TEST REPORT Blade-Advance True Wireless Earbuds **Product Name**: with Heart Rate Monitor and A.I Voice coaching Brand Mark : SOUL Model No. : Blade, SB51 FCC ID 2AAWE-SB51 Report Number : BLA-EMC-202103-A3603 Date of Sample Receipt : 2021/3/11 **Date of Test** : 2021/3/11 to 2021/5/13 **Date of Issue** : 2021/5/17 Test Standard : 47 CFR Part 15, Subpart C 15.247 Test Result : Pass Prepared for: Soul Electronics Limited Suite 2108, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong, China Prepared by: BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481 Compiled by: Jozu. Approved by: Review by: Sweet. Linng Page 2 of62 ## **REPORT REVISE RECORD** | Version No. Date | | Description | |------------------|--|-------------| | 00 2021/5/17 | | Original | ## **TABLE OF CONTENTS** | 1 | 7 | TEST SUMMARY | 6 | |---|------------|---|----| | 2 | (| GENERAL INFORMATION | 7 | | 3 | (| GENERAL DESCRIPTION OF E.U.T | | | 4 | | TEST ENVIRONMENT | | | | | | | | 5 | | TEST MODE | | | 6 | N | MEASUREMENT UNCERTAINTY | 8 | | 7 | | DESCRIPTION OF SUPPORT UNIT | | | 8 | | LABORATORY LOCATION | | | 9 | 7 | TEST INSTRUMENTS LIST | 10 | | 1 | | CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | | | • | | | | | | 1.1 | | | | | 1.2
1.3 | | | | | 1.3 | | | | _ | | CONDUCTED BAND EDGES MEASUREMENT | | | 2 | (| | | | | 2.1 | | | | | 2.2 | | | | | 2.3 | | | | 3 | F | RADIATED SPURIOUS EMISSIONS | 19 | | | 3.1 | LIMITS | 19 | | | 3.2 | BLOCK DIAGRAM OF TEST SETUP | 20 | | | 3.3 | | | | | 3.4 | TEST DATA | 22 | | 4 | F | RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | 30 | | | 4.1 | LIMITS | 30 | | | 4.2 | BLOCK DIAGRAM OF TEST SETUP | 31 | | | 4.3 | PROCEDURE | 31 | | | 4.4 | TEST DATA | 33 | | 5 | (| CONDUCTED SPURIOUS EMISSIONS | 37 | | | 5.1 | LIMITS | 37 | | | | | | 10.3 10.4 10.5 10.6 | | 5.2 | BLOCK DIAGRAM OF TEST SETUP | 3/ | |----|------|-----------------------------|----| | | 5.3 | TEST Data | 38 | | 6 | P | OWER SPECTRUM DENSITY | 39 | | | 6.1 | LIMITS | 39 | | | 6.2 | BLOCK DIAGRAM OF TEST SETUP | 39 | | | 6.3 | TEST Data | 39 | | 7 | С | ONDUCTED PEAK OUTPUT POWER | 40 | | | 7.1 | LIMITS | 40 | | | 7.2 | BLOCK DIAGRAM OF TEST SETUP | 40 | | | 7.3 | TEST DATA | 41 | | 3 | M | IINIMUM 6DB BANDWIDTH | 42 | | | 8.1 | LIMITS | 42 | | | 8.2 | BLOCK DIAGRAM OF TEST SETUP | | | | 8.3 | TEST Data | 42 | | 9 | Α | NTENNA REQUIREMENT | 43 | | | 9.1 | CONCLUSION | 43 | | 10 |) A | PPENDIX | 44 | | | 10.1 | Appendix A: DTS Bandwidth | 44 | | | | est Result | | | | Te | est Graphs | 45 | | | 10.2 | | | | | | est Result | | | | Te | est Graphs | 47 | Test Result. 48 Test Graphs. 49 Test Result. 51 Test Graphs. 52 Test Result.......56 | Test Graphs | 57 | |---------------------------------------|----| | APPENDIX A: PHOTOGRAPHS OF TEST SETUP | 60 | | APPENDIX B. PHOTOGRAPHS OF FUT | 62 | Page 6 of 62 ## 1 TEST SUMMARY | Test item | Test Requirement | Test Method | Class/Severity | Result | |--|-------------------------------------|---|---|--------| | Conducted
Emissions at AC
Power Line
(150kHz-30MHz) | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.2 | 47 CFR Part 15, Subpart C
15.207 | Pass | | Conducted Band
Edges Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.8 & Section
11.13.3.2 | 47 CFR Part 15, Subpart C
15.247(d) | Pass | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.4,6.5,6.6 | 47 CFR Part 15, Subpart C
15.209 & 15.247(d) | Pass | | Radiated Emissions which fall in the restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.10.5 | 47 CFR Part 15, Subpart C
