GTS Global United Technology Services Co., Ltd.

Report No.: GTS201806000128F01

FCC REPORT

Applicant:	Computime Ltd.	
Address of Applicant:	6/F, Bldg 20E, Phase 3, Hong Kong Science Park, 20 Science Park East Ave, Shatin, New Territories, Hong Kong	
Manufacturer:	Computime Ltd.	
Address of Manufacturer:	6/F, Bldg 20E, Phase 3, Hong Kong Science Park, 20 Science Park East Ave, Shatin, New Territories, Hong Kong	
Factory 1:	Computime Electronics (Shenzhen) Company Limited	
Address of Factory 1:	Yuekengguangyu Industrial Park,Kangqiao Road 88#,Danzhutou Community,Nanwan Street Office,Longgang District, Shenzhen,China	
Factory 2:	Asia Electronic Dongguan	
Address of Factory 2:	Zhen' an Science and Technology Industrial Park, Chang' an Dongguan Guangdong , PRC	
Equipment Under Test (B	EUT)	
Product Name:	Moudle	
Model No.:	CTL3575	
FCC ID:	2AAUQ-CTL3575	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of sample receipt:	June 12, 2018	
Date of Test:	June 13-21, 2018	
Date of report issued:	June 22, 2018	
Test Result :	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 22, 2018	Original

Prepared By:

Date:

Date:

June 22, 2018

June 22, 2018

Project Engineer

Check By:

Reviewer

λλ

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

	ł	Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	
•		
4	TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.6 ADDITIONAL INSTRUCTIONS	8
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	11
	7.3 CONDUCTED PEAK OUTPUT POWER	14
	7.4 CHANNEL BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 SPURIOUS EMISSION.	
	7.7.1 Conducted Emission Method 7.7.2 Radiated Emission Method	
8	TEST SETUP PHOTO	48
9	EUT CONSTRUCTIONAL DETAILS	50

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark : Test according to ANSI C63.10:2013

N/A means not applicable.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9kHz ~ 30MHz	\pm 4.34dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)	
$\begin{array}{c c} AC \ Power \ Line \ Conducted \\ Emission \end{array} \qquad 0.15 MHz \sim 30 MHz \qquad \pm 3.45 dB \qquad (1)$				
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.				

5 General Information

5.1 General Description of EUT

Product Name:	Moudle
Model No.:	CTL3575
Serial No.:	N/A
Test sample(s) ID:	GTS201806000128-1
Sample(s) Status	Engineer sample
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	0.52dBi(declare by manufacturer)
Power supply:	DC 2.1V~3.6V

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz	16	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2475MHz and 2480MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
5	st, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, st case was under the nominal rated supply condition. So the report just shows that

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40	N/A
Agilent	DC POWER SUPPLY	E3640A	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been

registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

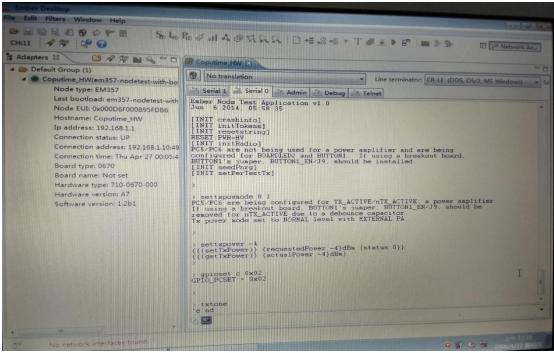
with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional instructions


Software (Used for test) from client

Mode	Insight_Desktop

Test command provide by manufacturer

Channel	Power level
11	-4
18	-4
25	-4
26	-18

Software

6 Test Instruments list

Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018

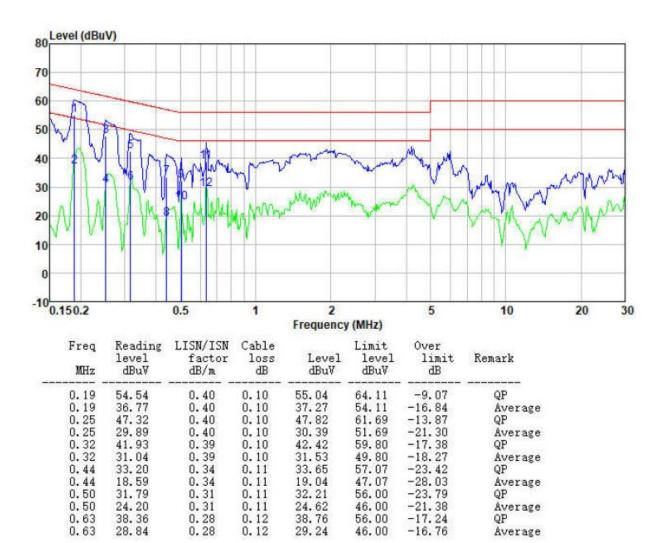
Con	Conducted Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 28 2017	June 27 2018
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018
6	Coaxial Cable	GTS	N/A	GTS227	June 28 2017	June 27 2018
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018

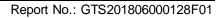
Gen	General used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018

7 Test results and Measurement Data

7.1 Antenna requirement

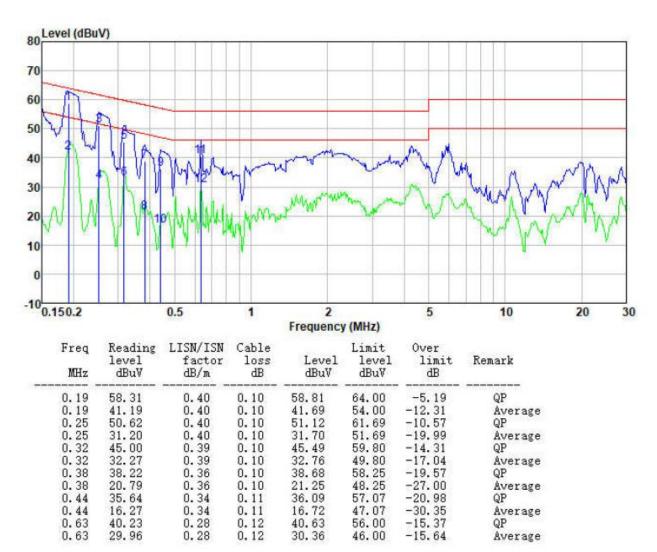
7.1	Antenna requirement					
	Standard requirement:	FCC Part15 C Section 15.203 /247(c)				
	15.203 requirement:					
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.					
	15.247(c) (1)(i) requirement					
	operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the a exceeds 6dBi.				
	EUT Antenna:					
	The antenna is PCB Antenna,	the best case gain of the antenna is 0.52dBi				
		Image: Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-				


