

Release July, 2017

TEST REPORT

N°: 156982-725741-A (FILE#1002235) Version : 01

Subject Electromagnetic compatibility tests according to the standards:

FCC CFR 47 Part 15, Subpart C

RSS-210 Issue 9

Issued to MARKEM IMAJE INDUSTRIES

9 rue Gaspard Monge

26500 - BOURG LES VALENCE

FRANCE

Apparatus under test

♦ Product Industrial Printer
♦ Trade mark MARKEM IMAJE

♥ Manufacturer
MARKEM IMAJE INDUSTRIES

♦ Model under test
9450

♦ Serial number
 FCCID
 FR17180153
 2AAW8-MI9450

♥ IC 11372A-MI9450

Conclusion See Test Program chapter

Test date August 24, 2018 to August 31, 2018

Test location FONTENAY AUX ROSES

IC Test site 6230B-1

Composition of document 31 pages

Document issued on September 19, 2018

Written by : Majid Mourzagh Tests operator Approved by :
Anthony MERLIN
Technical manager

ABO ATOIRE CENTRAL DES INDU TRIES E ECTRIQUES
LOTE SUD-EST ZI Centr'Alp
170 Rie de Gardagnon

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document conformity of the whole production to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél: +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

PUBLICATION HISTORY

Version	Date	Author	Modification		
01	September 19, 2018	Majid MOURZAGH	Creation of the document		

SUMMARY

1.	TEST PROGRAM	4
2.	SYSTEM TEST CONFIGURATION	5
3.	CONDUCTED EMISSION DATA	8
4.	RADIATED EMISSION DATA (15.209)	13
5.	FUNDAMENTAL FREQUENCY TOLERANCE (15.225E)	23
6.	BAND-EDGE COMPLIANCE §15.209	25
7.	OCCUPIED BANDWIDTH	28
8	UNCERTAINTIES CHART	31

1. **TEST PROGRAM**

Standard: - FCC Part 15, Subpart C

- ANSI C63.10 (2013) - RSS-210 Issue 9

- RSS-Gen Issue 4

EMISSION TEST		LIMITS		RESULTS (Comments)		
Limits for conducted disturbance	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	☑ PASS		
at mains ports 150kHz-30MHz	150-500kHz	66 to 56	56 to 46	□ FAIL □ NA		
CFR 47 §15.207	0.5-5MHz	56	46	□NP		
CFR 47 §15.207	5-30MHz	60	50]		
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.225 RSS-Gen §4.9	Measure at 30m	Measure at 300m 9kHz-490kHz : 67.6dBμV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBμV/m /F(kHz)				
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.225 RSS-Gen §4.9 Highest frequency: (Declaration of provider)	88MHz-216MHz : 43.5 216MHz-960MHz : 46	·				
Fundamental field strength limit CFR 47 §15.225 RSS-210 §B.6	Operation within the 13.110-14.010 MHz	Operation within the band 13.110-14.010 MHz				
Fundamental frequency tolerance CFR 47 §15.225 RSS-210 §B.6	Operation within the 13.110-14.010 MHz	band		☑ PASS □ FAIL □ NA □ NP		
Band edge compliance CFR 47 §15.225 RSS-210 §B.6	Operation within the 13.110-14.010 MHz	Operation within the band 13.110-14.010 MHz				
Occupied bandwidth RSS-Gen Issue 5 §6.7	No limit		☑ PASS □ FAIL □ NA □ NP			
Receiver Spurious Emission** RSS-Gen Issue 5 §7.3	See RSS-Gen §7.3			□ PASS □ FAIL ☑ NA □ NP		

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

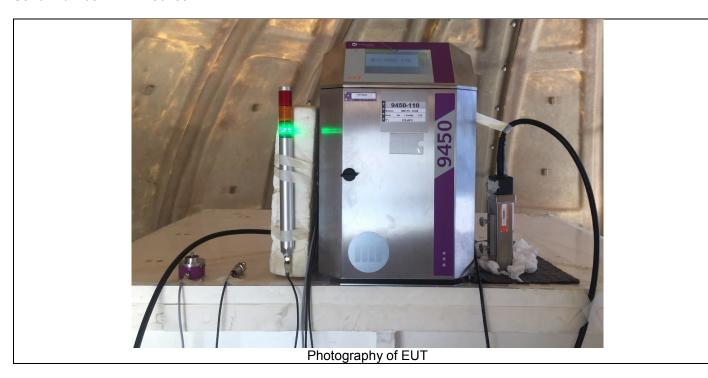
⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz. If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz,

while taking smallest of both.

**Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

2. SYSTEM TEST CONFIGURATION

2.1. JUSTIFICATION


Due to endlife of screen part, a new component has been tested following to FCC Part15C requirements, none others modifications have been done on the product.

2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

9450

Serial Number: FR17180153

Power supply:

During all the tests, EUT is supplied by V_{nom}: 110VAC

For measurement with different voltage, it will be presented in test method.

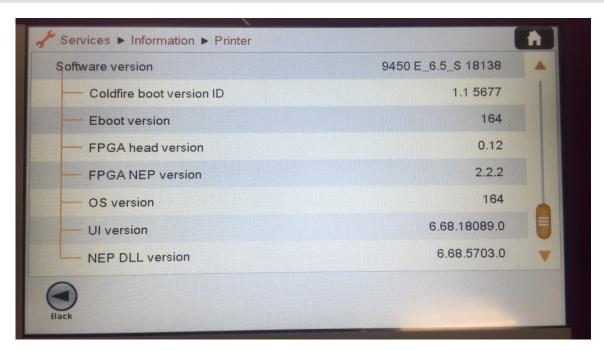
Name	Туре	Rating	Reference / Sn	Comments
Supply1	☑ AC □ DC □ Battery	100-240VAC 50-60HZ	-	-

Inputs/outputs - Cable:

		Length	Declared			
Access	Туре	used (m)	<3m	Shielded	Under test	Comments
Supply1	3 wires	2			\square	
Tachymeter input	-	5			Ø	
Proximity cell input	-	6				
Status beacon input		5			V	
Printing head		3		$\overline{\mathbf{A}}$	Ø	

Auxiliary equipment used during test:

The state of the s	3 0000		
Туре	Reference	Sn	Comments
Proximity cells	A35355/B	-	-
Beacon PATLITE	FB194	-	Model MP-02C
Tachymeter	A35356	B11140B404	-


Equipment information:

Frequency band:	☑ [13.553–13.567]	MHz	□ [12	5]kHz] [-] MHz	
Sub-band REC7003:	☑ Annex 9 (j)		☐ Anne	x 9 (a3)		Annex ()	
RF mode:	☐ Transmitter	✓ -	Transceiver	☐ Receiv	☐ Standby		
Туре:	☑ RFID		□ EAS		□0	ther:	
Bandwidth:	☐ Narrowband (ISO15693, ISO18000-3)			☑ Wideband (ISO14443, NFC)			
Product class – Annex B.2	☑ 1		□ 2	□ 3		□ 4	
Channelized system:	☑ No	☐ 2 ☐ 3 ☐ ☐ 3 ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐				kHz	
Equipment intended for use as a			□ M	□ Annex 9 (a3) □ Annex () eiver □ Receiver □ Standby S □ Other: ☑ Wideband (ISO14443, NFC) □ 4 □ Yes, channel spacing: kHz □ Mobile □ Portable □ Plug-in □ Combined □ Internal □ Temporary (only for tests) NC dBi □ Prototype C □ 0°C ☑ +5 °C 20°C ☑ +45 °C		☐ Portable	
Type of equipment:)	□ PI	ug-in	☐ Combined		
Antenna Type:	□ Ext	ternal		✓ Internal			
Antenna connector:	☐ Permanent external	\checkmark				☐ Temporary (only for tests)	
Antenna Gain:			NC	dBi			
Duty cycle:	☑ Continuous du	ıty	☐ Intermi	ittent duty		ontinuous operation	
Equipment type:		ion mo	odel		☐ Pro	totype	
	Tmin:		□ -20°C	□ 0°C		⊻ +5 °C	
Temperature range:	Tnom:			20°C			
	Tmax:		□ 35°C	□ 55°C	;	☑ +45 °C	
Type of power source:	☑ AC power supp	ly	☐ DC pow	er supply	□ Ba	attery (Select type)	
	Vmin:		☑ 93.5\	//60Hz		□ VDC	
Test source voltage:	Vnom:		☑ 110V	//60Hz		□ VDC	
	Vmax		☑ 126V	□ Mobile □ Portable □ Plug-in □ Combined □ Internal □ Temporary (only for tests) NC dBi □ Continuous operation □ Prototype □ Prototype □ 0°C ☑ +5 °C 20°C ☑ +45 °C □ C power supply □ Battery (Select type) ☑ 93.5V/60Hz □ VDC ☑ 110V/60Hz □ VDC			

TEST REPORT
N° **156982-725741-A**Version : **01**Page 6/31

2.3. EUT CONFIGURATION

2.4. EQUIPMENT MODIFICATIONS

✓ None
✓ Modification:

