

RADIO TEST REPORT FCC ID:2AAUI-EXSE18

Product: SoundExtreme SE18 Trade Mark: ECOXGEAR Model No.: GDI-EXSE1801 Family Model: N/A Report No.: S23060201610001 Issue Date: Jul 21. 2023

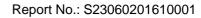
Prepared for

Grace Digital Inc.

10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn



I

TABLE OF CONTENTS

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	FUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS ST REQUIREMENTS CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT	9 10 11 12 12 14 23
7.5 7.6 7.7 7.8 7.9 7.10 7.11	AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	25 27 28 29 30 31 32
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER -20DB BANDWIDTH OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE BAND EDGE BAND EDGE (HOPPING) CONDUCTED RF SPURIOUS EMISSION	43 49 55 61 67 70 77

1 TEST RESULT CERTIFICATION

Grace Digital Inc.
10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127
Xingtel Xiamen Group Co., Ltd.
Xingtel Building,Chuangxin Road, Torch Hi-Tech Industrial District,Xiamen 361006, PR China
SoundExtreme SE18
GDI-EXSE1801
N/A
S230602016010

Certificate #4298 01

Measurement Procedure Used:

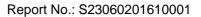
APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.


Date of Test	:	Jun 05. 2023 ~ Jul 21. 2023
Testing Engineer	:	Aven lin
		(Allen Liu)
Authorized Signatory	:	Alex
		(Alex Li)

SUMMARY OF TEST RESULTS				
FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	N/A		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	SoundExtreme SE18		
Trade Mark	ECOXGEAR		
FCC ID	2AAUI-EXSE18		
Model No.	GDI-EXSE1801		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	PCB Antenna		
Antenna Gain	0 dBi		
Power supply	DC 12V from battery		
Adapter	N/A		
HW Version	BT-333C-M-V1.3		
SW Version	BTM321_xinglian_BT333_V1218		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Certificate #4298.01 Revision History				
Report No.	Version	Description	Issued Date		
S23060201610001	Rev.01	Initial issue of report	Jul 21. 2023		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Description			
CH00(2402MHz)			
CH39(2441MHz)			
CH78(2480MHz)			
Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

®

NTEK JG测	ACCREDITED Certificate #4298.01	Report No.: S23060201610001
6 SETUP OF EQUIPMENT UN	IDER TEST	
6.1 BLOCK DIAGRAM CONFIGURAT	ION OF TEST SYSTEM	
For Radiated Test Cases		
EUT E-1		
For Conducted Test Cases		
Measurement Instrument		
Note: 1. The temporary antenna connect and this temporary antenna connector i	ctor is soldered on the PCB board ir	order to perform conducted tests
2. EUT built-in battery-powered, th		

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	SoundExtreme SE18	GDI-EXSE1801	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		eet equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

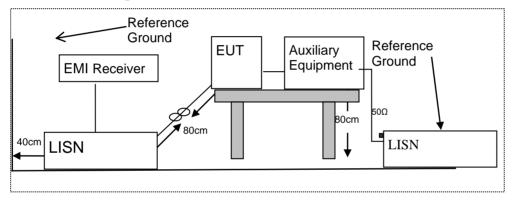
We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

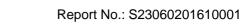
According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

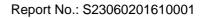
- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.


7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.


7.1.5 Test Results

EUT:	SoundExtreme SE18	Model Name :	GDI-EXSE1801
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

ACCREDITED Certificate #4298.01

ilac-ME

Note: EUT is battery powered, not Applicable.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art10.20	According to FOC Fattio.200, Nestificied bands				
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

