

DATE: 25 February 2019

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for Orcam Technologies Ltd.

Equipment under test:

Wearable Camera, Vision System

MyEye2, Revision B

Tested by:

M. Zohar

Approved by: Dludhur

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Orcam Technologies Ltd.

Wearable Camera, Vision System

MyEye2, Revision B

FCC ID: 2AAWI-MYEYE2REVB

This report concerns: Original Grant: X

Class I Change: Class II Change:

Equipment type: DSS Part 15 Spread Spectrum Transmitter

Limits used: 47CFR15 Section 15.247

Measurement procedures used are KDB 558074 D01 v05 and ANSI C63.10: 2013

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

R. Pinchuck
ITL (Product Testing) Ltd.
1 Bat Sheva St.
PO Box 45157

Lod 7116002 Jerusalem, 9777603, Israel e-mail Rpinchuck@itlglobal.org Tel: +972-2-591-7805

Fax: +972-2-586-0121

e-mail: : Rami.Ben-Yehuda@orcam.com

TABLE OF CONTENTS

1.	GENERA	L INFORMATION	
	1.1	Administrative Information	
	1.2	List of Accreditations	
	1.3	Product Description	
	1.4	Test Methodology	
	1.5	Test Facility	
_	1.6	Measurement Uncertainty	
2.	SYSTEM 2.1	TEST CONFIGURATION Justification	
	2.1	EUT Exercise Software	
	2.3	Special Accessories	
	2.4	Equipment Modifications	
	2.5	Configuration of Tested System	
3.	CONDUC	TED & RADIATED MEASUREMENT TEST SET-UP PHOTOS	11
4.	CONDUC	TED EMISSION FROM AC MAINS	
	4.1	Test Specification	
	4.2	Test Procedure	
	4.3	Test Limit	
	4.4	Test Results	
	4.5	Test Equipment Used; Conducted Emission	
5.	20DB MIN	IIMUM BANDWIDTH	-
	5.1	Test Specification	
	5.2	Test Procedure	
	5.3	Test Limit	
	5.4 5.5	Test Results Test Equipment Used, 20 dB Minimum Bandwidth	
6.		D BANDWIDTH	
0.	6.1	Test Specification	
	6.2	Test Procedure	
	6.3	Test Limit	
	6.4	Test Results	
	6.5	Test Equipment Used, Occupied Bandwidth	33
7.	NUMBER	OF HOPPING FREQUENCIES	34
	7.1	Test Specification	
	7.2	Test Procedure	
	7.3	Test Limit	34
	7.4	Test Results	
	7.5	Test Equipment Used, Number of Hopping Frequencies	
8.		L FREQUENCY SEPARATION	
	8.1	Test Specification	
	8.2	Test Procedure	
	8.3 8.4	Test Limit	
	8.5	Test Results Test Equipment Used, Channel Frequency Separation	
0		TPUT POWER	
9.	9.1	Test Specification	
	9.2	Test Procedure	
	9.3	Test Limit	
	9.4	Test Results	42
	9.5	Test Equipment Used, Peak Output Power	46
10.	DWELL T	IME ON EACH CHANNEL	47

	10.1	Test Specification	47
	10.2	Test Procedure	
	10.3	Test Limit	
	10.4	Test Results	
	10.5	Test Equipment Used, Dwell Time on Each Channel	50
11.	BAND ED	GE	51
	11.1	Test Specification	
	11.2	Test Procedure	
	11.3	Test Limit	
	11.4	Test Results	
	11.5	Test Equipment Used, Band Edge	56
12.	EMISSION	IS IN NON-RESTRICTED FREQUENCY BANDS	57
	12.1	Test Specification	
	12.2	Test Procedure	
	12.3	Test Limit	
	12.4	Test Results	
	12.5	Test Equipment Used, Emissions in Non -Restricted Frequency Bands.	59
13.	EMISSION	IS IN RESTRICTED FREQUENCY BANDS	60
	13.1	Test Specification	
	13.2	Test Procedure	
	13.3	Test Limit	
	13.4	Test Results	
	13.5	Test Equipment Used, Emissions in Restricted Frequency Bands	64
14.	AVG. FAC	TOR CALCULATION	
	14.1	Test Equipment Used, Average Factor	67
15.	ANTENNA	A GAIN/INFORMATION	68
16.	R.F EXPO	SURE/SAFETY	69
17.	_	X A - CORRECTION FACTORS	
17.	17.1		
	17.1	Correction factor for RF CABLE for Semi Anechoic Chamber	
	17.2	Correction factors for Active Loop Antenna	
	17.4	Correction factors for biconical antenna – ITL # 1356	
	17.5	Correction factors for log periodic antenna – ITL # 1349	
	17.6	Correction factors for Horn Antenna	
	17.7	Correction factors for Double –Ridged Waveguide Horn ANTENNA	
	17.8	Correction factors for Horn Antenna	

1. General Information

1.1 Administrative Information

Manufacturer: Orcam Technologies Ltd.

Manufacturer's Address: 3 Kiryat Mada St.

P.O. Box 45157

Jerusalem, 9777603, Israel

Tel: +972-2-591-7805 Fax: +972-2-586-0121

Manufacturer's Representative: Ram Ben-Yehuda

Equipment Under Test (E.U.T): Wearable Camera, Vision System

Equipment Model No.: MyEye2, Revision B

Equipment Serial No.: 181600023

Date of Receipt of E.U.T: June 11, 2018

Start of Test: June 11, 2018

End of Test: October 17, 2018

Test Laboratory Location: I.T.L (Product Testing) Ltd.

1 Batsheva St.,

Lod

ISRAEL 7120101

Test Specifications: FCC Part 15, Subpart C, Section 15.247

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The MyEye2 Revision B is a vision system that intended to help Visually Impaired. The device can read, recognizes faces, identify objects and products. The system consists wearable camera which can add on glasses and external certified AC/DC adaptor (charger).

Working voltage	3.7VDC Rechargeable battery operated via AC/DC adapter
Mode of operation	Transceiver
Modulations	STD/EDR
Assigned Frequency Range	2400.0-2483.5MHz
Operating Frequency Range	2402.0-2480.0MHz
Antenna Gain	-2.0dBi
Modulation BW	~1MHz

1.4 Test Methodology

Radiated testing was performed according to the procedures in KDB 558074 D01 v05 and ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.6 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 4.96 \, dB$

1 GHz to 6 GHz Expanded Uncertainty (95% Confidence, K=2): ± 5.19 dB

>6 GHz Expanded Uncertainty (95% Confidence, K=2): ±5.51 dB

2. System Test Configuration

2.1 Justification

- 1. The E.U.T contains a transceiver: IEEE 802.15.1 standard (STD/EDR).
- 2. The unit was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz).
- 3. The evaluation was performed with the E.U.T connected to typical AC/DC adapter via laptop for charge mode as the "worst case".
- 4. Conducted Emission AC Line testing was performed with 2 optional charge modes: AC/DC adapter via laptop & AC/DC adapter wall charger.
- 5. Final radiated emission test was performed after exploratory emission testing that was performed in 3 orthogonal polarities to determine the "worst case" radiation.
- 6. The results are shown below.