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor

AG = Amplifier Gain

Assume a receiver reading of $52.5 dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 $dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test : August 28, 2018 Test performed by : Majid Mourzagh

Atmospheric pressure (hPa) : 1001 Relative humidity (%) : 35 Ambient temperature (°C) : 23

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☐ 10cm above the ground on isolating support (Floor standing equipment)

The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Test setup

3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329585	07/17	07/18
EMC comb generator	LCIE SUD EST	-	A3169098	-	-
LISN	RHODE & SCHWARZ	ENV216	C2320291	12/17	12/18
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	12/18
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/16	08/18
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	02/18	02/19
CALIFORNIA System: 5kVA TRI	SCHAFFNER	NSG 1007	A7043026	-	-

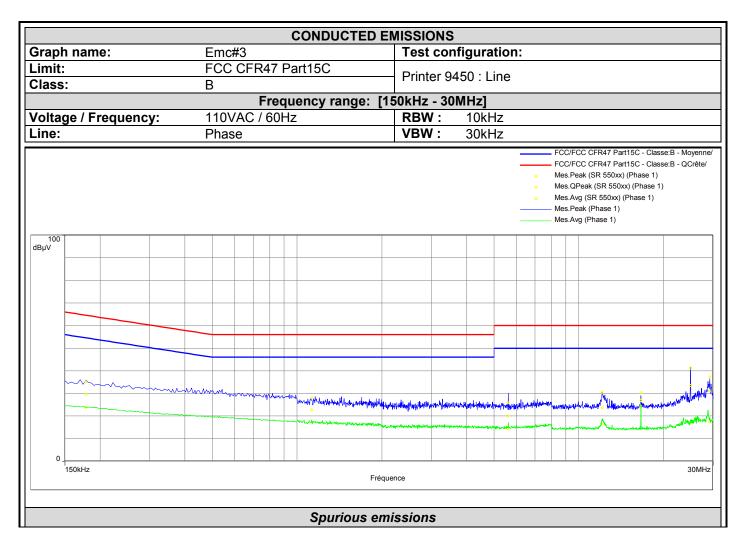
3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

√	None	☐ Divergence:
V	none	□ Diverdence.

3.6. TEST RESULTS

Mains terminals:

Supply1


Measurements are performed on the phase (L1) and neutral (N) of the power line.

Results: (PEAK detection)

Graph identifier	Line	Comments	
Emc# 1	Phase	-	See annex 1
Emc# 2	Neutral	-	See annex 1

TEST REPORT
N° **156982-725741-A**Version : **01**Page 10/31

Frequenc y (MHz)	Mes.Peak (dBµV)	Mes.QPe ak (dBµV)	LimQP (dBµV)	Mes.QPe ak- LimQP (dB)	Mes.Avg (dBμV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correctio n (dB)
0.178	35.0	29.6	64.6	-34.9	23.8	54.6	-30.8	Phase 1	19.5
1.128	28.2	22.8	56.0	-33.2	17.1	46.0	-28.9	Phase 1	19.5
5.596	25.9	20.1	60.0	-39.9	14.3	50.0	-35.7	Phase 1	19.8
12.108	30.6	23.7	60.0	-36.3	16.4	50.0	-33.6	Phase 1	20.3
16.624	30.3	26.9	60.0	-33.1	24.4	50.0	-25.6	Phase 1	20.5
24.940	41.2	33.4	60.0	-26.6	17.1	50.0	-32.9	Phase 1	21.0
29.220	37.3	31.2	60.0	-28.8	17.4	50.0	-32.6	Phase 1	21.2

		CONDUCTED	EMISSIONS	3				
Graph name:	Emc#4		Test co	nfigurati	on:			
mit: ECC CEP47 Part15C				9450: Nei				
Class:	1				uliai			
	Fre	equency range:	[150kHz - 3	0MHz]				
Voltage / Frequency:	110VAC / 6	0Hz	RBW:	10kHz				
Line:	Neutral		VBW:	30kHz	•			
					• N • N • N	CC/FCC CFR47 P les.Peak (SR 550) les.QPeak (SR 55 les.Avg (SR 550) les.Peak (Neutre) les.Avg (Neutre)	(x) (Neutre) 0xx) (Neutre)	e:B - QCrête
100 dBµV								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mha			ì				المالية
	my my my months	arrange warmen and a separated place		allander allement de la constitución de la constitu	mandal april advicate los	HARALE RAINER WAS AND MARKET	delimped papers	M DW May High of Albertane
			Village Barrelle Landson Companie		The state of the s			بالمالع الصالح المسارية
					- 171			•
0								
150kHz		Fre	quence					30MH
		Spurious e	missions					