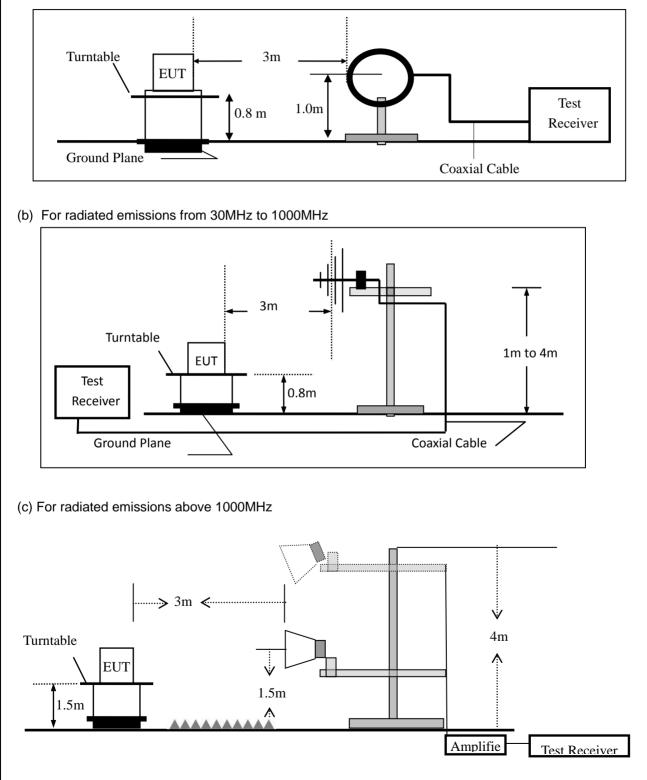
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

	-
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency 10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Above 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

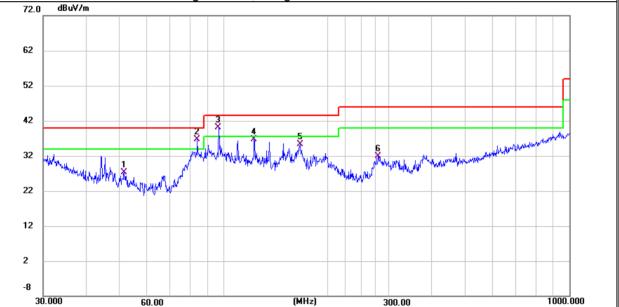
	Spurious Emission	below 30MHz	(9KHz to 30MHz)
--	-------------------	-------------	-----------------

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	r(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was


All the modulation modes have been tested, and the worst result was report as below:								
EUT:	SoundExtreme SE18	Model Name :	GDI-EXSE1801					
Temperature:	25 ℃	Relative Humidity:	55%					
Pressure:	1010hPa	Test Mode:	Mode 1					
Test Voltage :	DC 12V							

ACCREDITED Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	51.4807	12.64	14.57	27.21	40.00	-12.79	QP
V	83.8156	20.73	15.91	36.64	40.00	-3.36	QP
V	96.7749	22.71	17.41	40.12	43.50	-3.38	QP
V	122.4040	17.86	18.75	36.61	43.50	-6.89	QP
V	166.0680	17.56	17.72	35.28	43.50	-8.22	QP
V	280.0237	11.90	19.97	31.87	46.00	-14.13	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	45.3755	7.15	17.94	25.09	40.00	-14.91	QP
Н	96.7749	17.01	17.41	34.42	43.50	-9.08	QP
Н	135.5062	15.86	18.78	34.64	43.50	-8.86	QP
Н	167.8243	17.40	17.61	35.01	43.50	-8.49	QP
Н	232.5318	15.22	17.57	32.79	46.00	-13.21	QP
H Remark	378.5843	19.55	22.75	42.30	46.00	-3.70	QP
	n Level= Meter F	Reading+ Fact	tor, Margin=	Emission Lev	vel - Limit		
62							
52							f
42			3 \$		6 MMM		411/14/
32 🛝	when an Brank and	a multiply from	and the find white	warner the war	Washington and	an which the stand of the stand	_
22	- which which which	War Man					
12							_
2							
-8	000 00				0.00		
30.0	60	.00	(MI	1zj 30	0.00	11	000.000