Orientation	Frequency	Fundamental	2 nd Harmonic	3 rd Harmonic	Band Edge
Orientation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
	2402.0	95.7	54.6	67.6	62.4
X axis	2440.0	96.2	54.3	68.2	-
	2480.0	97.0	48.8	64.5	62.6
	2402.0	93.8	50.2	67.7	62.4
Y axis	2440.0	94.6	54.3	68.1	-
	2480.0	96.4	49.2	68.2	62.6
	2402.0	92.1	49.4	63.0	62.4
Z axis	2440.0	93.0	49.5	62.0	-
	2480.0	93.8	48.4	63.5	62.2

Figure 1. Screening Results

According to above results the "worst case" for fundamental & spurious emission was the X axis for all channels except for spurious emission for high channel that was the Y axis.

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

Equipment	Manufacturer	Part #	Serial #
laptop	DELL	E5440	N/A
AC/DC adapter	DELL	NSW26272	N/A
AC/DC wall charger	EDACPOWER ELEC.	EM1005AVEU	171531626

2.4 Equipment Modifications

No modifications were needed in order to achieve compliance.

2.5 Configuration of Tested System

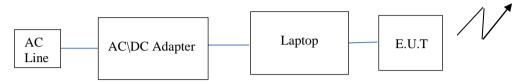


Figure 2. Configuration of Tested System

3. Conducted & Radiated Measurement Test Set-Up Photos

Figure 3. Conducted Emission from AC Line Test, AC/DC adapter via laptop charge mode

Figure 4. Conducted Emission from AC line Test, AC/DC wall charger mode

Figure 5. Radiated Emission Test, 0.009-30MHz

Figure 6. Radiated Emission Test, 30-200MHz

Figure 7. Radiated Emission Test, 200-1000MHz

Figure 8. Radiated Emission Test, 1-18GHz

Figure 9. Radiated Emission Test, 18-25GHz

4. Conducted Emission From AC Mains

4.1 Test Specification

FCC Part 15, Subpart C, Section 15.207

4.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test setup are as described in Section 2 of this report. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall. In the case of a floor-standing E.U.T., it was placed on the horizontal ground plane.

The E.U.T was powered from 115 V AC / 60 Hz via 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T.'s AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The effect of varying the position of the cables was investigated to find the configuration that produces maximum emission.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver and are displayed on the receiver's spectrum display.

The E.U.T was evaluated in TX operation mode.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Test Limit

Enggyongy of omission (MHz)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

4.4 Test Results

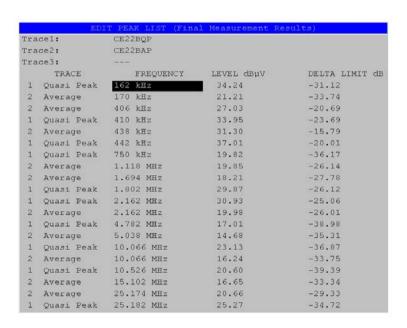
JUDGEMENT: Passed by 4.9 dB

The margin between the emission levels and the specification limit is, in the worst case, 10.49 dB for the phase line at 0.410 MHz and 4.9 dB at 0.410 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in Figure 10 to Figure 17.

E.U.T Description Wearable Camera, Vision System


Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Phase

Detectors: : Peak, Quasi-peak, Average Power Operation AC/DC adapter via laptop

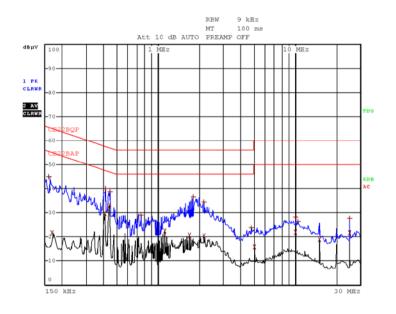
Date: 17.0CT.2018 10:09:14

Figure 10. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description Wearable Camera,

Vision System


Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average Power Operation AC/DC adapter via laptop

Date: 17.0CT.2018 10:07:49

Figure 11. Detectors: Peak, Quasi-peak, Average

E.U.T Description Wearable Camera,

Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average Power Operation AC/DC adapter via laptop

Date: 17.0CT.2018 10:19:38

Figure 12. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description Wearable Camera,

Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average Power Operation AC/DC adapter via laptop

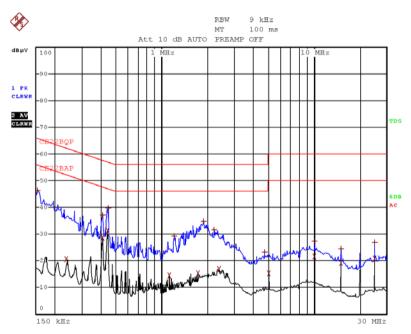


Figure 13 Detectors: Peak, Quasi-peak, Average

Date: 17.0CT.2018 10:18:07

E.U.T Description Wearable Camera,

Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC wall charger

Date: 17.0CT.2018 10:53:14

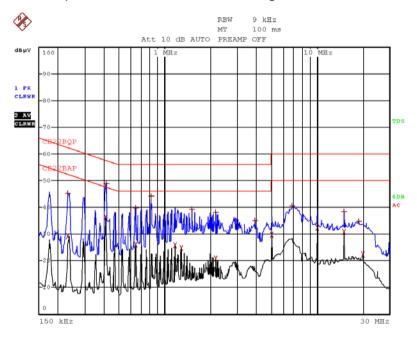
Figure 14. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description Wearable Camera,

Vision System

Type MyEye2, Revision B


Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC wall charger

Date: 17.0CT.2018 10:50:44

Figure 15. Detectors: Peak, Quasi-peak, Average

E.U.T Description Wearable Camera,

Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC wall charger

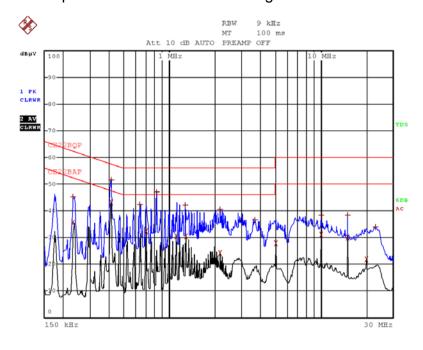
Date: 17.0CT.2018 10:44:01

Figure 16. Detectors: Peak, Quasi-peak, Average

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description Wearable Camera, Vision System