Frequenc y (MHz)	Mes.Peak (dΒμV)	Mes.QPe ak (dBµV)	LimQP (dBµV)	Mes.QPe ak- LimQP (dB)	Mes.Avg (dBμV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correctio n (dB)
0.194	35.4	29.4	63.9	-34.5	23.6	53.9	-30.3	Neutre	19.5
3.664	32.8	21.0	56.0	-35.0	14.9	46.0	-31.1	Neutre	19.7
3.880	35.7	22.1	56.0	-33.9	14.8	46.0	-31.2	Neutre	19.7
13.560	40.8	39.4	60.0	-20.6	34.3	50.0	-15.7	Neutre	20.4
16.624	30.2	26.6	60.0	-33.4	24.1	50.0	-25.9	Neutre	20.5
24.940	41.2	33.4	60.0	-26.6	17.2	50.0	-32.8	Neutre	21.0
29.216	35.1	27.6	60.0	-32.4	16.8	50.0	-33.2	Neutre	21.2

## 3.7. CONCLUSION

The sample of the equipment 9450 , Sn: FR17180153, tested in the configuration presented in this test report **satisfies** to requirements limits of the standard FCC Part 15 Subpart C, for conducted emissions.



## 4. RADIATED EMISSION DATA (15.209)

#### 4.1. ENVIRONMENTAL CONDITIONS

Date of test : August 24, 2018 August 27, 2018
Test performed by : Majid Mourzagh Majid Mourzagh

Atmospheric pressure (hPa) : 1000 1001 Relative humidity (%) : 39 33 Ambient temperature (°C) : 22 24

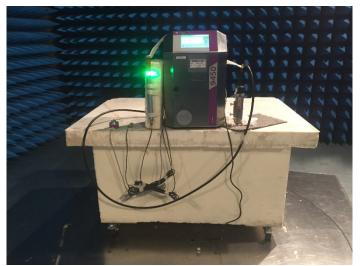
#### 4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☐ 10cm above the ground on isolating support (Floor standing equipment)


The EUT is powered by V_{nom}.





Test setup on OATS







Test setup in anechoic chamber

#### 4.3. TEST METHOD

The product has been tested according to ANSI C63.10, FCC Part 15 Subpart C.

Pre-characterisation measurement: (9kHz - 2GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 2GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test for maximized the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 2GHz.

#### Characterization on 10 meters open site from 9kHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC Part 15 Subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test for maximized the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

#### Characterization on 3 meters full anechoic chamber from 1GHz to 2GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC Part 15 Subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 2GHz. Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

☑ On mast, varied from 1m to 4m

☐ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.



#### 4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Antenna Loop	ELECTRO-METRICS	EM-6879	C2040052	11/17	11/19
Antenna Bi-Log	AH System	SAS-521-7	C2040180	07/16	07/18
Cable	-	6GHz	A5329191	06/17	06/18
Emission Cable	MICRO-COAX	18GHz	A5329657	06/17	06/18
Emission Cable	MICRO-COAX	18GHz	A5329658	03/18	03/19
Semi-Anechoic chamber #1	SIEPEL	-	D3044016	09/17	09/18
Radiated emission comb generator	BARDET	-	A3169050	-	-
HF Radiated emission comb generator	LCIE SUD EST	-	A3169088	1	-
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	12/18
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A4060049	11/17	11/19
BAT EMC	NEXIO	v3.9.0.10	L1000115	-	-
Thermo-hygrometer (C1)	OREGON	WMR 80	B4206013	06/18	06/20
Turntable chamber (Cage#1)	MATURO Gmbh	TT 2.0 SI	F2000406	-	-
Antenna mast (Cage#1)	MATURO Gmbh	AM 4.0	F2000407	-	-
Turntable controller (Cage#1)	MATURO Gmbh	Control Unit	F2000408	-	-
Table C1/OATS	LCIE	-	F2000445	-	-
Antenna Bi-log	CHASE	CBL6111A	C2040051	01/18	01/19
Antenna Loop	ELECTRO-METRICS	EM-6879	C2040052	11/17	11/19
Emission Cable	SUCOFLEX	6GHz	A5329061	03/18	03/19
Cable (OATS)	-	1GHz	A5329623	03/18	03/19
OATS		-	F2000409	10/17	10/18

## 4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	□ Divergence:
--------	---------------

#### 4.6. TEST RESULTS

## 4.6.1. Pre-characterization at 3 meters [9kHz-30MHz]

See graph for 9kHz-30MHz band:

Graph identifier	Polarization	EUT position	Comments
Emr# 1	0°/90°	Axis XY	See annex 1
Emr# 2	180°	Axis XY	See annex 1

## 4.6.2. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

Graph identifier	Polarization	EUT position	Commen	ts
Emr# 3	Horizontal /Vertical	Axis XY		See annex 1

# 4.6.3. Pre-characterization at 3 meters [1GHz-2GHz]

See graphs for 1GHz-2GHz:

Graph identifier	Polarization	EUT position	Commen	ts
Emr# 4	Horizontal /Vertical	Axis XY		See annex 1

TEST REPORT
N° **156982-725741-A**Version : **01**Page 15/31



## 4.6.4. Characterization on 10 meters open site below 30 MHz

#### Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	QPeak Limit (dBµV/m) @ 30m	Qpeak (dBµV/m) @ 30m	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. Factor (dB)	Comments
1	13.56	84	15.5	68.5	0	0	100	35.1	1

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

#### Limits Sub clause §15.225

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
13.553-13.567	15 848 84 dBµV/m	30
13.410-13.553	334	30
13.567-13.710	50.5 dBμV/m	30
13.110-13.410	106	30
13.710-14.010	40.5 dBµV/m	30

See following chapter of this test report for band edge measurements.



	R	ADIATED EMIS	SIONS				
Graph name:	Emr#1			iguration:			
Limit:	FCC CFR47 Part1	15C	Pre-mesure - (0°/90°) - 9450				
Class:					- 9450		
		ncy range: [9k					
Antenna polarization:	0° & 90°		RBW:	100kHz			
Azimuth:	0° - 360°	\	VBW :	300kHz			
				_	- FCC/FCC CFR - Mes Peak (90°) - Mes Peak (0°)	47 Part 15C Class Qpe	ak/3.0m
150 dBμV/m							
W		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Ŷ	
and the same of th	man language and mandature the hope	Manaman	Manufacturan	destruction that the manages have defined by the latest	advertiged to the property of the second	helling history had been and a grant of	War Manager
0 - 9kHz		Fréquenc	<u> </u>				30MHz
		Spurious emiss					

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization	Correction (dB)
29.221	32.7	69.5	-36.8	Horizontal	10.6
13.559	37.2	69.5	-32.3	Vertical	5.6
24.931	35.5	69.5	-34.0	Vertical	10.1



	RADIA	ATED EMISSIONS				
Graph name:	Emr#2	Test cor	nfiguration:			
Limit:	FCC CFR47 Part15C	Pre-mes	Pre-mesure - (180°) - 9450			
Class:						
		range: [9kHz - 30N				
Antenna polarization:	180°	RBW:	100kHz			
Azimuth:	0° - 360°	VBW :	300kHz			
			—— FCC/FCC CFR47 —— Mes Peak (180*)	Part 15C Class Qpeak/3.0m		
150 dBµV/m						
0 9kHz	howard many to the many the total	Fréquence	and the second	30MHz		
	Spu	rious emissions				

No significative frequency observed



# 4.6.5. Characterization on 10 meters open site from 30MHz to 1GHz Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

Test Frequency	Meter Reading	Detector	Polarity	Azimuth	Antenna Height	Transducer Factor	Level	Limit	Margin
(MHz)	dB(μV)	(Pk/QP/Av)	(V/H)	(Degrees)	(cm)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
41.700	21.5	QP	V	130	130	14.9	36.4	40.0	-3.6
45.400	27.3	QP	V	250	120	12.3	39.6	40.0	-0.4
54.300	28.1	QP	V	0	130	8.8	36.9	40.0	-3.1
62.000	30.1	QP	V	0	115	7.8	37.9	40.0	-2.1
68.000	26.5	QP	V	0	130	8.4	34.9	40.0	-5.1
70.100	26.1	QP	V	250	120	8.7	34.8	40.0	-5.2
71.000	30.4	QP	V	0	130	8.7	39.1	40.0	-0.9
78.700	30.1	QP	V	0	130	9.5	39.6	40.0	-0.4
83.100	10.5	QP	V	75	125	10.1	20.6	40.0	-19.4
87.300	10.5	QP	V	250	125	10.6	21.1	40.0	-18.9
95.300	10.5	QP	V	250	125	11.8	22.3	43.5	-21.2
104.200	10.5	QP	V	250	130	13.0	23.5	43.5	-20.0
128.900	23.2	QP	V	120	130	14.6	37.8	43.5	-5.7
145.000	23.5	QP	V	90	140	14.1	37.6	43.5	-5.9
149.600	25.7	QP	V	200	130	14.1	39.8	43.5	-3.7
154.200	20.4	QP	V	230	130	13.5	33.9	43.5	-9.6
170.800	20.5	QP	V	270	130	12.4	32.9	43.5	-10.6
182.900	27.1	QP	V	180	130	11.8	38.9	43.5	-4.6
216.200	23.9	QP	Н	0	300	13.4	37.3	46.0	-8.7
666.700	16.2	QP	V	230	150	25.8	42.0	46.0	-4.0
698.200	19.1	QP	V	0	150	26.4	45.5	46.0	-0.5
748.100	12.5	QP	V	0	150	27.4	39.9	46.0	-6.1