Spurious E										
EUT:	Sound	dExtreme	SE18	Model	No.:	C	GDI-E	EXSE180	1	
Temperature:	20 ℃			Relativ	e Humidity	r: 4	18%			
Test Mode:	Mode	2/Mode3/	Mode4	Test By	/:	A	Allen	Liu		
All the modulat	ion modes	have bee	en tested,	and the w	orst result	was i	repor	t as belo	W:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limi	its	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)		
			Low Chanr	nel (2402 MI	Hz)(GFSK)/	Above 1	IG			
4804.214	64.23	5.21	35.59	44.30	60.73	74.0	00	-13.27	Pk	Vertical
4804.214	41.85	5.21	35.59	44.30	38.35	54.0	00	-15.65	AV	Vertical
7206.265	60.15	6.48	36.27	44.60	58.30	74.0	00	-15.70	Pk	Vertical
7206.265	44.49	6.48	36.27	44.60	42.64	54.0	00	-11.36	AV	Vertical
4804.109	61.18	5.21	35.55	44.30	57.64	74.0	00	-16.36	Pk	Horizontal
4804.109	42.45	5.21	35.55	44.30	38.91	54.0	00	-15.09	AV	Horizontal
7206.224	63.83	6.48	36.27	44.52	62.06	74.0	00	-11.94	Pk	Horizontal
7206.224	46.79	6.48	36.27	44.52	45.02	54.0	00	-8.98	AV	Horizontal
		1	Mid Chanr	el (2441 MI	Hz)(GFSK)A	Above 1	G			
4882.396	64.10	5.21	35.66	44.20	60.77	74.0	00	-13.23	Pk	Vertical
4882.396	43.10	5.21	35.66	44.20	39.77	54.0	00	-14.23	AV	Vertical
7323.241	59.85	7.10	36.50	44.43	59.02	74.0	00	-14.98	Pk	Vertical
7323.241	47.19	7.10	36.50	44.43	46.36	54.0	00	-7.64	AV	Vertical
4882.108	60.66	5.21	35.66	44.20	57.33	74.0	00	-16.67	Pk	Horizontal
4882.108	49.06	5.21	35.66	44.20	45.73	54.0	00	-8.27	AV	Horizontal
7323.132	61.83	7.10	36.50	44.43	61.00	74.0	00	-13.00	Pk	Horizontal
7323.132	42.21	7.10	36.50	44.43	41.38	54.0	00	-12.62	AV	Horizontal
		1	High Chanr	nel (2480 MI	Hz)(GFSK)	Above	1G			
4960.397	67.50	5.21	35.52	44.21	64.02	74.0	00	-9.98	Pk	Vertical
4960.397	43.51	5.21	35.52	44.21	40.03	54.0	00	-13.97	AV	Vertical
7440.201	61.87	7.10	36.53	44.60	60.90	74.0	00	-13.10	Pk	Vertical
7440.201	45.38	7.10	36.53	44.60	44.41	54.0	00	-9.59	AV	Vertical
4960.225	68.54	5.21	35.52	44.21	65.06	74.0	00	-8.94	Pk	Horizontal
4960.225	47.84	5.21	35.52	44.21	44.36	54.0	00	-9.64	AV	Horizontal
7440.298	60.77	7.10	36.53	44.60	59.80	74.0	00	-14.20	Pk	Horizontal
7440.298	45.29	7.10	36.53	44.60	44.32	54.0	00	-9.68	AV	Horizontal