15.209 & 15.247(d) | Pass | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.6 & Section
11.11 | 47 CFR Part 15, Subpart C
15.247(d) | Pass | | Power Spectrum
Density | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
11.10.2 | 47 CFR Part 15, Subpart C
15.247(e) | Pass | | Conducted Peak
Output Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.5 | 47 CFR Part 15, Subpart C
15.247(b)(3) | Pass | | Minimum 6dB
Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
11.8.1 | 47 CFR Part 15, Subpart C
15.247a(2) | Pass | | Antenna
Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15, Subpart C
15.203 & 15.247(c) | Pass | Page 7 of 62 ## 2 GENERAL INFORMATION | Applicant | Soul Electronics Limited | | | |--|---|--|--| | Address | Suite 2108,Exchange Tower, 33 Wang Chiu Road, Kowloon Bay,Hong Kong,China | | | | Manufacturer | Soul Electronics Limited | | | | Address Suite 2108,Exchange Tower, 33 Wang Chiu Road, Kowloon Kong,China | | | | | Soul Electronics Limited | | | | | Address Suite 2108, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, F
Kong, China | | | | | Product Name Blade-Advance True Wireless Earbuds with Heart Rate Monitor and Voice coaching | | | | | Test Model No. | Blade | | | ## 3 GENERAL DESCRIPTION OF E.U.T. | Hardware Version | V0.4 | |----------------------|--------------------------------| | Software Version | V1.4 | | Operation Frequency: | 2402MHz-2480MHz | | Modulation Type: | GFSK | | Channel Spacing: | 2MHz | | Number of Channels: | 40 | | Antenna Type: | FPC Antenna | | Antenna Gain: | -1.84dBi(Provided by customer) | Page 8 of 62 # 4 TEST ENVIRONMENT | Environment | Temperature | Voltage | | |-------------|-------------|---------|--| | Normal | 25°C | DC3.7V | | ## 5 TEST MODE | TEST MODE | TEST MODE DESCRIPTION | | | |--|---|--|--| | Transmitting mode | Keep the EUT in continuously transmitting mode with modulation. | | | | Remark: Full battery is used during all test except ac conducted emission, Only the worst mode would be recorded in this report. | | | | ## **6 MEASUREMENT UNCERTAINTY** | Parameter | Expanded Uncertainty (Confidence of 95%) | | | |---|--|--|--| | Radiated Emission(9kHz-30MHz) | ±4.34dB | | | | Radiated Emission(30Mz-1000MHz) | ±4.24dB | | | | Radiated Emission(1GHz-18GHz) | ±4.68dB | | | | AC Power Line Conducted
Emission(150kHz-30MHz) | ±3.45dB | | | Page 9 of62 # 7 DESCRIPTION OF SUPPORT UNIT | Device Type Manufacturer | | Model Name | Serial No. | Remark | |--------------------------|--------|------------|------------|--------| | AC Adapter | UGREEN | CD112 | N/A | N/A | | PC | HASEE | K610D | N/A | N/A | ## 8 LABORATORY LOCATION All tests were performed at: BlueAsia of Technical Services(Shenzhen) Co., Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted. Page 10 of62 # 9 TEST INSTRUMENTS LIST | Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz) | | | | | | |---|----------|---------|---------------|------------|------------| | Equipment | Cal.Date | Cal.Due | | | | | Shield room | SKET | 833 | N/A | 2020/11/25 | 2023/11/24 | | Receiver | R&S | ESPI3 | 101082 | 2020/10/12 | 2021/10/11 | | LISN | R&S | ENV216 | 3560.6550.15 | 2020/10/12 | 2021/10/11 | | LISN | AT | AT166-2 | AKK1806000003 | 2020/10/12 | 2021/10/11 | | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | Test Equipment Of 0 | Test Equipment Of Conducted Band Edges Measurement | | | | | | | | | |---------------------|--|--------|------------|------------|------------|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | | | | Test Equipment Of | Test Equipment Of Radiated Spurious Emissions | | | | | | | | | |----------------------|---|-------|------------------|------------|------------|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | Chamber | SKET | 966 | N/A | 2020/11/10 | 2023/11/9 | | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | | Receiver | R&S | ESR7 | 101199 | 2020/10/12 | 2021/10/11 | | | | | | broadband
