

FCC RADIO TEST REPORT

Applicant	:	SHENZHEN QIAOHUA INDUSTRIES LIMITED
	-	Qiaohua Industrial Zone, Luo Tian Forestry Center,
Address	:	SongGang Town, Bao An District, Shenzhen,
	-	Guangdong, China 518105
Equipment	:	Wireless Doorbell Transmitter
	-	QH-X, QH-A, QH-B, QH-C, QH-D, QH-E, QH-F,
		QH-G, QH-H, QH-I, QH-J, QH-K, QH-L, QH-M, QH-N,
Model No.	:	QH-O, QH-P, QH-Q, QH-R,QH-S,QH-T,QH-U,QH-V,
		QH-W, QH-Y, QH-Z, QK-P1, QK-P2, QK-P3, QK-P4,
	_	QK-P5, QK-P6, QK-R1, QK-M1, QK-M2, QK-A1
Trade Mark	:	Ruhwa
FCC ID	:	2AAV8QH-X

- The test result refers exclusively to the test presented test model / sample.,
- Without written approval of *Cerpass Technology (Suzhou) Co., Ltd.* the test report shall not be reproduced except in full.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Rules and Regulations Part 15. The test report has been issued separately.
- The test report must not be used by the clients to claim product certification approval by *NVLAP* or any agency of the Government.

FCC RADIO TEST REPORT

Issued by:

Cerpass Technology (Suzhou) Co., Ltd.

No.66, Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China

Tel:86-512-6917-5888

Fax:86-512-6917-5666

I HEREBY CERTIFY THAT :

The sample was received on Jul.12, 2016 and the testing was carried out on Jul.22, 2016at *Cerpass Technology (Suzhou) Co., Ltd.* The test result refers exclusively to the test presented test model / sample. Without written approval of *Cerpass Technology (Suzhou) Co., Ltd.*, the test report shall not be reproduced except in full.

Approved by:

Miro Chueh EMC/ RF B.U. Manager

CERPASS TECHNOLOGY CORP.	Issued date	:	Jul. 25, 2016
	Page No.	:	2 of 24
	FCC ID	:	2AAV8QH-X

Contents

1.	Sumn	nary of Test Procedure and Test Results	5	
	1.1	1.1 Applicable Standards5		
2.	Test C	Configuration of Equipment under Test	6	
	2.1	Feature of Equipment under Test	6	
	2.2	Test Mode and Test Software	6	
	2.3	Description of Test System	6	
	2.4	General Information of Test	7	
3.	Test E	Equipment and Ancillaries Used for Tests	8	
4.	Anter	na Requirements	9	
	4.1	Standard Applicable	9	
	4.2	Antenna Construction and Directional Gain	9	
5.	Test o	of Radiated Emission	10	
	5.1	Test Limit	10	
	5.2	Test Procedures	11	
	5.3	Typical Test Setup	13	
	5.4	Test Result and Data	14	
	5.5	Test Photographs	20	
6.	20dB	Occupied Bandwidth Measurement	21	
	6.1	Test Procedure	21	
	6.2	Test Setup Layout	21	
	6.3	Limits of Band Edges Measurement	21	
	6.4	Measurement Equipment	21	
	6.5	Test Result and Data	21	
7.	Trans	mission Time Control	23	
	7.1	Test Procedure	23	
	7.2	Test Setup Layout	23	
	7.3	Test Limit	23	
	7.4	Measurement Equipment	23	
	7.5	Test Result and Data	24	

History of this test report

ORIGINAL

□ Additional attachment as following record:

	Attachment No.	Issue Date	Description
Image: Constraint of the second se			

CERPASS TECHNOLOGY CORP.

1. Summary of Test Procedure and Test Results

1.1 Applicable Standards

ANSI C63.10-2013

FCC Rules and Regulations Part 15 Subpart C §15.231

FCC Rule	. Description of Test	Result
15.203	. Antenna Requirement	Pass
15.207	. AC Power Line Conducted Emission	N/A
15.209 15.231	. Spurious Emission(Radiated)	Pass
15.231	. 20dB Occupied Bandwidth Measurement	Pass

Note: (1)"N/A" denotes test is not applicable in this test report.