ACCREDITED Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious E	mission in	Restric	ted Band	<u>231</u> 0-239	0MHz and	2483.	5-25	00MHz		
EUT	Γ:	SoundExtre	eme SE	18	Mode	el No.:		GDI	EXSE18	801	
Tem	perature:	20 °C			Relat	elative Humidity: 48%					
Tes	t Mode:	Mode2/ Mc	de4		Test	By:		Aller	n Liu		
All	the modula	ation modes	s have b	been teste	d, and th	e worst res	ult wa	s rep	ort as be	elow:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
					1Mbps(GFS	K)-Non-hoppi	ing				
	2310.00	58.84	2.97	27.80	43.80	45.81	74	4	-28.19	Pk	Horizontal
	2310.00	43.51	2.97	27.80	43.80	30.48	54	4	-23.52	AV	Horizontal
	2310.00	59.85	2.97	27.80	43.80	46.82	74	4	-27.18	Pk	Vertical
	2310.00	42.14	2.97	27.80	43.80	29.11	54	4	-24.89	AV	Vertical
	2390.00	59.35	3.14	27.21	43.80	45.90	74	4	-28.10	Pk	Vertical
	2390.00	42.68	3.14	27.21	43.80	29.23	54	4	-24.77	AV	Vertical
	2390.00	57.96	3.14	27.21	43.80	44.51	74	4	-29.49	Pk	Horizontal
	2390.00	43.70	3.14	27.21	43.80	30.25	54	4	-23.75	AV	Horizontal
	2483.50	57.71	3.58	27.70	44.00	44.99	74	4	-29.01	Pk	Vertical
	2483.50	43.76	3.58	27.70	44.00	31.04	54	4	-22.96	AV	Vertical
	2483.50	59.75	3.58	27.70	44.00	47.03	74	4	-26.97	Pk	Horizontal
	2483.50	42.28	3.58	27.70	44.00	29.56	54	4	-24.44	AV	Horizontal
					1Mbps(G	FSK)-hopping	I				
	2310.00	50.33	2.97	27.80	43.80	37.30	74.	00	-36.70	Pk	Vertical
	2310.00	42.18	2.97	27.80	43.80	29.15	54.	00	-24.85	AV	Vertical
	2310.00	52.30	2.97	27.80	43.80	39.27	74.	00	-34.73	Pk	Horizontal
	2310.00	40.60	2.97	27.80	43.80	27.57	54.	00	-26.43	AV	Horizontal
	2390.00	50.04	3.14	27.21	43.80	36.59	74.	00	-37.41	Pk	Vertical
	2390.00	40.10	3.14	27.21	43.80	26.65	54.	00	-27.35	AV	Vertical
	2390.00	51.32	3.14	27.21	43.80	37.87	74.	00	-36.13	Pk	Horizontal
	2390.00	43.17	3.14	27.21	43.80	29.72	54.	00	-24.28	AV	Horizontal
	2483.50	53.32	3.58	27.70	44.00	40.60	74.	00	-33.40	Pk	Vertical
	2483.50	43.48	3.58	27.70	44.00	30.76	54.	00	-23.24	AV	Vertical
	2483.50	54.94	3.58	27.70	44.00	42.22	74.	00	-31.78	Pk	Horizontal
	2483.50	41.77	3.58	27.70	44.00	29.05	54.	00	-24.95	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT	:	Sound	Extreme	SE18	Model	Model No.:			GDI-EXSE1801		
Temperature: 20 °C				Relative Humidity:		y:	48%	1			
Test	Fest Mode: Mode2/ Mode4			Test B	Test By:		Aller	n Liu			
All t	he modulati	ion modes	have be	en tested	l, and the	worst res	ult wa	is rep	ort as be	elow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ'	V/m)	(dB)	Туре	
	3260	60.26	4.04	29.57	44.70	49.17	74	4	-24.83	Pk	Vertical
	3260	55.95	4.04	29.57	44.70	44.86	54	4	-9.14	AV	Vertical
	3260	62.35	4.04	29.57	44.70	51.26	74	4	-22.74	Pk	Horizontal
	3260	57.14	4.04	29.57	44.70	46.05	54	4	-7.95	AV	Horizontal
	3332	66.16	4.26	29.87	44.40	55.89	74	4	-18.11	Pk	Vertical
	3332	54.88	4.26	29.87	44.40	44.61	5	4	-9.39	AV	Vertical
	3332	63.17	4.26	29.87	44.40	52.90	7.	4	-21.10	Pk	Horizontal
	3332	52.29	4.26	29.87	44.40	42.02	5	4	-11.98	AV	Horizontal
	17797	43.14	10.99	43.95	43.50	54.58	74	4	-19.42	Pk	Vertical
	17797	32.53	10.99	43.95	43.50	43.97	5	4	-10.03	AV	Vertical
	17788	44.43	11.81	43.69	44.60	55.33	7.	4	-18.67	Pk	Horizontal
	17788	31.97	11.81	43.69	44.60	42.87	5	4	-11.13	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

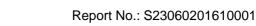
7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup


Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Certificate #4298 01

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

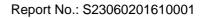
7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	SoundExtreme SE18	Model No.:	GDI-EXSE1801
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

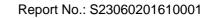
7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

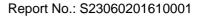

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

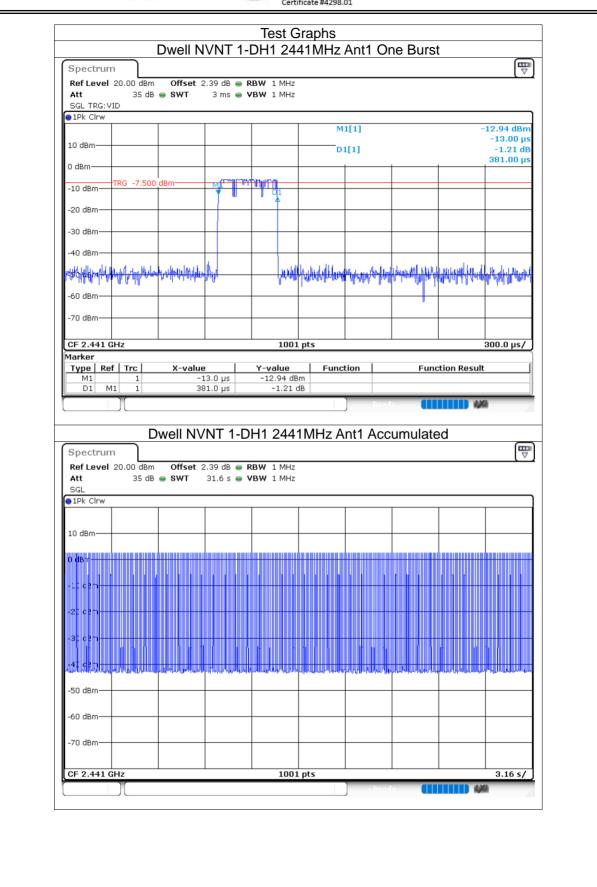
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