Antenna | Schwarzbeck | | 00836
P:00227 | 2020/9/26 | 2022/9/25 | | | | | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 2020/9/26 | 2022/9/25 | | | | | Page 11 of62 | Amplifier | SKET | PA-000318G-45 | N/A | 2020/10/16 | 2021/10/15 | |---------------|-------------|---------------|------------------|------------|------------| | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 2020/9/26 | 2022/9/25 | | Controller | SKET | N/A | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-02 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-03 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-01 | LA-XC-01 N/A N/A | | N/A | | Test Equipment Of | Test Equipment Of Radiated Emissions which fall in the restricted bands | | | | | | | | |----------------------|---|---------------|------------------|------------|------------|--|--|--| | Equipment | Manufacturer | Model S/N | | Cal.Date | Cal.Due | | | | | Chamber | SKET | 966 | N/A | 2020/11/10 | 2023/11/9 | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | Receiver | R&S | ESR7 | 101199 | 2020/10/12 | 2021/10/11 | | | | | broadband
Antenna | Schwarzbeck | VULB9168 | 00836
P:00227 | 2020/9/26 | 2022/9/25 | | | | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 2020/9/26 | 2022/9/25 | | | | | Amplifier | SKET | PA-000318G-45 | N/A 2020/10/16 | | 2021/10/15 | | | | | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | | | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 2020/9/26 | 2022/9/25 | | | | | Controller | SKET | N/A | N/A | N/A | N/A | | | | | Coaxial Cable | BlueAsia | BLA-XC-02 | N/A | N/A | N/A | | | | | Coaxial Cable | BlueAsia | BLA-XC-03 | N/A | N/A | N/A | | | | | Coaxial Cable | BlueAsia | BLA-XC-01 | N/A | N/A | N/A | | | | | Test Equipment Of Conducted Spurious Emissions | | | | | | | | |--|--------------|-------------------------------|--------|------------|------------|--|--| | Equipment | Manufacturer | Manufacturer Model S/N Cal.Da | | | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | Page 12 of62 | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | |------------------|---------|--------|------------|------------|------------| | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | Test Equipment Of | Test Equipment Of Power Spectrum Density | | | | | | | | | |-------------------|--|--------|------------|------------|------------|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | | | | Test Equipment Of Conducted Peak Output Power | | | | | | | | | |---|--------------|--------|------------|------------|------------|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | | | Test Equipment Of Minimum 6dB Bandwidth | | | | | | | | | |---|--------------|--------|------------|------------|------------|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | | 1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|----------------------------------| | Test Method | ANSI C63.10 (2013) Section 6.