Type MyEye2, Revision B


Serial Number: 181600023

Specification: FCC Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average

Power Operation AC/DC wall charger

Date: 17.0CT.2018 10:39:55

Figure 17 Detectors: Peak, Quasi-peak, Average

4.5 Test Equipment Used; Conducted Emission

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
LISN	Fischer	FCC-LISN-25A	127	July 20, 2018	July 31, 2019
Transient Limiter	НР	11947A	3107A03041	June 25, 2018	June 25, 2019
EMI Receiver	Rohde & Schwarz	ESCI7	100724	February 19, 2018	February 28, 2019
Low Loss Cable	Huber Suner	-	705A009301 EIM	October 1, 2017	October 21, 2018

Figure 18 Test Equipment Used

5. 20dB Minimum Bandwidth

5.1 Test Specification

FCC, Part 15, Subpart C: section 15.247(a)(1)

5.2 Test Procedure

(Temperature (22°C)/ Humidity (57%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The spectrum analyzer was set to the following parameters:

Span = \sim 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth

Detector Function: Peak, Trace: Maximum Hold.

5.3 Test Limit

N/A

5.4 Test Results

modulation	Operation Frequency	Bandwidth Reading
(STD/EDR)	(MHz)	(kHz)
	2402.0	874.3
STD	2440.0	882.2
SID	2480.0	802.4
	2402.0	1335.5
EDR	2440.0	1269.5
	2480.0	1305.4

Figure 19 Test Results

JUDGEMENT: Passed

For additional information see Figure 20 to Figure 25.

Date: 14.JUN.2018 12:13:54

Figure 20. 2402MHz, STD

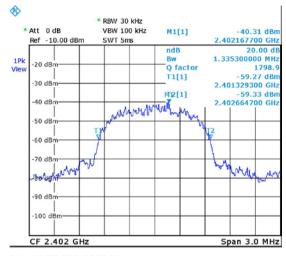
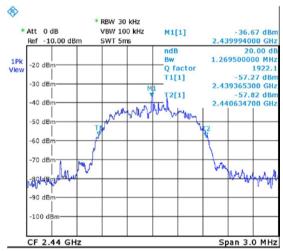


Figure 21. 2440MHz, STD


Figure 22. 2480MHz, STD

Date: 14.JUN.2018 12:50:14

Figure 23. 2402MHz, EDR

Date: 14.JUN.2018 12:44:35

Figure 24. 2440MHz, EDR

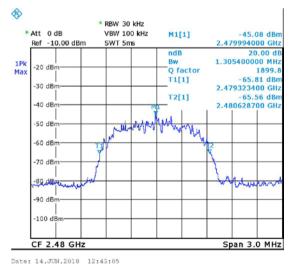


Figure 25. 2480MHz, EDR

5.5 Test Equipment Used, 20 dB Minimum Bandwidth

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 31, 2018	May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 26 Test Equipment Used

6. Occupied Bandwidth

6.1 Test Specification

FCC, Part 15, Subpart C: section 2.1048

6.2 Test Procedure

(Temperature (22°C)/ Humidity (57%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The spectrum analyzer was set to the following parameters:

Span between 1.5 times and 5.0 times the OBW.

RBW in the range of 1% to 5% of the OBW.

Detector Function: Peak, Trace: Maximum Hold.

99% occupied bandwidth function set on.

6.3 Test Limit

N/A

6.4 Test Results

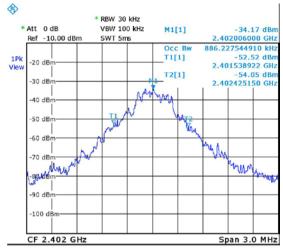

modulation	Operation Frequency	Bandwidth Reading
(STD/EDR)	(MHz)	(kHz)
	2402.0	886.2
STD	2440.0	898.2
SID	2480.0	916.1
	2402.0	1197.6
EDR	2440.0	1187.6
	2480.0	1197.6

Figure 27 Test Results

JUDGEMENT: Passed

For additional information see to Figure 28 to Figure 33.

Date: 14.JUN.2018 13:11:09

Figure 28. 2402MHz, STD

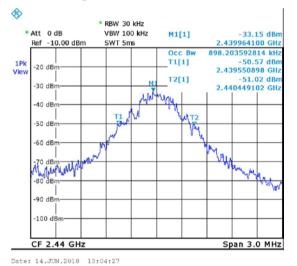
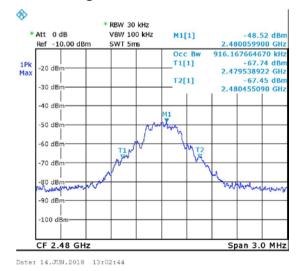
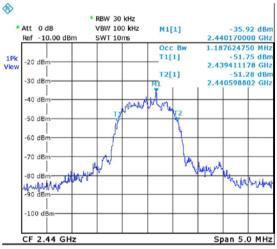


Figure 29. 2440MHz, STD




Figure 30. 2480MHz, STD

Date: 14.JUN.2018 12:55:29

Figure 31. 2402MHz, EDR

Date: 14.JUN.2018 12:58:14

Figure 32. 2440MHz, EDR



Figure 33. 2480MHz, EDR

6.5 Test Equipment Used, Occupied Bandwidth

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 31, 2018	May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 34 Test Equipment Used

7. Number of Hopping Frequencies

7.1 Test Specification

FCC, Part 15, Subpart C Section 15.247(a)(1)(iii)

7.2 Test Procedure

(Temperature (20°C)/ Humidity (62%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

Band of Operation: 2400M-2483.5 MHz

RBW: 30 kHz, VBW: 100 kHz

Detector Function: Peak, Trace: Maximum Hold

7.3 Test Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15/75 Channels.

7.4 Test Results

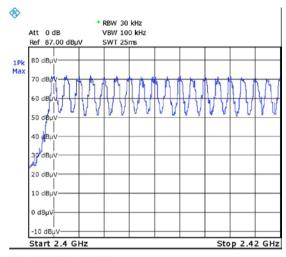

Modulation	Number of Hopping Frequencies	Limit
STD	79	≥15/75
EDR	79	≥15/75

Figure 35 Test Results

JUDGEMENT: Passed

For additional information see Figure 36 to Figure 43.