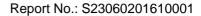
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

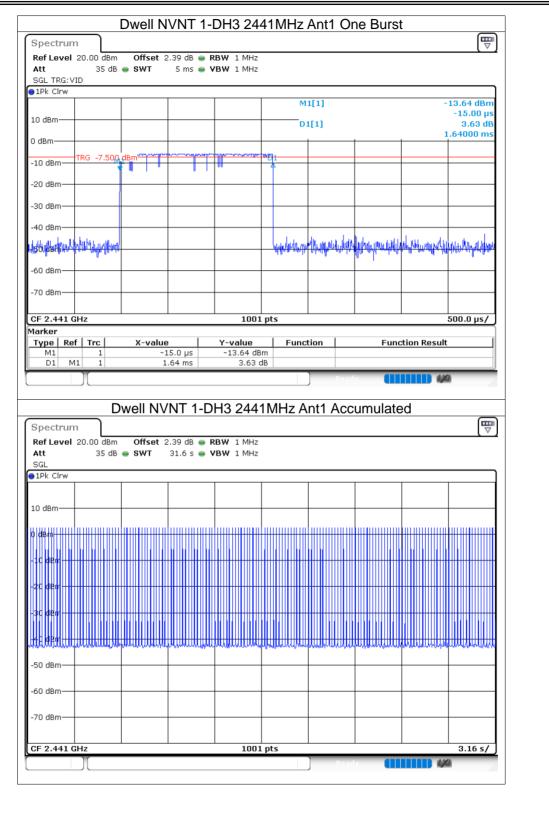
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

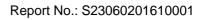


8 TEST RESULTS


8.1 DWELL TIME


		-	-			_			
Condition	Mode	Frequency	Antenna	Pulse	Total	Burst	Period	Limit	Verdict
		(MHz)		Time	Dwell	Count	Time	(ms)	
				(ms)	Time		(ms)		
					(ms)		. ,		
NVNT	1-DH1	2441	Ant1	0.381	121.539	319	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.64	262.4	160	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.39	124.41	319	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.645	261.555	159	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	123.453	319	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.64	260.76	159	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass

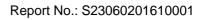




ac.M

ACCREDITED

Spectrum Ref Level 20		Offeet	2.39 dB 👄 R	RW 1 MH-					
Att	35 dB (BW 1 MHz					
SGL TRG:VID 1Pk Clrw									
					M	1[1]		-	·13.03 dBm -16.00 μs
10 dBm					D	L[1]			7.10 dB 2.88800 ms
0 dBm				D1					
-10 dBm	i -7.500 d	IBm							
-20 dBm									
-30 dBm									
-40 dBm									
NAMER AND				hh H	hall have been all the second	<u>hlumuseullus</u>	14994 Aroshilaks	andylitheraperty	had all the all the second
-60 dBm									
-70 dBm									
-/ U UDIII									
CF 2.441 GHz Marker				1001	pts				800.0 µs/
Type Ref		X-value		Y-value	Funct	tion	Fund	tion Result	:
M1 D1 M1	1		16.0 µs 888 ms	-13.03 dB 7.10 d					
						Read	y 🛄		
	ים		/NT 1-D	H5 244		nt1 Acc	umulate	ad a	
Spectrum				115 244			unnulate	^{ju}	E □
Ref Level 20			2.39 dB 👄 R						
Att SGL	35 dB	∎ SWT	31.6 s 👄 V	BW 1 MHz					
●1Pk Clrw			1						
10 dBm					ĺ				
10 dBm			1			1			
10 dBm									
0 dem									
0 dem									
0 dem									
0 dBm+++++++ -10 dBm++++++ -20 dBm++++++ -30 dBm++++++									
0 dem -10 dBm -20 dBm -30 dBm -40 dBm									
0 dem -10 dem -20 dem -30 dem -30 dem -50 dem									
0 dBm 10 dBm 20 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm									
0 dBm 10 dBm 20 dBm 30 dBm 30 dBm -50 dBm -60 dBm									
0 dBm 10 dBm 20 dBm 30 dBm 30 dBm -50 dBm -60 dBm									
0 dem -10 dBm -20 dBm -30 dBm -40 dBm					pts				3.16 s/