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)



	RADIATED	EMISSIONS	
Graph name:	Emr#3	Test configuration:	
Limit:			
Class:		` ,	2 Part 15C
	Frequency range	e: [30MHz - 1GHz]	
Antenna polarization:	Horizontal & Vertical	<b>RBW</b> : 100kHz	
Azimuth:	0° - 360°	<b>VBW</b> : 300kHz	
100		F F N N N N N N N N N N N N N N N N N N	CC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m/ CC/FCC CFR47 Part15C - Classe: - QCrête/3.0m/ CC/FCC CFR47 Part15C - Classe: - Crête/3.0m/ liveau (Suspect Manuel) (Horizontale) liveau (Suspect Manuel) (Verticale) les.Peak (Horizontale) les.Peak (Verticale)
dBμV/m			
0 30MHz		Fréquence	1GHz
- (1411.)	-	emissions	<del></del>
Frequency (MHz)	Peak Level (dBμV/m)	Hauteur (m)	Polarization
216.160	34.5	1.6	Horizontal
41.696	35.6	1.6	Vertical
45.385	40.1	1.6	Vertical
54.327	33.1	1.6	Vertical
62.011	33.4	1.6	Vertical Vertical
67.978 70.171	38.2	1.6 1.6	venicai
/ U. I / I	1 /10		
71 055	41.8		Vertical
71.055 78.671	39.5	1.6	Vertical Vertical
78.671	39.5 38.7	1.6 1.6	Vertical Vertical Vertical
78.671 83.125	39.5 38.7 37.5	1.6 1.6 1.6	Vertical Vertical Vertical Vertical
78.671 83.125 87.307	39.5 38.7 37.5 38.8	1.6 1.6 1.6 1.6	Vertical Vertical Vertical Vertical Vertical
78.671 83.125 87.307 95.280	39.5 38.7 37.5 38.8 45.8	1.6 1.6 1.6 1.6 1.6	Vertical Vertical Vertical Vertical Vertical Vertical Vertical
78.671 83.125 87.307 95.280 104.256	39.5 38.7 37.5 38.8 45.8 39.7	1.6 1.6 1.6 1.6 1.6 1.6	Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical
78.671 83.125 87.307 95.280 104.256 128.872	39.5 38.7 37.5 38.8 45.8 39.7 39.1	1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073 149.629	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0 44.4	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073 149.629 154.185	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0 44.4 38.7	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073 149.629 154.185 170.845	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0 44.4 38.7 37.8	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073 149.629 154.185 170.845	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0 44.4 38.7 37.8 39.7	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical
78.671 83.125 87.307 95.280 104.256 128.872 145.073 149.629 154.185 170.845	39.5 38.7 37.5 38.8 45.8 39.7 39.1 39.0 44.4 38.7 37.8	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Vertical

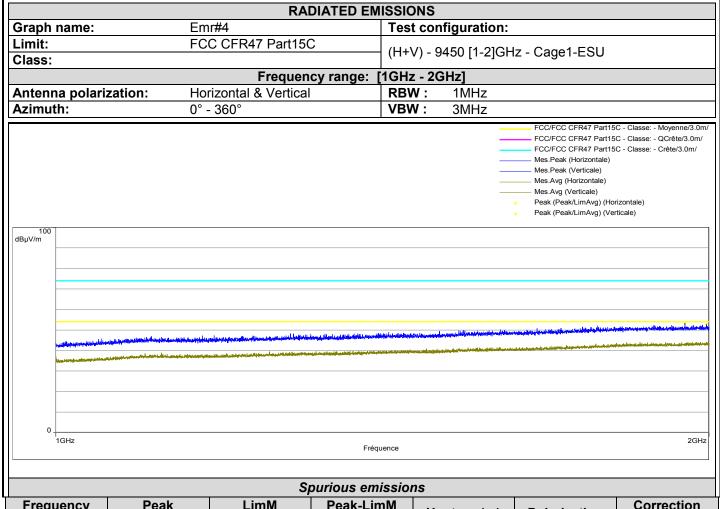
38.5

748.120

1.6

Vertical




#### 4.6.6. Characterization on 3meters anechoic chamber from 1GHz to 2GHz

#### Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber. Measurements are performed using a PEAK and AVERAGE detection.