7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	
Limit:		Limit (c	BuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test setup:	Reference Plane		
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter AC pow	/er
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data

GTS


Line:

Neutral:

GTS

Notes:

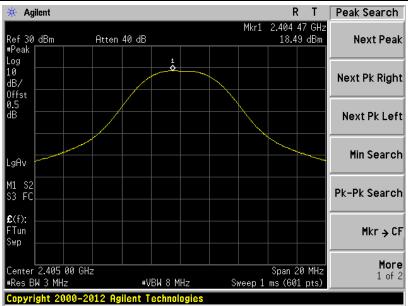
1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

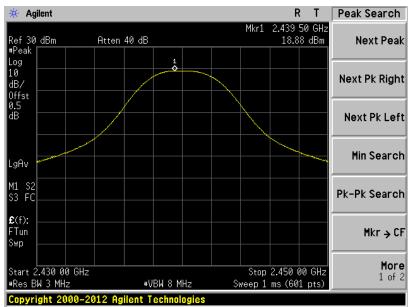
3. Final Level = Receiver Read level + LISN Factor + Cable Loss

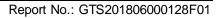
4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

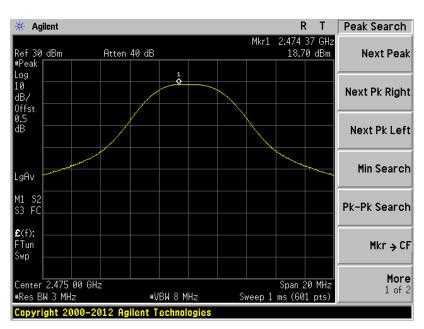
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2for details	
Test results:	Pass	

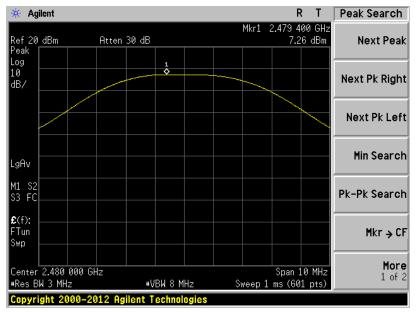

7.3 Conducted Peak Output Power

Measurement Data


Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
2405	18.49		
2440	18.88	30	PASS
2475	18.70		
2480	7.26		


Test plot as follows:

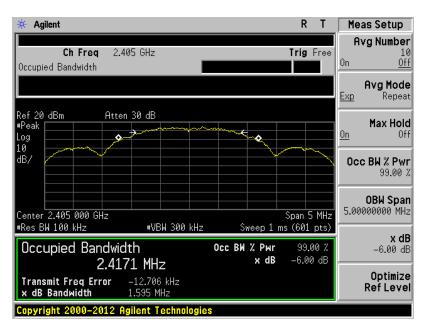

2405MHz


2440MHz

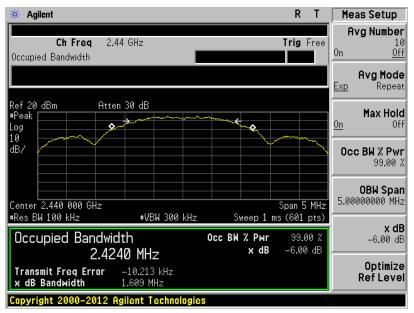
2475MHz

2480MHz

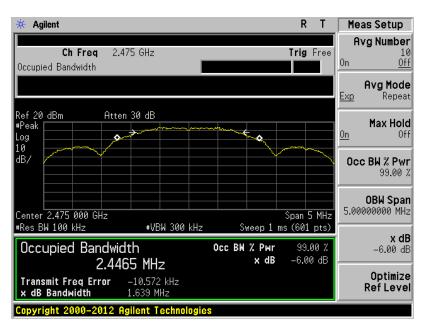
7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

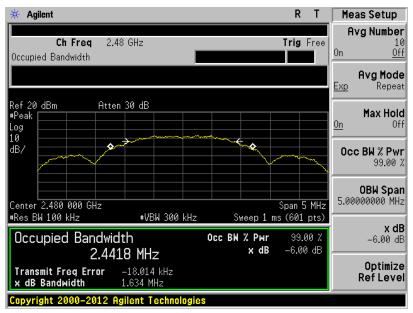
Measurement Data


Frequency (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
2405	1.595		
2440	1.609	>500	Pass
2475	1.639	>500	Fass
2480	1.634		

Test plot as follows:



2405MHz

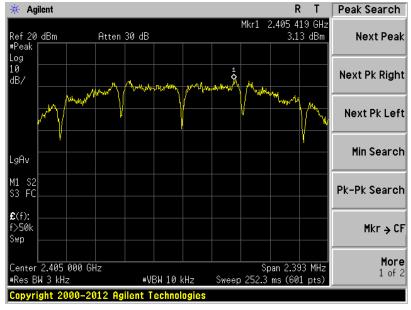


2440MHz

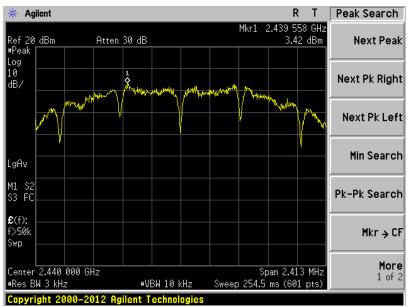
2475MHz

2480MHz

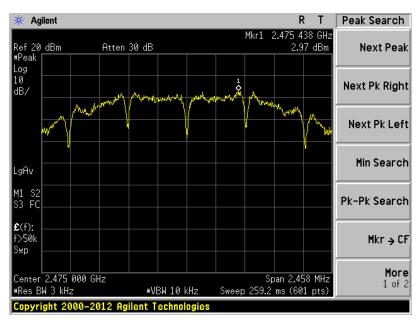
•			
Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