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ## 1.1 LIMITS | Frequency of | Conducted limit(dBμV) | | | | | |------------------------------------|-----------------------|-----------|--|--|--| | emission(MHz) | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | -60 | 50 | | | | | 5-30 *Decreases with the logarithm | | 50 | | | | ## 1.2 BLOCK DIAGRAM OF TEST SETUP 1.3 PROCEDURE - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as Page 14 of62 the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. - 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor ## **TEST DATA** # [TestMode: TX]; [Line: Line]; [Power: AC120V/60Hz] Limit: FCC Class B Conduction(QP) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE mode Note: Site | No. N | ۸k. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-------|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.2380 | 21.21 | 9.84 | 31.05 | 62.17 | -31.12 | QP | | | 2 | | 0.2380 | 16.13 | 9.84 | 25.97 | 52.17 | -26.20 | AVG | | | 3 | | 0.4980 | 34.47 | 9.87 | 44.34 | 56.03 | -11.69 | QP | | | 4 * | k | 0.4980 | 28.38 | 9.87 | 38.25 | 46.03 | -7.78 | AVG | | | 5 | | 2.2740 | 20.16 | 9.95 | 30.11 | 56.00 | -25.89 | QP | | | 6 | | 2.2740 | 13.34 | 9.95 | 23.29 | 46.00 | -22.71 | AVG | | | 7 | | 3.6220 | 16.53 | 9.98 | 26.51 | 56.00 | -29.49 | QP | | | 8 | | 3.6220 | 9.59 | 9.98 | 19.57 | 46.00 | -26.43 | AVG | | | 9 | | 13.2740 | 8.14 | 10.29 | 18.43 | 60.00 | -41.57 | QP | | | 10 | | 13.2740 | 1.79 | 10.29 | 12.08 | 50.00 | -37.92 | AVG | | | 11 | | 20.5540 | 13.77 | 10.42 | 24.19 | 60.00 | -35.81 | QP | | | 12 | | 20.5540 | 1.81 | 10.42 | 12.23 | 50.00 | -37.77 | AVG | | *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX]; [Line: Neutral] ;[Power:AC120V/60Hz] Limit: FCC Class B Conduction(QP) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE mode Note: Site | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0.3140 | 20.18 | 9.77 | 29.95 | 59.86 | -29.91 | QP | | | 2 | 0.3140 | 15.35 | 9.77 | 25.12 | 49.86 | -24.74 | AVG | | | 3 | 0.4980 | 30.91 | 9.79 | 40.70 | 56.03 | -15.33 | QP | | | 4 * | 0.4980 | 27.33 | 9.79 | 37.12 | 46.03 | -8.91 | AVG | | | 5 | 0.9900 | 19.67 | 9.84 | 29.51 | 56.00 | -26.49 | QP | | | 6 | 0.9900 | 14.74 | 9.84 | 24.58 | 46.00 | -21.42 | AVG | | | 7 | 2.1180 | 17.42 | 9.86 | 27.28 | 56.00 | -28.72 | QP | | | 8 | 2.1180 | 13.25 | 9.86 | 23.11 | 46.00 | -22.89 | AVG | | | 9 | 3.6220 | 13.93 | 9.91 | 23.84 | 56.00 | -32.16 | QP | | | 10 | 3.6220 | 10.01 | 9.91 | 19.92 | 46.00 | -26.08 | AVG | | | 11 | 20.3819 | 7.59 | 10.42 | 18.01 | 60.00 | -41.99 | QP | | | 12 | 20.3819 | 1.64 | 10.42 | 12.06 | 50.00 | -37.94 | AVG | | *:Maximum data x:Over limit Reference Only !:over margin Page 17 of 62 ## 2 CONDUCTED BAND EDGES MEASUREMENT | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|--| | Test Method | ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ## 2.1 LIMITS Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). ## 2.2 BLOCK DIAGRAM OF TEST SETUP 2.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details Page 19 of 62 ## 3 RADIATED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|---| | Test Method | ANSI C63.10 (2013) Section 6.4,6.5,6.6 | | Test Mode (Pre-Scan) | TX mode (SE) below 1G;TX mode (SE) Above 1G | | Test Mode (Final Test) | TX mode (SE) below 1G;TX mode (SE) Above 1G | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ## 3.1 LIMITS | Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) | |----------------|----------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. ## 3.2 BLOCK DIAGRAM OF TEST SETUP ## 3.