ilac-MR/

ACCREDITED

SGL TRG:V	ID								
					м	1[1]			-10.85 dBm -142.00 μs
10 dBm					D	1[1]			2.25 dB
0 dBm		-10	AND						390.00 µs
-10 dBm—	TRG -5.600	dBm M		1					
-20 dBm									
-30 dBm									
-40 dBm									
n de la competition de la comp	Handrig Handrighter	ւլու կվետ վեր/		LAN LAWRE	han Milanda Hairlain	NAMA AND AND AND AND AND AND AND AND AND AN	huluhhaluhat	. r. Mily sheld a	Instabil phase
-60 dBm	Anned Insta.	արին լուտ			ւլն աստեղան	ատելիվուտիվ	l ll l o i te a la	na la sundi	Mather Latter and a
-70 dBm									
CF 2.441 0	Hz			1001	pts				300.0 µs/
Marker Type Re		X-value		Y-value	Func	tion	Fund	ction Result	:
M1 D1 M	1 1		42.0 μs 90.0 μs	-10.85 dB 2.25 c					
						Read	v (1		0
	1 20.00 dBm		2.39 dB 👄 R	RBW 1 MHz	IMHZ A	nt1 Acc	umulate		
	1 20.00 dBm	Offset 2		RBW 1 MHz	IMHZ A				
Ref Level Att SGL	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	IMHZ A				
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB R R 31.6 s R V	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5m -21 c5m -21 c5m -31 c5m -31 c5m -31 c5m	1 20.00 dBm	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5m -21 c5m -21 c5m -31 c5m -31 c5m -50 dBm -60 dBm	1 20.00 dBm	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5m -21 c5m -21 c5m -31 c5	1 20.00 dBm	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5m -21 c5m -21 c5m -31 c5m -31 c5m -50 dBm -60 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5m -21 c5m -31 c5m -31 c5m -31 c5m -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB R R 31.6 s R V	28 W 1 MHz /8 W 1 MHz					3.16 s/

Spectrum						
	Offset 2.39 dB 👄 RB					
Att 35 dB SGL TRG: VID	SWT 5 ms 👄 VB	3W 1 MHz				
1Pk Clrw						
			M1[1]			61 dBm
10 dBm			D1[1]			00000 s 5.87 dB
0 dBm	on of the second	ngopermenter			1.64	500 ms
TRG -5.600 dBm						
-10 dBm						
-20 dBm						
-30 dBm				_		
-40 dBm						
			and an instant	ياريد المراهمين المرا	استراسا الحريد ورا	L L LIM
N#BHBBHHA			here was a second and the second s	Aroldens, with the	watter Petrovala Hitra	fund from and
-60 dBm				+		
-70 dBm						
CF 2.441 GHz		1001 p	ts		500).0 μs/
Marker _Type Ref Trc	K-value	Y-value	Function	Funct	ion Result	
M1 1	0.0 s	-3.61 dBm				
D1 M1 1	1.645 ms	5.87 dB			4.5/2	
			Re	80 Y		6
						1111
Dwe		13 2//11	MHz Ant1 Ac		Ч	1111
	II NVNT 2-DH	13 2441	MHz Ant1 Ac	cumulate	d	
Spectrum			MHz Ant1 Ac	cumulate	d	
Spectrum Ref Level 20.00 dBm C Att 35 dB 🖷 S	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac	cumulate	d	
Spectrum Ref Level 20.00 dBm C Att 35 dB ● S SGL	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac	cumulate	d	
Spectrum Ref Level 20.00 dBm C Att 35 dB ● S SGL	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB ● S SGL	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz	MHz Ant1 Ac		d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 9 IPk Clrw	Offset 2.39 dB 🖷 RB	W 1 MHz			d	
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm Att 35 dB SGL IPk Clrw 10 dBm 0 28/h -10 dBm -20 dBm -30 dBm -50 dBm	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm 10 dBm	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				
Spectrum Ref Level 20.00 dBm C Att 35 dB S SGL 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm -50 dBm -60 dBm 10 dBm	Dffset 2.39 dB • RB WT 31.6 s • VB	3W 1 MHz 3W 1 MHz				

