	33.5
25000	33.8
25500	33.9
26000	34.2
26500	34.7

 9 The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.