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Report No.: BLA-EMC-202103-A3603 Page 21 of62 h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. ### Remark: - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 7GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. ### **TEST DATA** 3.4 # [TestMode: TX mode (SE) below 1G]; [Polarity: Vertical] Limit: FCC Part15 Class B EUT: Blade-Advance True Wireless Mode: BLE mode Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 31.9546 | 7.53 | 22.40 | 29.93 | 40.00 | -10.07 | QP | | | | | 2 | | 57.7962 | 3.73 | 23.53 | 27.26 | 40.00 | -12.74 | QP | | | | | 3 | | 100.9339 | 5.69 | 20.55 | 26.24 | 43.50 | -17.26 | QP | | | | | 4 | | 147.9214 | 2.87 | 23.32 | 26.19 | 43.50 | -17.31 | QP | | | | | 5 | 1 | 287.9904 | 10.97 | 23.73 | 34.70 | 46.00 | -11.30 | QP | | | | | 6 | | 729.3583 | 1.15 | 33.12 | 34.27 | 46.00 | -11.73 | QP | | | | Power: Distance: 3m # [TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal] Distance: 3m Limit: FCC Part15 Class B EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE mode Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 57.3923 | 4.02 | 23.54 | 27.56 | 40.00 | -12.44 | QP | | | | | 2 | | 200.6881 | 3.61 | 20.72 | 24.33 | 43.50 | -19.17 | QP | | | | | 3 | | 287.9904 | 7.65 | 23.73 | 31.38 | 46.00 | -14.62 | QP | | | | | 4 | | 135.9822 | 0.12 | 23.22 | 23.34 | 43.50 | -20.16 | QP | | | | | 5 | | 694.4174 | 1.09 | 32.39 | 33.48 | 46.00 | -12.52 | QP | | | | | 6 | | 441.7426 | 0.36 | 27.97 | 28.33 | 46.00 | -17.67 | QP | | | | [TestMode: TX Low channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4808.328 | 56.05 | -4.54 | 51.51 | 74.00 | -22.49 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX Low channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-L Note: | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4808.328 | 55.62 | -4.54 | 51.08 | 74.00 | -22.92 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX middle channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-M Note: | No. | Mk | c. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4883.767 | 55.55 | -4.51 | 51.04 | 74.00 | -22.96 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX middle channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-M Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4883.767 | 53.68 | -4.51 | 49.17 | 74.00 | -24.83 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX high channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-H Note: | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4979.731 | 56.81 | -3.47 | 53.34 | 74.00 | -20.66 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin # [TestMode: TX high channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 4960.388 | 55.37 | -3.73 | 51.64 | 74.00 | -22.36 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin ## RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | |------------------------|-----------------------------------|--|--|--| | Test Method | ANSI C63.10 (2013) Section 6.10.5 | | | | | Test Mode (Pre-Scan) | TX | | | | | Test Mode (Final Test) | TX | | | | | Tester | Jozu | | | | | Temperature | 25℃ | | | | | Humidity | 60% | | | | ### 4.1 LIMITS | Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) | |----------------|----------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. 4.2 BLOCK DIAGRAM OF TEST SETUP ## 4.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Page 32 of 62 h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Page 33 of 62 ## **TEST DATA** # [TestMode: TX Low channel]; [Polarity: Horizontal] ## **Radiated Emission Measurement** Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-L Note: | | | | | | | | - | |----|----------------------|-------|--------|---------|-----------------|---------------------|-----| | | | | | | | | - | | | | | | | | | | | | 2357.00
olarizati | 0.750 | 66.40 | 2375.80 | 2385.20