ilac-MR/

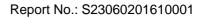
ACCREDITED

SGL TRG: V			∎ sw1	-	0.00		3W 1 №									
									N	1[1]					-9.75 -136.0	
10 dBm									D	1[1]						1 dB
0 dBm	1RG -5	م <mark>سدر را</mark> م 700.	atan atal IBm	walter	where we are the	Ynderheid	YAAW D	1								
-10 dBm—								-			1					
-20 dBm—																
-30 dBm																
-40 dBm								uid a su	առա տեղեց	alidenter al	na HALMA	แหน่งป	LON-JLA	na klar	ade/Alcola	معاطره
	v							and b	n e - Allat II a	n ne ne ve ve	illu n , coddo	. andli i d	ulle 1. Ault.		waat dahan	ohina (D
-60 dBm																
-70 dBm—																
CF 2.441 (Marker	Hz						1	001 p	ts						800.0	µs/
Type Re M1	f Trc		X-v	alue	5.0 µs		<u>Y-valu</u> -9.79	e 5 dBm	Fund	tion		Fund	ction R	esult		
D1 M					88 ms			91 dB								
										Re				10		
		D۱	vell	NV	NT 2	-DF	15 24	141N	MHz A	nt1 Ac	cum	ulate	ed		_	////
Spectrun		D١	vell	NV	NT 2	-DF	H5 24	141 1	MHz A	nt1 Ac	cum	ulate	ed			
Spectrum Ref Level Att	20.00 (dBm		et 2	.39 dB	e Re	H5 24	1Hz	MHz A	nt1 Ac	cum	ulate	ed		_	
Ref Level Att SGL	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz	MHz A	nt1 Ac	cum	ulate	ed			
Ref Level Att	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz	MHz A	Ant1 Ac	cum		ed			
Ref Level Att SGL	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz	MHz A	Ant1 Ac			ed			
Ref Level Att SGL ● 1Pk Clrw	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz								
Ref Level Att SGL ● 1Pk Clrw	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz								
Ref Level Att SGL 1Pk Clrw 10 dBm 0 dBm	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz								
Ref Level Att SGL 1Pk Clrw 10 dBm 0 dBm	20.00 (dBm 5 dB	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz								
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm	20.00 (dBm	Offs	et 2	.39 dB	e Re	3W 1 M	1Hz								
Ref Level Att SGL 1Pk Clrw 10 dBm 		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3W 1 N 3W 1 N									
Ref Level Att SGL 1Pk Clrw 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3W 1 N 3W 1 N									
Ref Level Att SGL ● 1Pk CIrw 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3W 1 N 3W 1 N									
Ref Level Att SGL ● 1Pk CIrw 10 dBm 		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3W 1 N 3W 1 N									
Ref Level Att SGL ● 1Pk CIrw 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3W 1 N 3W 1 N									
Ref Level Att SGL ● 1Pk Clrw 10 dBm 0 dEm 10 dBm 20 dBm 30 dBm -50 dBm -60 dBm		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3w 1 M 3w 1 M								3.16	
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm -50 dBm -60 dBm -70 dBm		dBm 5 dB (Offs SW1	set 2	.39 dB 31.6 s	Re Ve	3w 1 M 3w 1 M								3.16	