7.5 Power Spectral Density

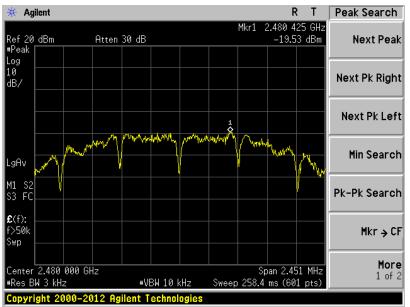
Measurement Data


Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result
2405	3.13		
2440	3.42	8.00 Pa	Pass
2475	2.97		Fass
2480	-19.53		

Test plot as follows:



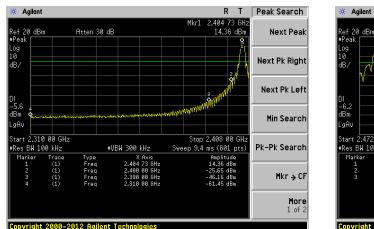
2405MHz



2440MHz

2475MHz

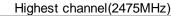
2480MHz

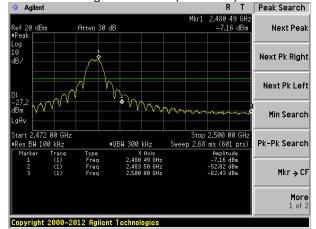

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Test plot as follows:



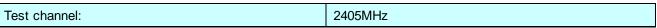


Lowest channel

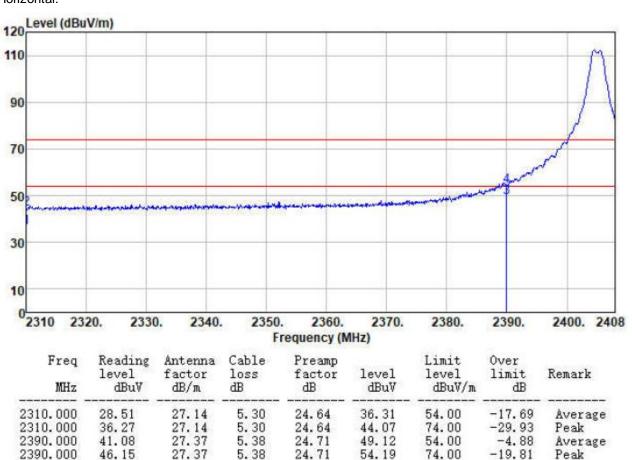
Copyright 2000–2012 Agilent Technologies

Highest channel(2480MHz)

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Value									
		Peak	1MHz	3MHz	Peak					
	Above 1GHz	RMS	1MHz	3MHz	Average					
Limit:	Eroque	1	_imit (dBuV/m @3m)		Value					
Linit.	Frequency		<u>54.0</u>		Average					
	Above 1	GHz —	74.0		Peak					
	<pre>< 3m >= Test Antenna- test Antenna- cl50cn>, test Antenna- cl50cn>, test Antenna- cl50cn>, test Antenna- cl50cn>, test Antenna- cl50cn>, test Antenna- test Antenna- cl50cn>, test Antenna- test Antenna- test</pre>									
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test 									
Test Instruments:	worst case mode is recorded in the report. Refer to section 6.0 for details									
	Refer to section 5.2 for details									
Test mode:	Refer to section	5.Z IOI detalis								

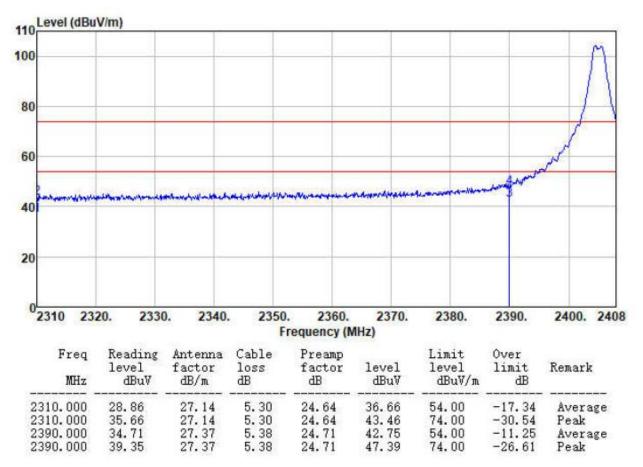

7.6.2 Radiated Emission Method

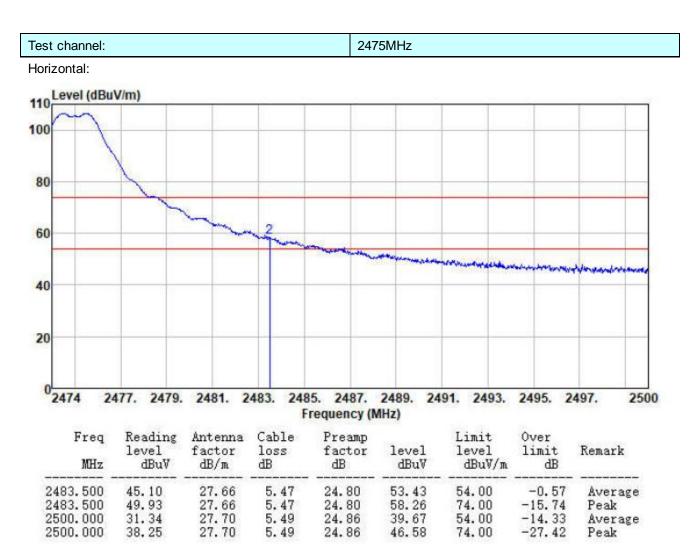
Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