Frequency (MHz)	Limit QPeak (dBµV/m)	Measure QPeak (dBµV/m)	Margin QPeak (dB)	Angle Table (°)	Pol. Ant.	Ht. Ant. (cm)	FC (dB)
No signifiant frequency observed							

Note: Measures have been done at 3m distance.





## 4.7. CONCLUSION

The sample of the equipment 9450 , Sn: FR17180153, tested in the configuration presented in this test report **satisfies** to requirements of class B limits of the standard FCC Part 15 Subpart C, for radiated emissions.



# 5. Fundamental frequency tolerance (15.225E)

#### 5.1. ENVIRONMENTAL CONDITIONS

Date of test : August 30, 2018 Test performed by : Majid Mourzagh

Atmospheric pressure (hPa) : 998 Relative humidity (%) : 40 Ambient temperature (°C) : 22

#### 5.2. TEST SETUP

Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

The equipment (RF box) is set in a climatic chamber. Measure is performed on one channel of RF module.





Test setup



#### 5.3. **TEST METHOD**

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency when the temperature is varied from 5°C to +45°C at the nominal power voltage and the primary power voltage is varied from 85% to 115% of the rated supply voltage at 20°C.

#### **TEST EQUIPMENT LIST** 5.4.

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	18GHz	A7122206	02/18	02/19
Antenna Loop	LCIE	-	-	Ī	-
Cable SMA	-	18G	A5329373	12/17	12/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060051	03/18	03/19
Thermometer (radio)	FLUKE	52 II	B4043150	04/18	04/19
Thermocouple K (radio)	FLUKE	Type K	B4045004	04/18	04/19
Thermo-hygrometer	OREGON	BAR916	B4206011	10/16	10/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
HAR + Imped. Net + Output switch TRI	CALIFORNIA INSTRUM.	-	A2089002	-	-
CALIFORNIA System: 5kVA TRI	SCHAFFNER	NSG 1007	A7043026	-	-

#### 5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None	□ Divergence:
--------	---------------

#### **TEST RESULTS** 5.6.

Temperature	+5°C	20°C	+45°C
Voltage			
Mains voltage: 110V/60Hz			
Frequency Drift (MHz)	+ 0.000029		- 0.000063
Carrier level (dBc)	+ 3.80		- 0.50
Mains voltage: 93,5V/60Hz			
Frequency Drift (MHz)	+ 0.000027	+ 0.000000	- 0.000065
Carrier level (dBc)	+ 3.53	+ 0.06	- 0.43
Mains voltage: 126V/60Hz			
Frequency Drift (MHz)	+ 0.000031	- 0.00001	- 0.000065
Carrier level (dBc)	+ 3.77	+ 0.05	- 0.46

Frequency drift measured is -65Hz when the temperature is varied from 5°C to +45°C and voltage is varied.

#### 5.1. **CONCLUSION**

The sample of the equipment 9450, Sn: FR17180153, tested in the configuration presented in this test report satisfies to requirements of the standard FCC Part 15 Subpart C, for fundamental frequency tolerance.

N° 156982-725741-A Version: 01 Page 24/31



# 6. BAND-EDGE COMPLIANCE §15.209

#### 6.1. ENVIRONMENTAL CONDITIONS

Date of test : August 30, 2018 Test performed by : Majid Mourzagh

Atmospheric pressure (hPa) : 998 Relative humidity (%) : 40 Ambient temperature (°C) : 22

#### 6.2. TEST SETUP

For measurement, the power level calibration of the spectrum analyzer is related to the field strength measured in chapter radiated emission data.





Test setup



#### 6.3. TEST METHOD

#### Frequency band 13.110-14.010MHz

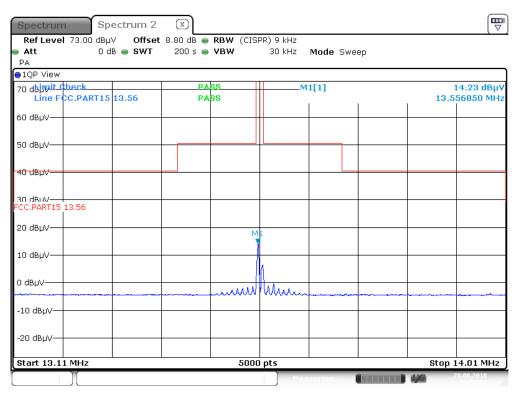
Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasi-peak detector. The graphs are obtained with a measuring receiver.