Date: 5.JUL.2018 08:22:07

Figure 36. Number of Channels, Band 1, STD

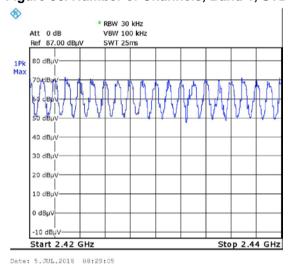


Figure 37. Number of Channels, Band 2, STD

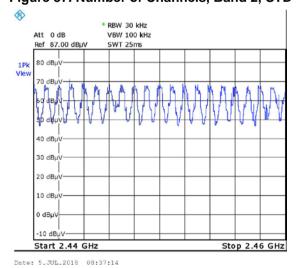


Figure 38. Number of Channels, Band 3, STD

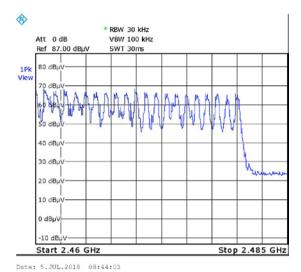


Figure 39. Number of Channels, Band 4, STD

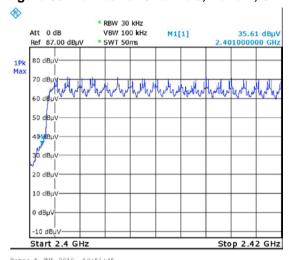


Figure 40. Number of Channels, Band 1, EDR

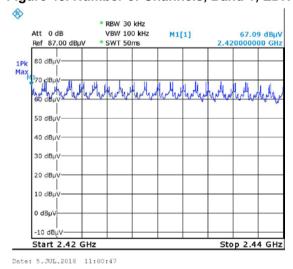


Figure 41. Number of Channels, Band 2, EDR

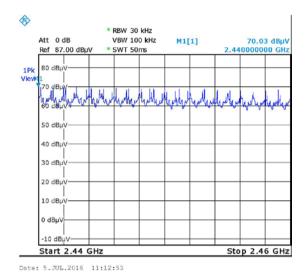


Figure 42. Number of Channels, Band 3, EDR

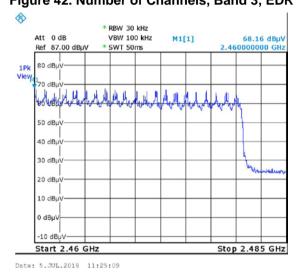


Figure 43. Number of Channels, Band 4, EDR

7.5 Test Equipment Used, Number of Hopping Frequencies

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	FSL6	100194	February 19. 2018	February 19. 2019
Horn Antenna	ETS	3115	6142	May 31, 2018	May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 44 Test Equipment Used

8. Channel Frequency Separation

8.1 Test Specification

FCC Part 15, Subpart C, 15.247(a) (1)

8.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

Span = wide enough to capture two adjacent channels, RBW≥ 1% of the span Detector Function: Peak, Trace: Maximum Hold.

8.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.4 Test Results

Modulation	Channel Frequency Separation	Specification
(STD/EDR)	(kHz)	(kHz)
STD	1083.8	882.2
EDR	1006.0	0.666*1335.5=890.0

Figure 45 Test Results

JUDGEMENT: Passed

For additional information see Figure 46 and Figure 47.

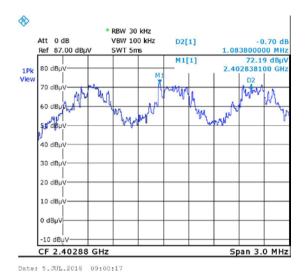


Figure 46. Channel Frequency Separation, STD

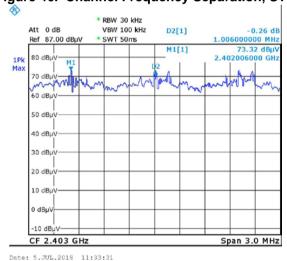


Figure 47. Channel Frequency Separation, EDR

8.5 Test Equipment Used, Channel Frequency Separation

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142 May 31, 2018		May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400 G020132 October 1, 2017		October 31, 2018	
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 48 Test Equipment Used

9. Peak Output Power

9.1 Test Specification

F.C.C. Part 15, Subpart C: section 15.247(b)(1)

9.2 Test Procedure

(Temperature (20°C)/ Humidity (62%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The spectrum analyzer was set to the following parameters:

Span = \sim 5 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ of the 20 dB bandwidth of the emission being measured

Detector Function: Peak, Trace: Maximum Hold.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
[W]