(2) EUT is used new battery

2. Test Configuration of Equipment under Test

2.1 Feature of Equipment under Test

Modulation Type	ASK
Frequency Range	433.92MHz
Channel Number	1
Antenna Type/ gain	PCB Antenna with 0.5dBi
Power Source	3V DC

2.2 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to technical standards.
- b. The complete test system included EUT for the test.
- c. XYZ 3 axes of the EUT have been tested, only the worst axis was reported.
- d. New battery was used for all the testing on this report.

2.3 Description of Test System

The EUT was tested alone. No support devices are needed for testing.

2.4 General Information of Test

		Cerpass Technology Corporation Test Laboratory		
		Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City		
	Test Site	33848, Taiwan (R.O.C.)		
		Tel:+886-3-3226-888		
		Fax:+886-3-3226-881		
		Address: No.68-1, Shihbachongsi, Shihding Township,		
		New Taipei City 223, Taiwan, R.O.C.		
		Tel: +886-2-2663-8582		
	FCC	TW1079, TW1061,390316, 228391, 641184		
	IC	4934B-1, 4934E-1, 4934E-2		
		T-2205 for Telecommunication Test		
	VCCI	C-4463 for Conducted emission test		
	VCCI	R-3428, R-4128 for Radiated emission test		
		G-812, G-813 for radiated disturbance above 1GHz		
		Cerpass Technology (Suzhou) Co., Ltd.		
		Address: No.66, Tangzhuang Road, Suzhou Industrial Park,		
	Test Site	Jiangsu 215006, China		
		Tel: +86-512-6917-5888		
		Fax: +86-512-6917-5666		
	FCC	331395		
	IC	7290A-1, 7290A-2		
		T-1945 for Telecommunication Test		
	VCCI	C-2919 for Conducted emission test		
	VCCI	R-2670 for Radiated emission test		
		G-227 for radiated disturbance above 1GHz		
Frequency Range Investigated:		Conducted: from 150kHz to 30 MHz		
		Radiation: from 30 MHz to 25000MHz		
Test Distance :		The test distance of radiated emission from antenna to EUT		
		is 3 M.		

Issued date	:	Jul. 25, 2016
Page No.	:	7 of 24
FCC ID	:	2AAV8QH-X

3. Test Equipment and Ancillaries Used for Tests

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMI Test Receiver	R&S	ESCI	100853	2016-02-22	2017-02-21
Preamplifier	HP	8447F	3113A05915	2016-02-22	2017-02-21
Preamplifier	FIELD	AFS44-00101800 -25-10P-44	1579008	2015-09-30	2016-09-29
Ultra Broadband Antenna	SCHAFFNER	CBL6112D	22241	2016-02-24	2017-02-23
Broad-Band Horn Antenna	Sunol	DRH-118	A072913	2015-09-30	2016-09-29
Spectrum Analyzer	Agilent	E4407B	MY45118947	2016-06-06	2017-06-05
Temperature/ Humidity Meter	mingle	ETH529	N/A	2016-02-19	2017-02-18

4. Antenna Requirements

4.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247(b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2 Antenna Construction and Directional Gain

No.	Antenna Type	Antenna Gain		
	PCB Antenna	0.5dBi		

CERPASS TECHNOLOGY CORP.	Issued date	:	Jul. 25, 2016
	Page No.	:	9 of 24
	FCC ID	:	2AAV8QH-X

5. Test of Radiated Emission

5.1 Test Limit

According to 15.231(e) the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Frequency (MHz)	Field Strength of Fundamental	Field Strength of Spurious		
r requericy (iviriz)	μV/ m	μV/ m		
40.66 ~ 40.70	2250	225		
70 ~130	1250	125		
130 ~ 174	1250 ~ 3750	125 ~ 375		
174 ~ 260	3750	375		
260 ~ 470	3750~ 12500	375~ 1250		
Above 470	12500	1250		

NOTE:

- 1. Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.
- 2. The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequency (MHz)	Distance	Limit (µV/ m)
0.09 ~ 0.490	300m	2400/F(kHz)
0.490 ~ 1.705	30m	24000/ F(kHz)
1.705 ~ 30	30m	30
30 ~ 88	3m	100
88 ~ 216	3m	150
216 ~ 960	3m	200
Above 960	3m	500

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

5.2 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- i. "Cone of radiation" has been considered to be 3dB beamwidth of the measurement antenna.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz.
- 3. The Average value = Peak value + 20log(Duty cycle)
- 4. Duty Factor = 20log(total duty / period of pulse train)

NAIAX	PICI
11/11/10	I LOI.