Temp | 2404.00
erature: | MHz | | | ower: | OH. | 110112 | Contai | Humid | | | | Di | stance: | | | | | | | | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 2310.000 | 65.04 | -14.84 | 50.20 | 74.00 | -23.80 | peak | | | | | 2 | * | 2312.444 | 67.40 | -14.82 | 52.58 | 74.00 | -21.42 | peak | | | | | 3 | | 2390.000 | 64.01 | -14.60 | 49.41 | 74.00 | -24.59 | peak | | | | *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX Low channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 2310.000 | 64.64 | -14.84 | 49.80 | 74.00 | -24.20 | peak | | | | | 2 | * | 2310.846 | 66.97 | -14.84 | 52.13 | 74.00 | -21.87 | peak | | | | | 3 | | 2390.000 | 61.71 | -14.60 | 47.11 | 74.00 | -26.89 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX high channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 2483.500 | 62.38 | -14.33 | 48.05 | 74.00 | -25.95 | peak | | | | | 2 | * | 2498.922 | 65.26 | -14.28 | 50.98 | 74.00 | -23.02 | peak | | | | | 3 | | 2500.000 | 64.03 | -14.27 | 49.76 | 74.00 | -24.24 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin [TestMode: TX high channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: Blade-Advance True Wireless M/N: Blade Mode: BLE-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 2483.500 | 60.57 | -14.33 | 46.24 | 74.00 | -27.76 | peak | | | | | 2 | * | 2498.680 | 64.37 | -14.28 | 50.09 | 74.00 | -23.91 | peak | | | | | 3 | | 2500.000 | 60.99 | -14.27 | 46.72 | 74.00 | -27.28 | peak | | | | Power: Distance: *:Maximum data (Reference Only x:Over limit !:over margin Page 37 of 62 ## 5 CONDUCTED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | | |------------------------|--|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 7.8.6 & Section 11.11 | | | | | | | Test Mode (Pre-Scan) | TX | | | | | | | Test Mode (Final Test) | TX | | | | | | | Tester | Jozu | | | | | | | Temperature | 25℃ | | | | | | | Humidity | 60% | | | | | | ## 5.1 LIMITS me Limit: cor In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). ## 5.2 BLOCK DIAGRAM OF TEST SETUP 5.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details Page 39 of 62 ## 6 POWER SPECTRUM DENSITY | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | | |------------------------|------------------------------------|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 11.10.2 | | | | | | | Test Mode (Pre-Scan) | TX | | | | | | | Test Mode (Final Test) | TX | | | | | | | Tester | Jozu | | | | | | | Temperature | 25℃ | | | | | | | Humidity | 60% | | | | | | ## 6.1 LIMITS **Limit:** | ≤8dBm in any 3 kHz band during any time interval of continuous transmission ## 6.2 BLOCK DIAGRAM OF TEST SETUP ## 6.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details 7 CONDUCTED PEAK OUTPUT POWER | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | | |------------------------|----------------------------------|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 7.8.5 | | | | | | | Test Mode (Pre-Scan) | TX | | | | | | | Test Mode (Final Test) | TX | | | | | | | Tester | Jozu | | | | | | | Temperature | 25℃ | | | | | | | Humidity | 60% | | | | | | ## 7.1 LIMITS | Frequency range(MHz) | Output power of the intentional radiator(watt) | |----------------------|--| | | 1 for ≥50 hopping channels | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | 1 for digital modulation | | | 1 for ≥75 non-overlapping hopping channels | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | 1 for digital modulation | | 5505 5050 | 1 for frequency hopping systems and digital | | 5725-5850 | modulation | ## 7.2 BLOCK DIAGRAM OF TEST SETUP