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

9.3 Test Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. (The limits above applies to antenna gain until 6dBi).

9.4 Test Results

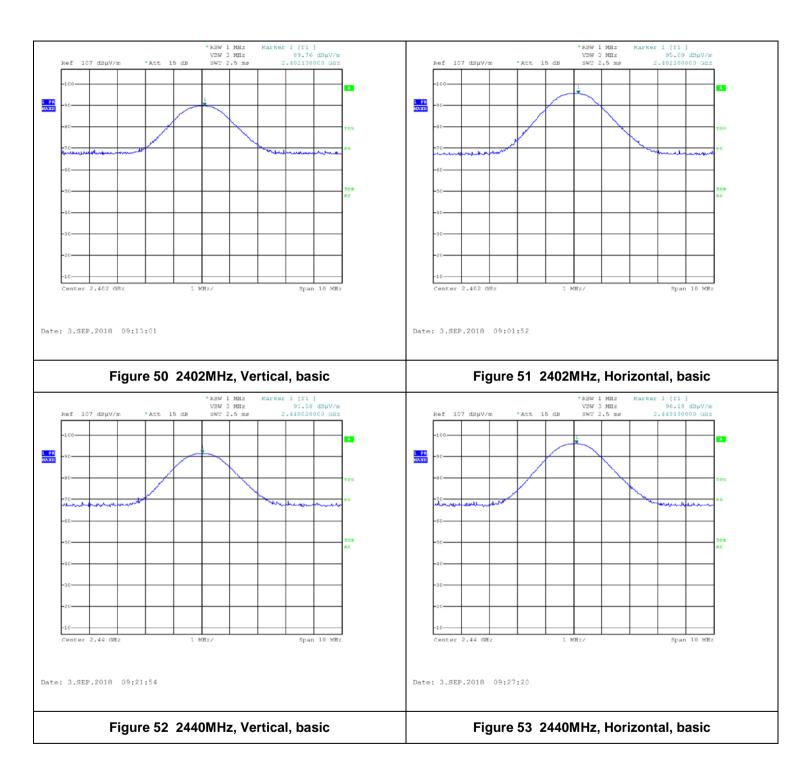
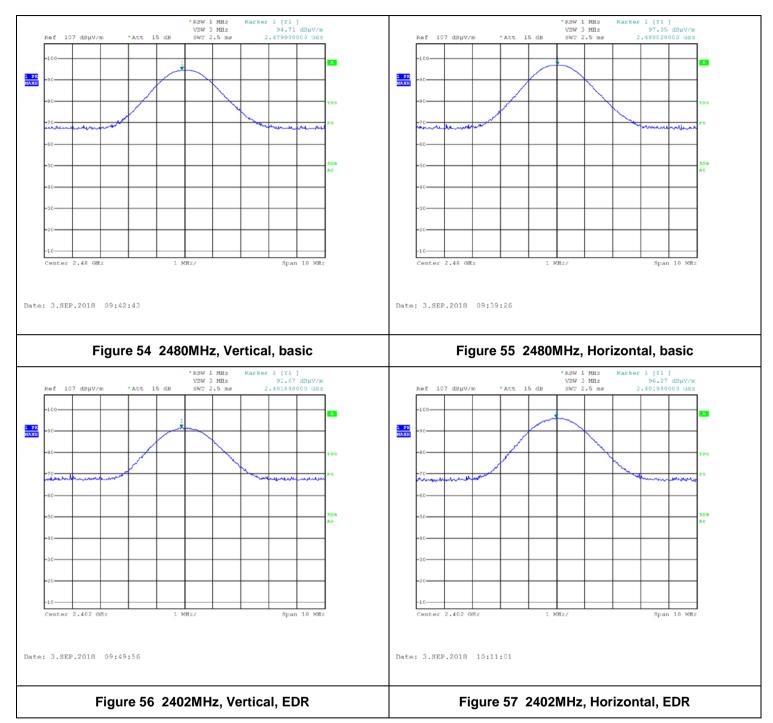
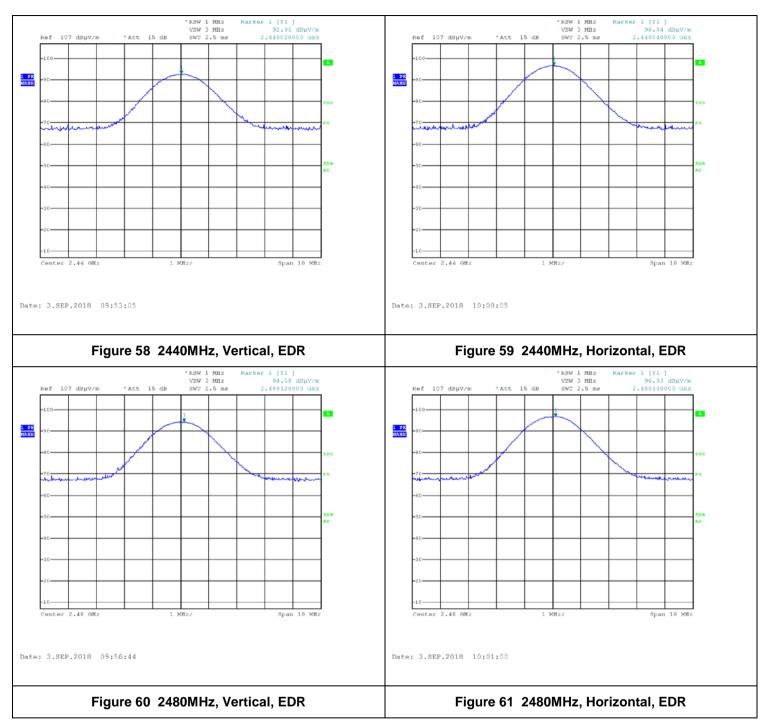

Modulation	Operation Frequency	Pol.	Field Strength	EIRP	Antenna Gain	Conducted Power	Conducted Power	Limit	Margin
(STD/EDR)	(MHz)	(V/H)	(dBuV/m)	(dBm)	(dBi)	(dBm)	(mW)	(mW)	(mW)
	2402.0	V	89.8	-5.4	-2.0	-3.4	0.4	1000.0	-999.6
	2402.0	Н	95.7	0.5	-2.0	2.5	1.8	1000.0	-998.2
STD	2440.0	V	91.6	-3.6	-2.0	-1.6	0.7	1000.0	-999.3
SID	2440.0	Н	96.2	1.0	-2.0	3.0	2.0	1000.0	-998.0
	2480.0	V	94.7	-0.5	-2.0	1.5	1.4	1000.0	-998.6
	2480.0	Н	97.1	1.9	-2.0	3.9	2.4	1000.0	-997.6
	2402.0	V	91.7	-3.5	-2.0	-1.5	0.7	1000.0	-999.3
	2402.0	Н	96.3	1.1	-2.0	3.1	2.0	1000.0	-998.0
EDD	2440.0	V	92.9	-2.3	-2.0	-0.3	0.9	1000.0	-999.1
EDR	2 44 0.0	Н	96.8	1.6	-2.0	3.6	2.3	1000.0	-997.7
	2490.0	V	94.6	-0.6	-2.0	1.4	1.4	1000.0	-998.6
	2480.0	Н	96.3	1.1	-2.0	3.1	2.0	1000.0	-998.0

Figure 49 Radiated Power Output Test Results


JUDGEMENT: Passed by-997.6 mW

For additional information see Figure 50 to Figure 61.



9.5 Test Equipment Used, Peak Output Power

Instrument	Manufacturer	anufacturer Model S		Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7 100724 February 19, 2018		February 28, 2019	
Horn Antenna	ETS	3115	6142 May 31, 2018		May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 62 Test Equipment Used

10. Dwell Time on Each Channel

10.1 Test Specification

FCC Part 15, sub part C, Section 15.247(a)(1)(iii)

10.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The spectrum analyzer was set to the following parameters:

Span = zero span, centered on a hopping channel, RBW≥ 1MHz

Detector Function: Peak, Trace: Maximum Hold

10.3 Test Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

10.4 Test Results

JUDGEMENT: Passed

The E.U.T met the requirements of the FCC Part 15, Section 15.247(a)(1)(i).

Additional information of the results is given in Figure 63 to Figure 66.

Results for STD:

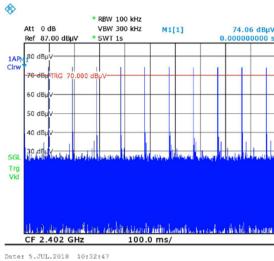


Figure 63 Number of Bursts in 1 sec=11

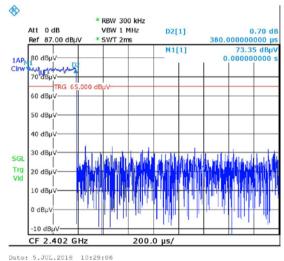
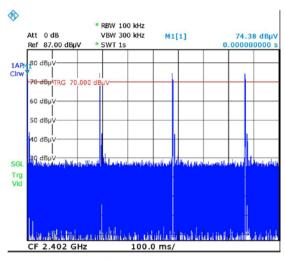



Figure 64 Burst Duration =0.38msec DWELL TIME (31.6*11)*0.38m= 132msec<400msec

Results for EDR:

Date: 5.JUL.2018 11:36:12

Figure 65 — Number of Bursts in 1 sec=4

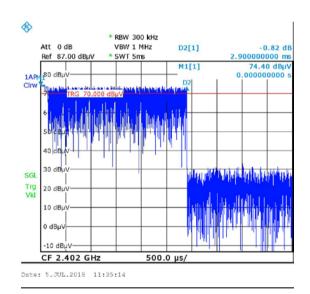


Figure 66 — Burst Duration =2.9msec

DWELL TIME = (31.6*4)*2.9m = 366.6msec<400msec

10.5 Test Equipment Used, Dwell Time on Each Channel

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 31, 2018	May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 67 Test Equipment Used

11. Band Edge

11.1 Test Specification

FCC Part 15, Section 15.247(d)

11.2 Test Procedure

(Temperature (20°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground and 3 meter distance from testing antenna.