Data Tran	Number of pulses	
Packet time	25.20 msec	
Long pulse Duration	1.05 msec	19
Short pulse Duration	0.33 msec	35
Total Transmissions Duration	1.05*19+0.33*35=31.5 msec	
On Time within 100 msec	31.5 msec	
Dutycycle Correction factor	20log(31.5/100)=-10.03dB	

Test Date: Jul. 22, 2016 Atmospheric pressure: 1008 hPa Temperature: 26°C Humidity: 50%

Number of pulses

Pulse Duration

🍺 к	eysight	Spectrum	n Analyze	er - Swept SA				_											x
Ma	rker	<u>3Δ</u> 3	⊧ 330.0	<u>50 Ω AC</u> 100 μs	P	NO: F Gain:l	ast ++ Trig	g: Free F ten: 18 c	Run 1B		ALIG	Avg T	ype: L	og-Pwr		06:	08:50 TR T	PM Jul 22, 201 ACE 1 2 3 4 5 YPE WWWW DET N N N N	6 5 6 WW N N
10 0	B/div	Re / R e	ef Offs ef 10.	et 3 dB .00 dBm												ΔMk	(r3	330.0 µ -0.38 d	IS B
0.0			_					1Δ2		(3∆	4							_
-10.0					\square	_/45	2		1/	4	+		-	-					
-30.0																			
-40.0) —					+										+			H
-50.0 -60.0		4																	
-70.0								de pui	T "" P1		1.	run p		u-up				and a state of the	\vdash
-80.0	 		n'	And white	, 11 , 11	Π.		14 N			ΠÍ	l na f	n h	ų i i			n,		
Ce Re	nter BW	433.9 1.0	2000 /Hz	0 MHz			VBW 1.0	MHz						Sv	/eep 1	0.00	ms	Span 0 H (1001 pt	IZ S)
MKR 1	MODE ∆2	TRC SC	Ξ (Δ)	Х	1.050 ms	(Δ)	Y -0,45 dB	FUNC	TION	FUN	NCTIO	ON WIDTH			FUNC	tion val	UE		
2	F <u> </u>	1 t 1 t	(<u>(</u>)		3.300 ms 330.0 µs	<u>(Δ)</u>	-6.15 dBm -0.38 dB												
4 5 6		1 t			5.480 ms		-0.12 dBm												Ξ
7																			
9 10 11																			-
∢ MSG											_	STATU	s					F.	

5.3 Typical Test Setup

Below 1GHz test setup

CERPASS TECHNOLOGY CORP.	Issued date	:	Jul. 25, 2016
	Page No.	:	13 of 24
	FCC ID	:	2AAV8QH-X

5.4 Test Result and Data

5.4.1 Test Result of Fundamental Emission

Power :	DC 3V	Pol/Phase :	VERTICAL
Test Mode :	Transmit	Temperature :	26 °C
Test Date :	Jul. 22, 2016	Humidity :	50 %
Memo :		Atmospheric : Pressure	1009 hpa

						433 92MF	17(PEAK)
						400.0200	
						433.92M	HZ(AVE)
			1				

Frequency	Factor	Reading	Level	Limit	Margin	Det.
(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
433.9300	-4.44	70.56	66.12	100.80	-34.68	peak

Note: Level = Reading + Factor

Margin = Level – Limit

AV=Peak value+ Duty cycle factor= 66.12+ (-10.03) = 56.09 dBuV/m < Limit 80.80dBuV/m