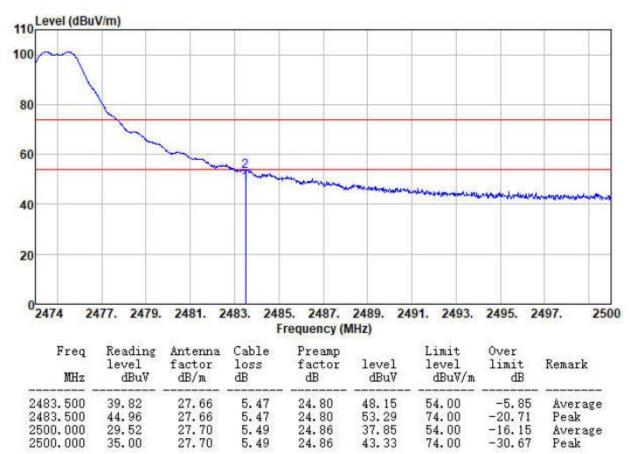


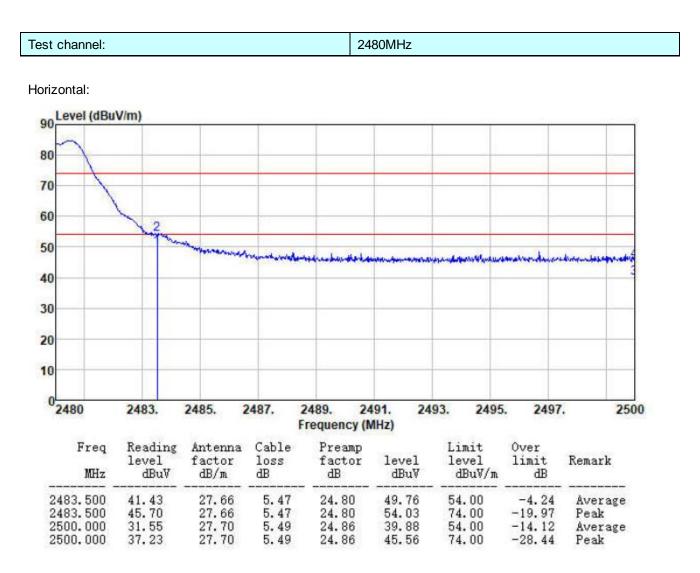
Measurement data:

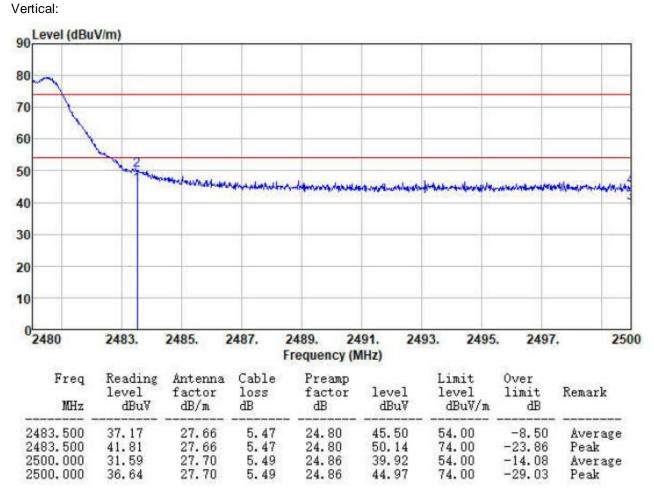
Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's was showed.






Vertical:





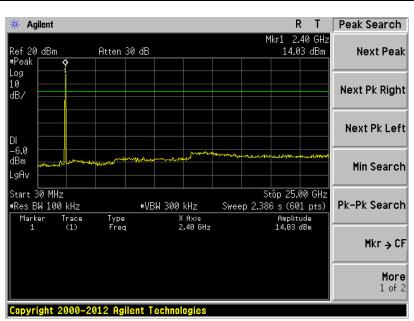
Vertical:

Remark:

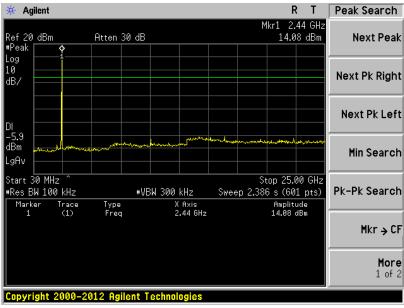
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

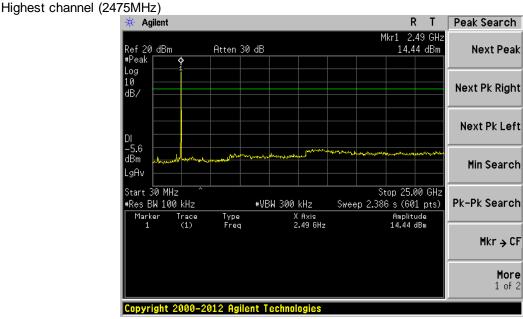
7.7 Spurious Emission


7.7.1 Conducted Emission Method

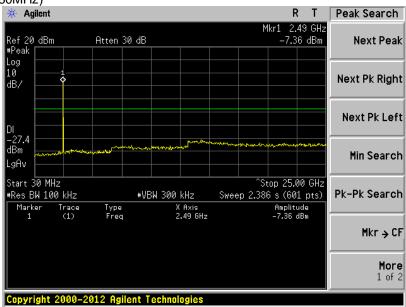
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				


Test plot as follows:

Lowest channel

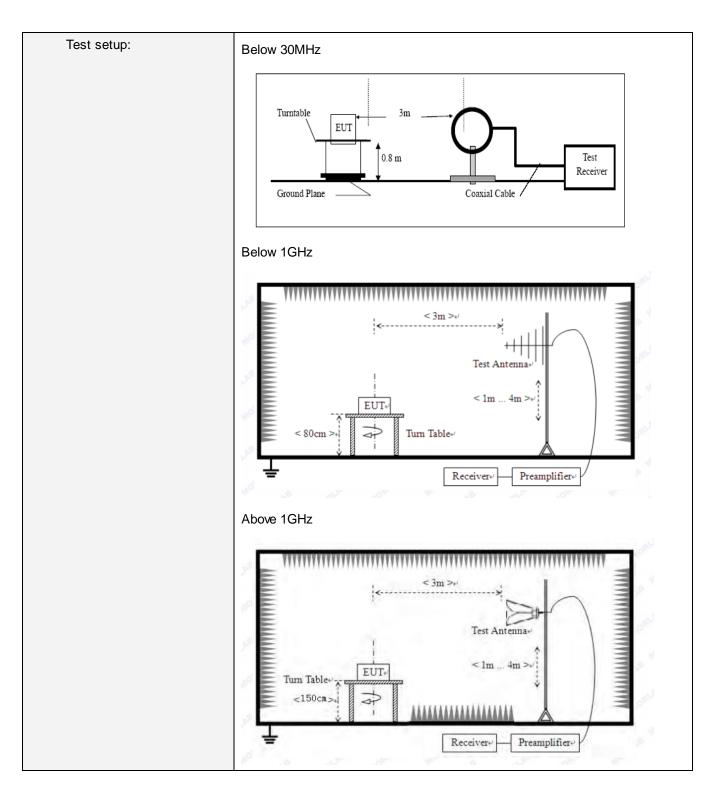

30MHz~25GHz

Middle channel


30MHz~25GHz

30MHz~25GHz

Highest channel (2480MHz)


30MHz~25GHz

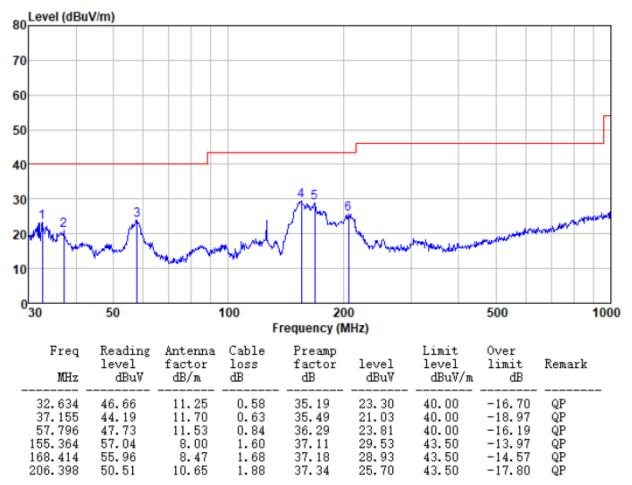
Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detecto		Detector	RBW		VBW	Value			
	9KHz-150KHz Q		uasi-peak	200Hz		600Hz	z Quasi-peak			
	150KHz-30MHz Qu		uasi-peak 9KHz		lz 30KHz		z Quasi-peak			
	30MHz-1GHz	Quasi-peak		100KHz		300KH	lz Quasi-peak			
	Above 1GHz	Peak		1MHz		3MHz	e Peak			
			Peak 1Mł		Hz 10Hz		Average			
Limit: (Spurious Emissions)	Frequency	Limit (u ^v		//m)	Value		Measurement Distance			
	0.009MHz-0.490MHz		2400/F(KHz)		QP		300m			
	0.490MHz-1.705MHz		24000/F(KHz)		QP		300m			
	1.705MHz-30MHz		30		QP		30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz		150		QP		3m			
	216MHz-960MHz		200		QP					
	960MHz-1GHz		500		QP		5111			
	Above 1GHz		500		Average					
			5000		Peak					

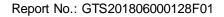
7.7.2 Radiated Emission Method

Test Procedure:	 The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Tem. /Hum.	35℃ / 54%
Test results:	Pass

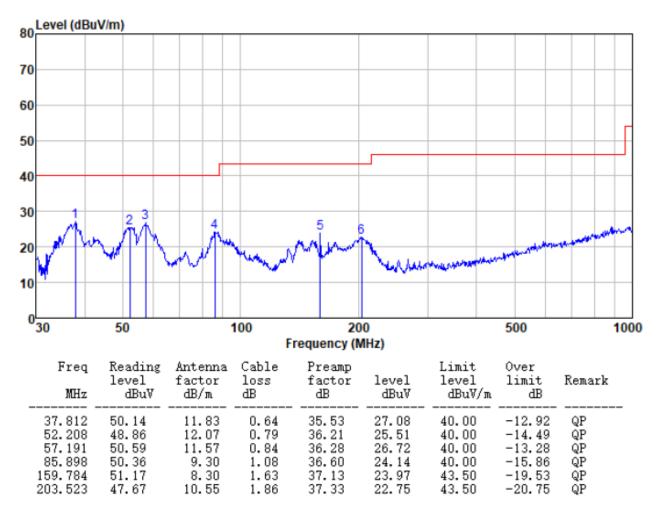
Measurement data:

Remark: Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


9 kHz ~ 30 MHz

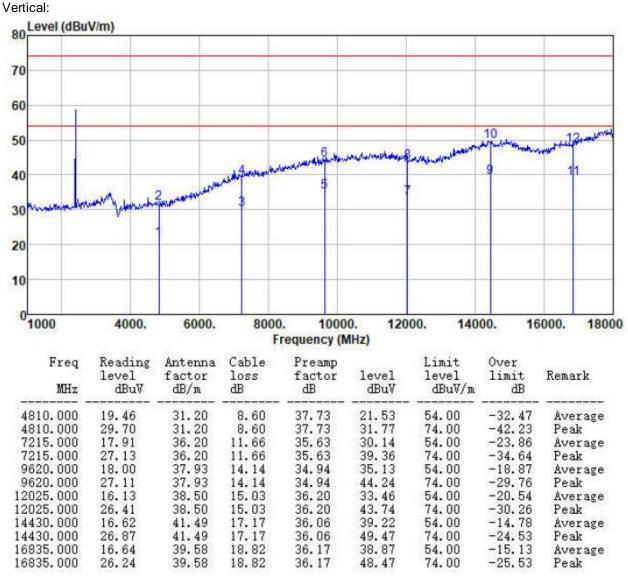

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Horizontal:

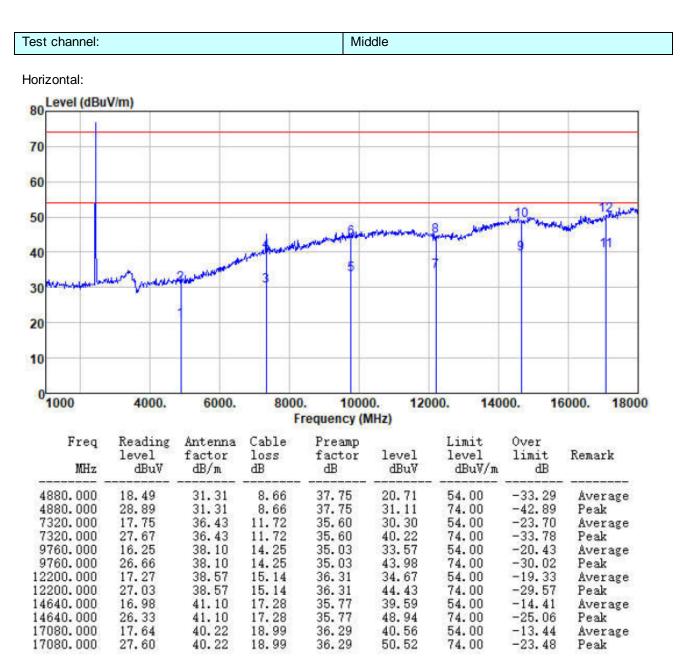
Vertical:

GTS



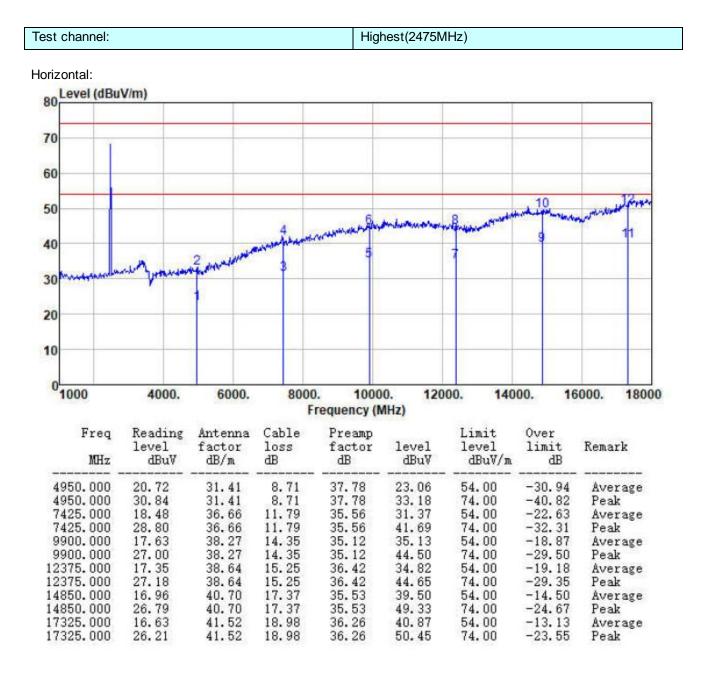
				LO	west			
orizontal:								
Level (dB	uV/m)							
0								
0								
0							10	12 Alankatr
				Admark Erand	the and the second	Bungar all your	and a second rate	the state of the s
0		100	and any and	Yamar an		ACHINA S	9	11
	A	2 Andrewson and the second		5				
Opposition	where and an and	and a	- 3				-	
	1.8							
0								
0			_					
	4000.	6000.	800	0. 1000	0. 120	000. 140	00. 16	5000. 1800
0	4000.	6000.		0. 1000 requency (N		000. 140	00. 10	5000. 1 800
0	Reading	Antenna			MHz)	Limit	Over	
0 <mark>1000</mark> Freq	Reading level	Antenna factor	F Cable loss	requency (M Preamp factor	MHz) level	Limit level	Over limit	5000. 1800 Remark
01000	Reading	Antenna	F Cable	requency (M Preamp	MHz)	Limit	Over	
01000 Freq MHz 4810.000	Reading level dBuV 19.22	Antenna factor dB/m 31.20	Cable loss dB 8.60	Preamp factor dB 37.73	MHz) level dBuV 21.29	Limit level dBuV/m 54.00	Over limit dB	Remark Average
01000 Freq MHz 4810.000 4810.000	Reading level dBuV 19.22 29.04	Antenna factor dB/m 31.20 31.20	Cable loss dB 8.60 8.60	requency (M Preamp factor dB 37.73 37.73	AHz) level dBuV 21.29 31.11	Limit level dBuV/m 54.00 74.00	Over limit dB -32.71 -42.89	Remark Average Peak
0 1000 Freq MHz 4810.000 4810.000 7215.000	Reading level dBuV 19.22 29.04 17.31	Antenna factor dB/m 31.20 31.20 36.20	Cable loss dB 8.60 8.60 11.66	requency () Preamp factor dB 37.73 37.73 35.63	AHz) level dBuV 21.29 31.11 29.54	Limit level dBuV/m 54.00 74.00 54.00	Over limit dB -32.71 -42.89 -24.46	Remark Average Peak Average
0 1000 Freq MHz 4810.000 4810.000 7215.000 7215.000	Reading level dBuV 19.22 29.04 17.31 27.97	Antenna factor dB/m 31.20 31.20 36.20 36.20	Cable loss dB 8.60 8.60 11.66 11.66	requency () Preamp factor dB 37.73 37.73 35.63 35.63	AHz) level dBuV 21.29 31.11 29.54 40.20	Limit level dBuV/m 54.00 74.00 54.00 74.00	Over limit dB -32.71 -42.89 -24.46 -33.80	Remark Average Peak Average Peak
0 1000 Freq MHz 4810.000 4810.000 7215.000 7215.000 9620.000	Reading level dBuV 19.22 29.04 17.31 27.97 16.80	Antenna factor dB/m 31.20 31.20 36.20	Cable loss dB 8.60 8.60 11.66	requency () Preamp factor dB 37.73 37.73 35.63	AHz) level dBuV 21.29 31.11 29.54	Limit level dBuV/m 54.00 74.00 54.00	Over limit dB -32.71 -42.89 -24.46	Remark Average Peak Average
0 1000 Freq MHz 4810.000 4810.000 7215.000 7215.000 9620.000 9620.000	Reading level dBuV 19.22 29.04 17.31 27.97 16.80 26.49 16.67	Antenna factor dB/m 31.20 31.20 36.20 36.20 37.93 37.93 38.50	Cable loss dB 8.60 8.60 11.66 11.66 14.14 14.14 15.03	requency () Preamp factor dB 37.73 37.73 35.63 35.63 34.94	AHz) 1evel dBuV 21.29 31.11 29.54 40.20 33.93 43.62 34.00	Limit level dBuV/m 54.00 74.00 54.00 74.00 54.00	Over limit dB -32.71 -42.89 -24.46 -33.80 -20.07 -30.38 -20.00	Remark Average Peak Average Peak Average
01000 Freq MHz 4810.000 4810.000 7215.000 7215.000 9620.000 9620.000 2025.000 2025.000	Reading level dBuV 19.22 29.04 17.31 27.97 16.80 26.49 16.67 26.90	Antenna factor dB/m 31.20 31.20 36.20 36.20 37.93 37.93 38.50 38.50	Cable loss dB 8.60 8.60 11.66 11.66 14.14 14.14 15.03 15.03	requency () Preamp factor dB 37.73 37.73 35.63 35.63 35.63 34.94 34.94 36.20 36.20	AHz) level dBuV 21.29 31.11 29.54 40.20 33.93 43.62 34.00 44.23	Limit level dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Over limit dB -32.71 -42.89 -24.46 -33.80 -20.07 -30.38 -20.00 -29.77	Remark Average Peak Average Peak Average Peak Average Peak
0 1000 Freq MHz 4810.000 4810.000 7215.000 9620.0000 9620.00000 9620.00000 9620.00000 9620.00000 9620.00000000000000000000000000000000000	Reading level dBuV 19.22 29.04 17.31 27.97 16.80 26.49 16.67 26.90 15.37	Antenna factor dB/m 31.20 31.20 36.20 36.20 37.93 37.93 38.50 38.50 41.49	Cable loss dB 8.60 8.60 11.66 11.66 14.14 14.14 15.03 15.03 17.17	requency () Preamp factor dB 37.73 37.73 35.63 35.63 35.63 34.94 34.94 36.20 36.20 36.06	AHz) level dBuV 21. 29 31. 11 29. 54 40. 20 33. 93 43. 62 34. 00 44. 23 37. 97	Limit level dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Over limit dB -32.71 -42.89 -24.46 -33.80 -20.07 -30.38 -20.00 -29.77 -16.03	Remark Average Peak Average Peak Average Peak Average Peak Average
0 1000 Freq MHz 4810.000 4810.000 7215.000 7215.000 9620.000 9620.000 9620.000 2025.000 2025.000 4430.000 4430.000	Reading level dBuV 19.22 29.04 17.31 27.97 16.80 26.49 16.67 26.90 15.37 25.77	Antenna factor dB/m 31.20 31.20 36.20 36.20 37.93 37.93 38.50 38.50 41.49 41.49	Cable loss dB 8.60 8.60 11.66 11.66 14.14 14.14 15.03 15.03 17.17 17.17	requency () Preamp factor dB 37.73 37.73 35.63 35.63 35.63 34.94 34.94 36.20 36.20 36.06 36.06	AHz) level dBuV 21. 29 31. 11 29. 54 40. 20 33. 93 43. 62 34. 00 44. 23 37. 97 48. 37	Limit level dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Over limit dB -32.71 -42.89 -24.46 -33.80 -20.07 -30.38 -20.00 -29.77 -16.03 -25.63	Remark Average Peak Average Peak Average Peak Average Peak Average Peak
Freq	Reading level dBuV 19.22 29.04 17.31 27.97 16.80 26.49 16.67 26.90 15.37	Antenna factor dB/m 31.20 31.20 36.20 36.20 37.93 37.93 38.50 38.50 41.49	Cable loss dB 8.60 8.60 11.66 11.66 14.14 14.14 15.03 15.03 17.17	requency () Preamp factor dB 37.73 37.73 35.63 35.63 35.63 34.94 34.94 36.20 36.20 36.06	AHz) level dBuV 21. 29 31. 11 29. 54 40. 20 33. 93 43. 62 34. 00 44. 23 37. 97	Limit level dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Over limit dB -32.71 -42.89 -24.46 -33.80 -20.07 -30.38 -20.00 -29.77 -16.03	Remark Average Peak Average Peak Average Peak Average Peak Average