The transmitter unit operated in 2 modes: hopping enabled and hopping disabled. The RBW was set to 100 kHz.

The EMI receiver was adjusted to the transmission channel at the maximum level. The display line was set to 20 dBc and the EMC analyzer was set to the band edge frequencies.

The E.U.T. was tested at the lower and the upper channels.

11.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

11.4 Test Results

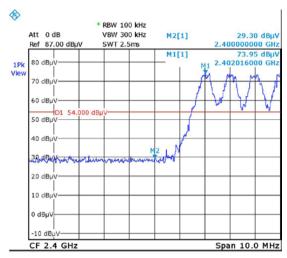

Modulation	Mode	Operation Frequency	Band Edge Frequency	Spectrum Level	Limit	Margin
(STD/EDR)	(Hopping/ Non-Hopping)	(MHz)	(MHz)	(dBuV/m)	(dBuV/m)	(dB)
		2402.2400	2400.0	29.3	54.0	-24.7
arm.	Hopping	2402-2480	2483.5	28.1	47.6	-19.5
STD	Non-	2402.0	2400.0	28.4	61.7	-33.3
	Hopping	2480.0	2483.5	28.6	51.5	-22.9
				27.7	53.4	-25.7
	Hopping	2402-2480	2483.5	28.4	44.0	-15.6
EDR	Non-	2402.0	2400.0	29.7	60.0	-30.3
	Hopping	2480.0	2483.5	26.4	67.8	-41.4

Figure 68 Band Edge Test Results

JUDGEMENT: Passed by 15.6

For additional information see Figure 69 to Figure 76.

Date: 5.JUL.2018 09:13:36

Figure 69 Hopping, Band Edge Low, STD

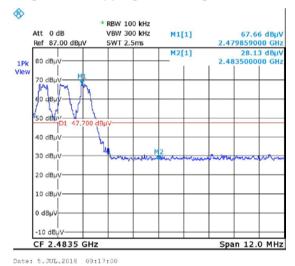


Figure 70 Hopping, Band Edge High, STD

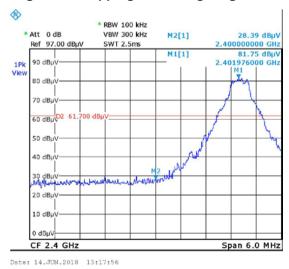
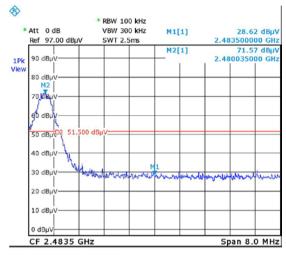



Figure 71 Non-Hopping, Band Edge Low, STD

Date: 14.JUN.2018 13:20:55

Figure 72 Non-Hopping, Band Edge High, STD

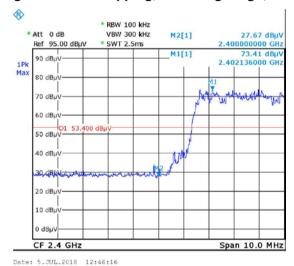


Figure 73 Hopping, Band Edge Low, EDR

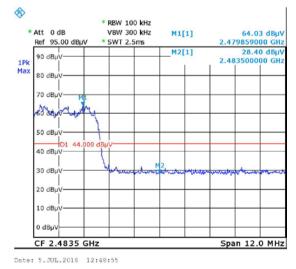


Figure 74 Hopping, Band Edge High, EDR

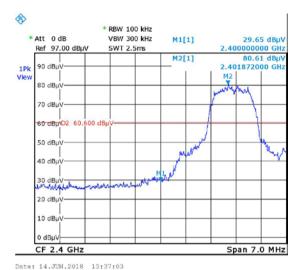


Figure 75 Non-Hopping, Band Edge Low, EDR

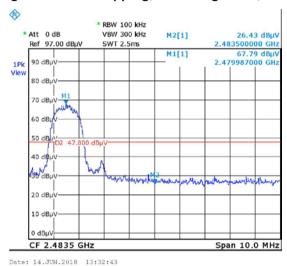


Figure 76 Non-Hopping, Band Edge High, EDR

11.5 Test Equipment Used, Band Edge

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 31, 2018	May 31, 2021
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 31, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 77 Test Equipment Used

12. Emissions in Non-Restricted Frequency Bands

12.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

12.2 Test Procedure

(Temperature (20°C)/ Humidity (61%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-25.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -25.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

RBW was set to 100kHz, detector set to max peak and trace to "max hold"

12.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

12.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247 (d) specification.

All detected emissions were greater than 20dBc below the fundamental level.

12.5 Test Equipment Used, Emissions in Non -Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
EMI Receiver	НР	8542E	3906A00276	February 19, 2018	February 19, 2019
RF Filter Section	НР	85420E	3705A00248	February 19, 2018	February 19, 2019
Spectrum Analyzer	НР	8593EM	3536A00120 ADI	February 20, 2018	February 20, 2019
Biconical Antenna	EMCO	3110B	9912-3337	May 15, 2017	May 15, 2019
Log Periodic Antenna	EMCO	3146	9505-4081	May 31, 2018	May 31, 2019
Horn Antenna	orn Antenna ETS		29845	May 31, 2018	May 31 2021
Horn Antenna	forn Antenna ARA		1007	December 13, 2017	December 13, 2020
Active Loop Antenna	^ H V (()		9506-2950	October 19, 2018	October 31, 2019
MicroWave System Amplifier	НР	83006A	3104A00589	October 1, 2018	October 31, 2019
Low Noise Amplifier 1GHz-18GHz	Miteq	AFSX4- 02001800-50-8P	-	October 1, 2018	October 31, 2019
RF Cable Chamber	Commscope ORS	0623 WBC- 400	G020132-	October 1, 2018	October 31, 2019
RF Cable Oats	EIM	RG214- 11N(X2)	-	August 13, 2018	August 31, 2019
High Pass Band Filter	Meuro	MFL040120H5 0	902252	October 1, 2018	October 31, 2019
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 78 Test Equipment Used

13. Emissions in Restricted Frequency Bands

13.1 Test Specification

FCC, Part 15, Subpart C, Sections 247(d), 15.205, 15.209

13.2 Test Procedure

(Temperature (22°C)/ Humidity (62%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-25.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -25.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

13.3 Test Limit

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	Field strength* (dBµV/m)	Field strength* (dBµV/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

^{*}The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

13.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C 209 specification.