Power	:	DC 3V	Pol/Phase :	HORIZONTAL
Test Mode	:	Transmit	Temperature :	26 °C
Test Date	:	Jul. 22, 2016	Humidity :	50 %
Memo	:		Atmospheric : Pressure	1009 hpa

Frequency	Factor	Reading	Level	Limit	Margin	Det.
(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
433.9340	-4.44	83.85	79.41	100.80	-21.39	peak

Note: Level = Reading + Factor

Margin = Level – Limit

AV=Peak value+ Duty cycle factor= 79.41+ (-10.03) = 69.38 dBuV/m < Limit 80.80dBuV/m

5.4.2	Test Result of	Unwanted	Spurious	emission(Below 1GHz)	
-------	-----------------------	----------	----------	----------------------	--

Power	:	DC 3V	Pol/Phase :	VERTICAL
Test Mode	:	Transmit	Temperature :	26 °C
Test Date	:	Jul. 22, 2016	Humidity :	50 %
Memo	:		Atmospheric : Pressure	1009 hpa

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	30.0000	-3.01	29.29	26.28	40.00	-13.72	QP	100	0
2	117.3000	-8.18	26.69	18.51	43.50	-24.99	QP	100	0
3	330.7000	-4.08	24.90	20.82	46.00	-25.18	QP	100	0
4	604.2400	-1.21	25.30	24.09	46.00	-21.91	QP	100	0
5	763.3200	1.69	25.80	27.49	46.00	-18.51	QP	100	0
6	868.0800	2.27	23.87	26.14	80.80	-54.66	QP	100	0

Power	:	DC 3V	Pol/Phase :	HORIZONTAL
Test Mode	:	Transmit	Temperature :	26 °C
Test Date	:	Jul. 22, 2016	Humidity :	50 %
Memo	:		Atmospheric : Pressure	1009 hpa

90.0 dBuV/m Class-B(434MHZ) targin -6 dB 45 ۶ ۲ 5 X 0.0 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	30.0000	-3.01	29.01	26.00	40.00	-14.00	QP	100	360
2	91.1100	-11.17	30.52	19.35	43.50	-24.15	QP	100	360
3	132.8200	-9.28	30.50	21.22	43.50	-22.28	QP	100	360
4	329.7300	-4.13	24.94	20.81	46.00	-25.19	QP	100	360
5	375.3200	-4.95	25.20	20.25	46.00	-25.75	QP	100	360
6	868.0800	2.27	29.71	31.98	80.80	-48.82	QP	100	360

5.4.3 Test Result of Unwanted Spurious emission (Above 1GHz)

Power	:	DC 3V	Pol/Phase :	VERTICAL
Test Mode	:	Transmit	Temperature :	26 °C
Test Date	:	Jul. 22, 2016	Humidity :	50 %
Memo	:		Atmospheric : Pressure	1009 hpa

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2603.520	-1.89	40.08	38.19	74.00	-35.81	peak

Power	:	DC 3V	Pol/Phase :	HORIZONTAL
Test Mode	:	Transmit	Temperature :	26 °C
Test Date	:	Jul. 22, 2016	Humidity :	50 %
Memo	:		Atmospheric : Pressure	1009 hpa

CERPASS TECHNOLOGY CORP.	Issued date	:	Jul. 25, 2016
	Page No.	:	19 of 24
	FCC ID	:	2AAV8QH-X

5.5 Test Photographs

Above1GHz

Rear View

6. 20dB Occupied Bandwidth Measurement

6.1 Test Procedure

- a. The EUT placed on the turning table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 100kHz and video bandwidth to 100kHz then select Peak function to scan the channel frequency.
- d. The 20dB bandwidth was measured and recorded.

6.2 Test Setup Layout

6.3 Limits of Band Edges Measurement

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and above 900 MHz.