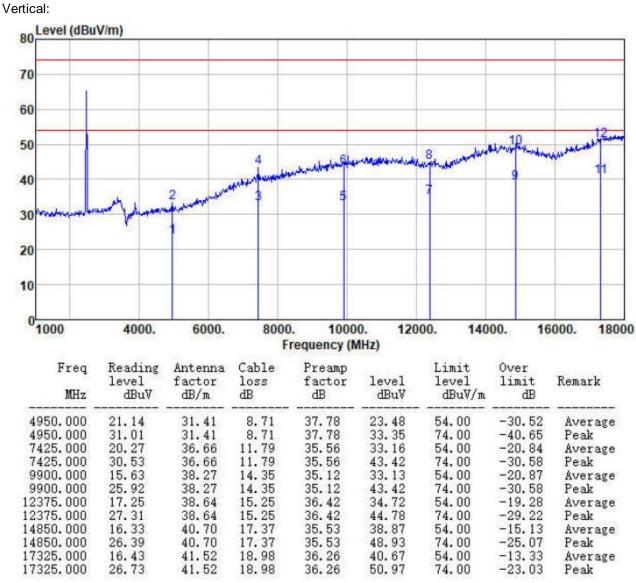
Above 1GHz



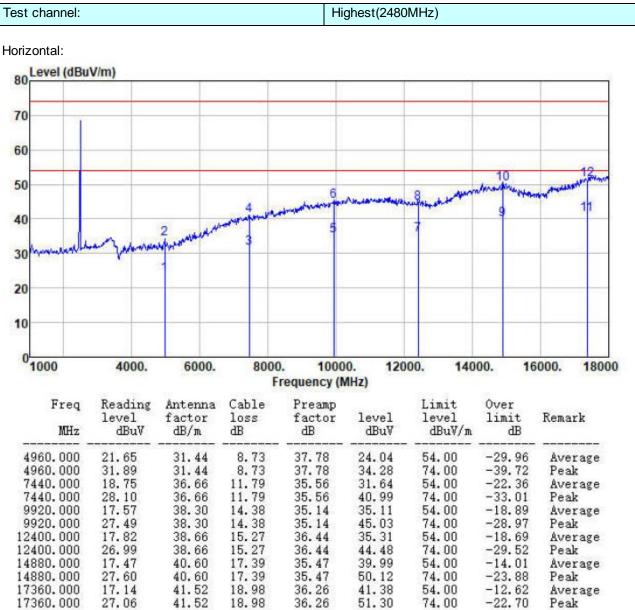
Remark:

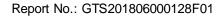
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

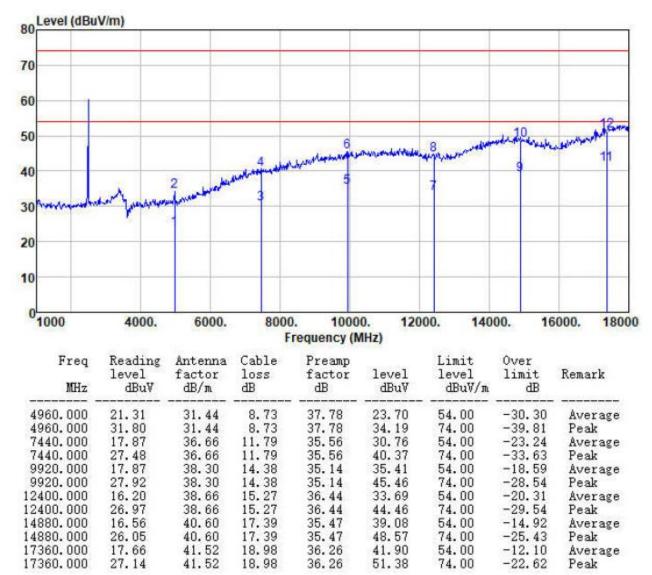



Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor



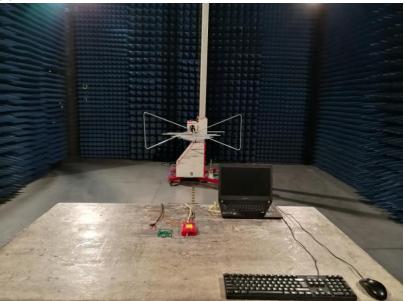


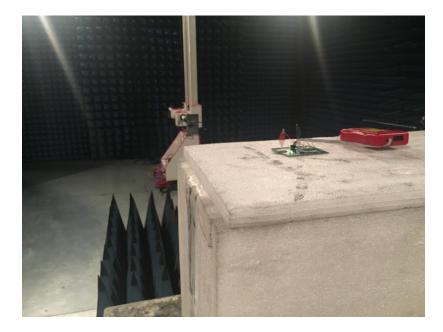

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Vertical::

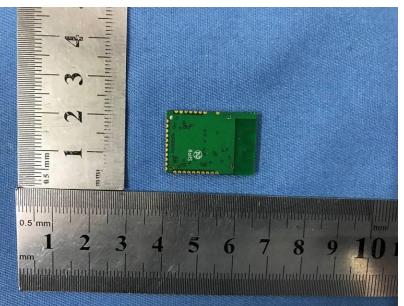
GTS

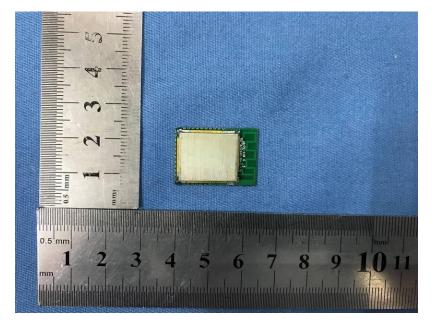

Remark:

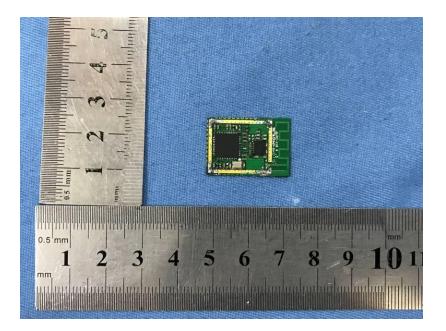

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

8 Test Setup Photo

Radiated Emission




Conducted Emission



9 EUT Constructional Details

-----End------