For additional information see Figure 79 and Figure 80.

Radiated Emission

E.U.T Description Wearable Camera, Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Frequency Range: 9 kHz to 25.0 GHz

Modulation: STD Detector: Peak, Average

Operation Frequency	Freq.	Pol.	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	64.7	74.0	-9.3	22.4	54.0	-31.6
2402.0	2390.0	Н	64.6	74.0	-9.4	22.3	54.0	-31.7
2402.0	7206.0	V	64.7	74.0	-9.3	22.4	54.0	-31.6
	7206.0	Н	67.6	74.0	-6.4	25.3	54.0	-28.7
	4880.0	V	45.8	74.0	-28.2	3.5	54.0	-50.5
2440.0	4880.0	Н	54.3	74.0	-19.7	12.0	54.0	-42.0
2440.0	7320.0	V	61.7	74.0	-12.3	19.4	54.0	-34.6
	7320.0	Н	68.2	74.0	-5.8	25.9	54.0	-28.1
	7440.0	V	68.2	74.0	-5.8	25.9	54.0	-28.1
2400.0	7440.0	Н	62.9	74.0	-11.1	20.6	54.0	-33.4
2480.0	2483.5	V	64.7	74.0	-9.3	22.4	54.0	-31.6
	2483.5	Н	64.5	74.0	-9.5	22.2	54.0	-31.8

Figure 79. Radiated Emission Results

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

[&]quot;Peak Amp" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

Radiated Emission

E.U.T Description Wearable Camera, Vision System

Type MyEye2, Revision B

Serial Number: 181600023

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Frequency range: 9 kHz to 25.0 GHz

Modulation: EDR Detector: Peak, Average

Operation Frequency	Freq.	Pol.	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	64.5	74.0	-9.5	33.8	54.0	-20.2
2402.0	2390.0	Н	64.8	74.0	-9.2	34.1	54.0	-19.9
2402.0	7206.0	V	64.3	74.0	-9.7	33.6	54.0	-20.4
	7206.0	Н	66.0	74.0	-8.0	35.3	54.0	-18.7
	4880.0	V	44.9	74.0	-29.1	14.2	54.0	-39.8
2440.0	4880.0	Н	46.3	74.0	-27.7	15.6	54.0	-38.4
2440.0	7320.0	V	67.6	74.0	-6.4	36.9	54.0	-17.1
	7320.0	Н	70.1	74.0	-3.9	39.4	54.0	-14.6
	7440.0	V	70.5	74.0	-3.5	39.8	54.0	-14.2
2400.0	7440.0	Н	67.9	74.0	-6.1	37.2	54.0	-16.8
2480.0	2483.5	V	64.8	74.0	-9.2	34.1	54.0	-19.9
	2483.5	Н	64.6	74.0	-9.4	33.9	54.0	-20.1

Figure 80. Radiated Emission Results

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

[&]quot;Peak Amp" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

13.5 Test Equipment Used, Emissions in Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
EMI Receiver	НР	8542E	3906A00276	February 19, 2018	February 19, 2019
RF Filter Section	НР	85420E	3705A00248	February 19, 2018	February 19, 2019
Spectrum Analyzer	HP	8593EM	3536A00120 ADI	February 20, 2018	February 20, 2019
Biconical Antenna	EMCO	3110B	9912-3337	May 15, 2017	May 15, 2019
Log Periodic Antenna	EMCO	3146	9505-4081	May 31, 2018	May 31, 2019
Horn Antenna	ETS	3115	29845	May 31, 2018	May 31 2021
Horn Antenna	ARA	SWH-28	1007	December 13, 2017	December 13, 2020
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2018	October 31, 2019
MicroWave System Amplifier	НР	83006A	3104A00589	October 1, 2018	October 31, 2019
Low Noise Amplifier 1GHz-18GHz	Miteq	AFSX4- 02001800-50-8P	-	October 1, 2018	October 31, 2019
RF Cable Chamber	Commscope ORS	0623 WBC- 400	G020132-	October 1, 2018	October 31, 2019
RF Cable Oats	EIM	RG214- 11N(X2)	-	August 13, 2018	August 31, 2019
High Pass Band Filter	Meuro	MFL040120H5 0	902252	October 1, 2018	October 31, 2019
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 81 Test Equipment Used

14. Avg. Factor Calculation

- 1. Pulse period = 1 (worst scenario)
- 2. Pulse duration = 1 (worst scenario)
- 3. Basic Burst duration = 0.38msec
- 4. EDR Burst duration= 2.9msec
- 5. Average Factor = $20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100 \text{msec}} \times \text{Num of burst within } 100 \text{msec} \right]$
- 6. STD Average factor = -42.3
- 7. EDR Average factor = -30.7

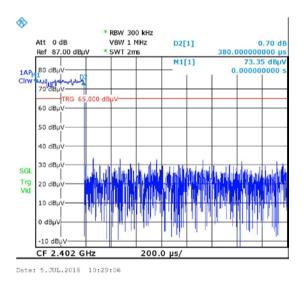


Figure 82. Burst Duration, STD

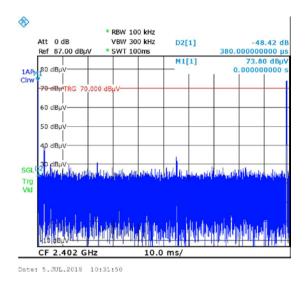


Figure 83. Number of Bursts in 100msec=2, STD

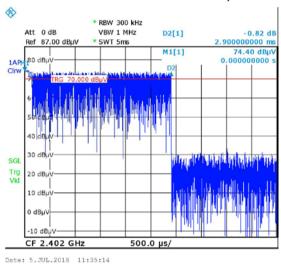


Figure 84. Burst Duration, EDR

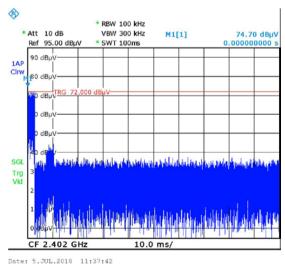


Figure 85. Number of Bursts in 100msec=1, EDR

14.1 Test Equipment Used, Average Factor

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rodhe & Schwarz	FSL6	100194	February 19, 2018	February 28, 2019

Figure 86 Test Equipment Used

15. Antenna Gain/Information

The antenna gain is -2.0dBi.