Frequency (MHz)	Limit of 20dB Bandwidth (MHz)
433.92	1.08

6.4 Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Spectrum Analyzer	Agilent	N9020A	US46220290	2016/06/06	2017/06/05

6.5 Test Result and Data

Test Date: Jul. 22, 2016 Atmospheric pressure: 1008 hPa Temperature: 26°C Humidity: 50%

Frequency (MHz)	20 dB bandwidth (MHz)	PASS / FAIL		
433.92	0.411	PASS		

Frequency: 433.92MHz, CH1

CERPASS

🊺 Keysight S	Spectrum Analyzer - Occupied B	W				
LXI RL	RF 50 Ω AC	Canta	SENSE:INT	ALIGN AUTO	05:56:00 PM Jul 22, 2	016 Frequency
Center	Freq 433.920000	MHZ Center Trig: F	Free Run AvalHa	di:>10/10	adio Sta: None	,
		#IFGain:Low #Atten	: 18 dB	R	adio Device: BT	5
10 dB/div	Pef 10 00 dB	m				
Log	Kei 10.00 ubi					
0.00				_		Center Freq
-10.0						433.920000 MHz
-20.0						
-30.0						
40.0						
-40.0						
-50.0						
-60.0						
-70.0						
-80.0						
Center	433.9 MHz				Span 2 N	IHZ CF Step
#Res BV	V 100 kHz	#	VBW 100 kHz		Sweep 1	ms 200.000 kHz
0		41.	Total Bower	4 20 4	IPm	Auto Man
Ucci	ipied Bandwid	tn	TOTALLOWER	-4.29 u	ып	
	7	′03.20 kHz				Freq Offset
Trans	smit Freq Error	-50.612 kHz	OBW Power	99.0	0 %	0 Hz
x dB	Bandwidth	410.9 kHz	x dB	-20.00) dB	
	Banamati	+10.0 KHZ		-20.00		
MSG				STATUS		

TECHNOLOGY CORP.	Issued date	:	Jul. 25, 2016
	Page No.	:	22 of 24
	FCC ID	:	2AAV8QH-X

7. Transmission Time Control

7.1 Test Procedure

- 1. Set up the EUT in the state of Transmitter.
- 2. Set up the Spectrum, judge whether to accord with the regulation demand or not.

7.2 Test Setup Layout

7.3 Test Limit

Please refer section15.231

According to §15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. According to §15.231(a)(2), A transmitter sctivated automatically shall cease transmission within 5 seconds after activation.

According to §15.231(e), In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

7.4 Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Spectrum Analyzer	Agilent	N9020A	US46220290	2016/06/06	2017/06/05

7.5 Test Result and Data

Test Date: Jul. 22, 2016
Atmospheric pressure: 1008 hPa

Temperature: 26°C Humidity: 50%

Frequency (MHz)	Operation time(Sec.)	Limit	PASS / FAIL
433.92	2.23	<5 sec	PASS

Frequency: 433.92MHz

🎉 Keysight Sp	ectrum Ana	alyzer - Swept SA								
Marker 1	RF ▲ 2.2	50 Ω AC 2500 s			SENSE:INT	A	LIGN AUTO Avg Type:	Log-Pwr	12:40:59 TF	PM Jul 25, 2016
			P IF	NO: Fast ↔ Gain:Low	Atten: 18	dB				DET N N N N N
10 dB/div	Ref 0 Ref ′	ffset 3 dB 10.00 dBm	1						ΔMkr	1 2.225 s -8.88 dE
-10.0										
-20.0										
-30.0				<u> , , ' </u>						
-40.0			X.					1∆2		
-50.0										
-60.0			 1	141 111111111111						
-70.0			I	Ш Ц'ТГ			 ' 			
-80.0										
Center 4 Res BW	33.9200 1.0 MH	000 MHz z		#VB	W 100 Hz			Swe	ep 5.000 s	Span 0 H (1001 pts
MKR MODE T	RC SCL	>	<	Y	FUN	CTION FUNC	TION WIDTH	F	UNCTION VALUE	
1 Δ2 2 F	1 t (/ 1 t	Δ)	2.225 s 1.380 s	<u>(Δ) -8.8</u> -37.65	38 dB dBm					
3										
5										
7										
8 9										
10 11]
•							· · ·			Þ
ʌsg 🚺 File	<pictu< td=""><td>RE.PNG> sa</td><td>aved</td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></pictu<>	RE.PNG> sa	aved				STATUS			