#### Frequency band 13.553-13.567MHz

Following plots show radiated emission level in the frequency band 13.55.-13.567MHz with a RBW of 1kHz. The graphs are obtained with a measuring receiver.

#### 6.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	18GHz	A7122206	02/18	02/19
Antenna Loop	LCIE	-	-	-	-
Cable SMA	-	18G	A5329373	12/17	12/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060051	03/18	03/19
Thermometer (radio)	FLUKE	52 II	B4043150	04/18	04/19
Thermocouple K (radio)	FLUKE	Type K	B4045004	04/18	04/19
Thermo-hygrometer	OREGON	BAR916	B4206011	10/16	10/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
CALIFORNIA System: 5kVA TRI	SCHAFFNER	NSG 1007	A7043026	-	-


6.5.	DIVERGENCE	, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION
☑ None	e	□ Divergence:

TEST REPORT
N° **156982-725741-A**Version : **01**Page 26/31



#### 6.6. TEST RESULTS

#### Frequency band 13.110-14.010MHz



Date: 28 AUG 2018 14:57:13

#### 6.7. CONCLUSION

The sample of the equipment 9450 , Sn: FR17180153, tested in the configuration presented in this test report **satisfies** to requirements of the standard FCC Part 15 Subpart C, for band-edge compliance.



#### 7. OCCUPIED BANDWIDTH

#### 7.1. ENVIRONMENTAL CONDITIONS

Date of test : August 30, 2018 Test performed by : Majid Mourzagh

Atmospheric pressure (hPa) : 998 Relative humidity (%) : 40 Ambient temperature (°C) : 22

#### 7.2. TEST SETUP

#### ☐ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.3dB

#### ✓ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

#### Measurement Procedure:

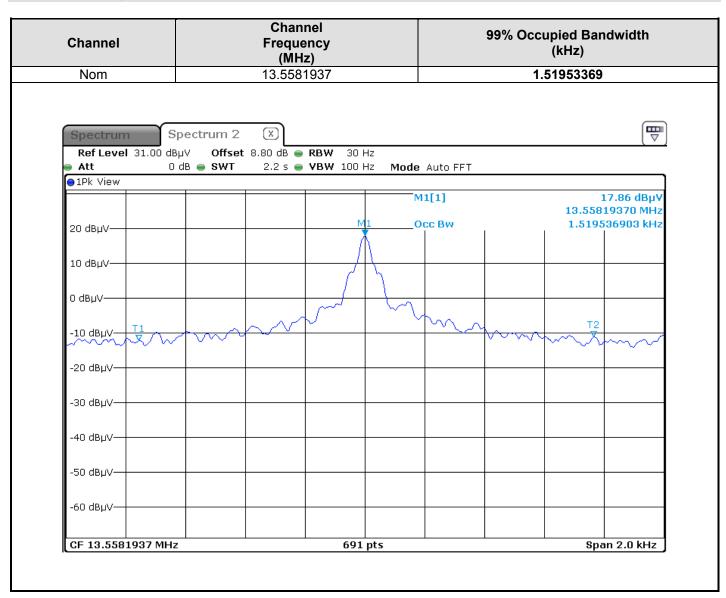
- 1. RBW used in the range of 1% to 5% of the anticipated emission bandwidth
- 2. Set the video bandwidth (VBW)  $\geq$  3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. OBW 99% function of spectrum analyzer used







## 7.3. TEST EQUIPMENT LIST


DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	18GHz	A7122206	02/18	02/19
Antenna Loop	LCIE	-	-	-	-
Cable SMA	1	18G	A5329373	12/17	12/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060051	03/18	03/19
Thermometer (radio)	FLUKE	52 II	B4043150	04/18	04/19
Thermocouple K (radio)	FLUKE	Type K	B4045004	04/18	04/19
Thermo-hygrometer	OREGON	BAR916	B4206011	10/16	10/18
Climatic chamber	BIA CLIMATIC	CL 6-25	D1024032	02/18	02/20
CALIFORNIA System: 5kVA TRI	SCHAFFNER	NSG 1007	A7043026	-	-

# 7.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 $\ \square$  None  $\ \square$  Divergence:



#### 7.5. TEST SEQUENCE AND RESULTS





# 8. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.51 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.26 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension  Measurement of discontinuous conducted disturbances in voltage	3.45 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	3.09 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.20 dB	6.3 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.