16. R.F Exposure/Safety

Typical use of the E.U.T. is as a wearable camera.

The typical distance between the E.U.T. and the user is 0.5 cm.

SAR Testing Exclusion Based on Section 4.3.1 and Appendix A of KDB 447498 D01 V06 Requirements

For FCC

Section 4.3.1 and Appendix A of KDB447498 D01 V06 was used as the guidance as follows:

Conducted power output = $3.9dBm + (-2dBi_(antenna gain) = 1.9dBm = 1.55mW$

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f(GHz)}]$

=1.55/5 * 1.55=0.48 this value is less than 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR.

The SAR measurement is not necessary.

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for

RF OATS Cable 35m ITL #1911

Frequency	Ref&cable loss	Ref loss	Cable loss
(MHz)	(dBm)	(dBm)	(dB)
1.00	0.7	0.2	0.5
10.00	1.3	0.3	1
20.00	1.7	0.3	1.34
30.00	2.0	0.5	1.5
50.00	2.3	0.5	1.83
100.00	3.0	0.3	2.67
150.00	3.7	0.5	3.17
200.00	4.3	0.5	3.83
250.00	4.5	0.3	4.17
300.00	5.0	0.5	4.5
350.00	5.7	0.5	5.17
400.00	6.0	0.5	5.5
450.00	6.5	0.7	5.83
500.00	6.8	0.5	6.33
550.00	7.2	0.5	6.67
600.00	7.5	0.7	6.83
650.00	7.7	0.5	7.17
700.00	8.3	0.7	7.66
750.00	8.5	0.7	7.83
800.00	8.8	0.7	8.16
850.00	9.0	0.5	8.5
900.00	9.5	0.7	8.83
950.00	9.7	0.8	8.84
1000.00	9.7	0.7	9

17.2 Correction factor for RF CABLE for Semi Anechoic Chamber ITL # 1840

Frequency	loss Result
(GHz)	(dB)
0.5	-1.0
1.0	-1.4
1.5	-1.7
2.0	-2.0
2.5	-2.3
3.0	-2.6
3.5	-2.8
4.0	-3.1
4.5	-3.3
5.0	-3.6
5.5	-3.7
6.0	-4.0
6.5	-4.4
7.0	-4.7
7.5	-4.8
8.0	-5.0
8.5	-5.1
9.0	-5.6
9.5	-5.8
10.0	-6.0
10.5	-6.2
11.0	-6.2
11.5	-6.0
12.0	-6.0
12.5	-6.1
13.0	-6.3
13.5	-6.5
14.0	-6.7
14.5	-7.0
15.0	-7.3
15.5	-7.5
16.0	-7.6
16.5	-8.0
17.0	-8.0
17.5	-8.1
18.0	-8.2
18.5	-8.2
19.0	-8.3
19.5	-8.6
20.0	-8.5

NOTES:

- 1. The cable is manufactured by Commscope
- 2. The cable type is 0623 WBC-400, serial # G020132 and 10m long

17.3 Correction factors for Active Loop Antenna Model 6502 S/N 9506-2950 ITL # 1075:

f(MHz)	MAF(dBs/m)	AF(dB/m)
0.01	-33.1	18.4
0.02	-37.2	14.3
0.03	-38.2	13.3
0.05	-39.8	11.7
0.1	-40.1	11.4
0.2	-40.3	11.2
0.3	-40.3	11.2
0.5	-40.3	11.2
0.7	-40.3	11.2
1	-40.1	11.4
2	-40	11.5
3	-40	11.5
4	-40.1	11.4
5	-40.2	11.3
6	-40.4	11.1
7	-40.4	11.1
8	-40.4	11.1
9	-40.5	11
10	-40.5	11
20	-41.5	10
30	-43.5	8

17.4 Correction factors for biconical antenna – ITL # 1356 Model: EMCO 3110B Serial No.:9912-3337

Frequency	ITL 1356 AF
[MHz]	[dB/m]
30	14.77
35	13.46
40	12.57
45	11.62
50	10.87
60	9.19
70	9.52
80	9.55
90	9.27
100	10.20
120	11.18
140	12.02
160	12.62
180	13.44
200	14.82

17.5 Correction factors for log periodic antenna – ITL # 1349

Model: EMCO 3146 Serial No.:9505-4081

Frequency	ITL 1349 AF
[MHz]	[dB/m]
200	11.31
250	11.85
300	14.47
400	15.12
500	17.69
600	18.45
700	20.52
800	20.77
900	21.97
1000	23.21

17.6 Correction factors for Horn Antenna

Model: 3115 Serial number:6142 3 meter range; ITL # 1354

Frequency	Antenna #1: ITL 1354 AF1
[MHz]	[dB/m]
1000	23.64
1500	26.14
2000	27.20
2500	28.20
3000	29.63
3500	31.28
4000	31.97
4500	32.25
5000	33.34
5500	33.67
6000	34.63
6500	35.71
7000	35.92
7500	36.34
8000	37.21
8500	37.28
9000	37.24
9500	37.28
10000	37.37
10500	37.77
11000	37.96
11500	38.55
12000	38.52
13000	39.30
14000	40.75
15000	40.32
16000	42.51
17000	42.35
18000	41.58

17.7 Correction factors for Double –Ridged Waveguide Horn ANTENNA

Model: 3115 Serial number:29845 3 meter range; ITL # 1352

FREQUENCY	AFE	FREQUENCY	AFE
(GHz)	(dB/m)	(GHz)	(dB/m)
0.75	25	9.5	38
1.0	23.5	10.0	38.5
1.5	26.0	10.5	38.5
2.0	29.0	11.0	38.5
2.5	27.5	11.5	38.5
3.0	30.0	12.0	38.0
3.5	31.5	12.5	38.5
4.0	32.5	13.0	40.0
4.5	32.5	13.5	41.0
5.0	33.0	14.0	40.0
5.5	35.0	14.5	39.0
6.0	36.5	15.0	38.0
6.5	36.5	15.5	37.5
7.0	37.5	16.0	37.5
7.5	37.5	16.5	39.0
8.0	37.5	17.0	40.0
8.5	38.0	17.5	42.0
9.0	37.5	18.0	42.5

17.8 Correction factors for

Horn Antenna Model: SWH-28 at 3 meter range.

CALIBRATION DATA

3 m distance

Frequency MHz	Measpred anténna factor dB/m ¹
18000	32.4
18500	32.0
19000	32.3
19500	32.4
20000	32.3
20500	32.8
21000	32.8
21500	32.7
22000	33.1
22500	33.0
23000	33.1
23500	33.8
24000	33.5
24500	33.5
25000	33.8
25500	33.9
26000	34.2
26500	. 34.7

 $^{^{9}}$ The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

ITL #:1353