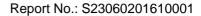
Att SGL TRG: V		● SWT	3 ms 👄 🛛	BW 1 MHz					
●1Pk Clrw					M	1[1]			-9.67 dBm
10 dBm					td	1[1]			-142.00 μs 0.45 dB
0 dBm			A double with a						387.00 µs
-10 dBm—	TRG -5.000	dBm Mt		1 4					
-20 dBm—									
-30 dBm									
-40 dBm									
LLENN/BERNNAR	Alley Haller	ս եւ արերինել		multhurd	Mr. n. C. Mil. arth	hill, hipper, and hum	Mullion and the second s	ในเส้าน ไม่เป็นไม่ไ	بالمتدارية المراب
-60 dBm				1	Loo alle Le a	100,010,010	LL. Mar allocation	. when when a	na dina dia a
-70 dBm-									
-70 ubiii									
CF 2.441 (Marker	Hz			1001	pts				300.0 µs/
Type Re M1	f Trc	X-value	e	Y-value -9.67 dB	Funct	tion	Fund	tion Resul	t
D1 M			+2.0 μs 37.0 μs	-9.87 08					
Att	1 20.00 dBm		′NT 3-D 2.39 dB ● R 31.6 s ● V	BW 1 MHz	1MHz A	nt1 Acc	umulate	ed	
Ref Level	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL ● 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc			
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	BW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm-	1 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm-	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -10 cE n -21 cE n -31 cE n 	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk CIrw 10 dBm -10 dBm -10 cE n -21 cE n -31 cE n -50 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm • 10 dBm • 12 c3 n • 22 c3 n • 50 dBm -50 dBm -70 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 c5 n -21 c5 n -31 c5 n -50 dBm -60 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					3.16 s/
Ref Level Att SGL ● 1Pk Clrw 10 dBm 0 dBm • LI c = n • LI c = n • SI c = n • SI c = n • S0 dBm -50 dBm -70 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					3.16 s/

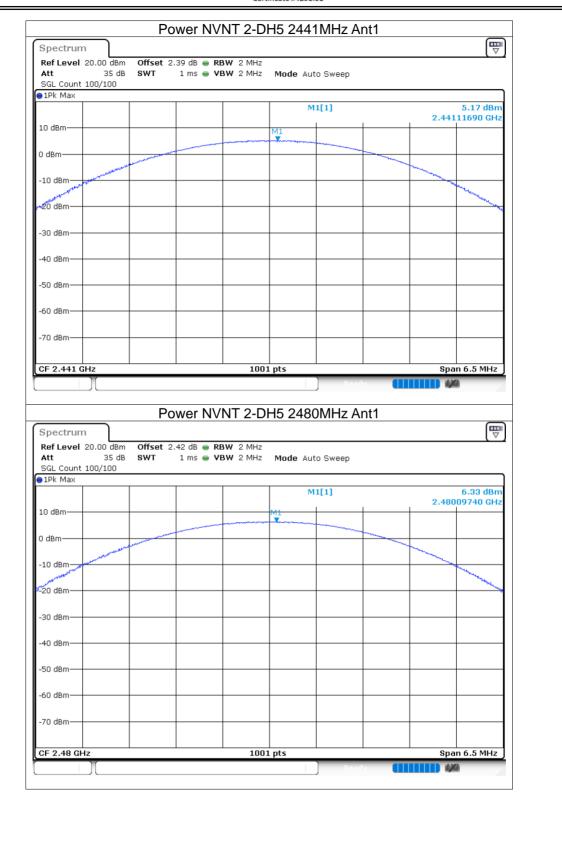
SGL TF)											ר
								м	1[1]			-9.23 dB -140.00 j	
10 dBm					1			D	1[1]			0.21 d 1.64000 m	1B
0 dBm-	—т	RG -513)0 dBm	- Condellary	1	<u>wh</u> enad	ant the second			L			-
-10 dBn			+		+	U		-					
-20 dBn	<u>+</u>		+		+								
-30 dBn	<u>ا</u> -		+		+								-
-40 dBn	ι -		+		+								-
-50 dBn	hila dili	MMIN.M	+		+			HillporgAuriel	Por a H V. Juai Va	anka lada dad	. Alberton	h.N. Idali willild	d.
-60 dBn	, had a.	o alka	-		+			In the second second	. No. Indeada	սօ. Ումիս Լոմի - հ	₩~ UB 10.4	h Millingdon of fi	fla.
-70 dBn			+		+								-
CF 2.4	 41 G⊦	Iz					1001	Lpts				500.0 µs/	_
Marker				×						-			
Туре	Ref			X-valı			Y-value	Func	tion	Fun	ction Resu	ilt	
M1		1		-	140.0 µ		-9.23 dB						
Spect Ref L Att		1	3m	ell N'	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (1MHz A) Read	cumulate	ed	7 7	
D1 Spect Ref L	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A	nt1 Acc	umulate	ed	, , ,	
Spect Ref L Att SGL PIPK C	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A	nt1 Acc	cumulate	ed		
Spect Ref L Att SGL	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A) Read		ed	, , ,	
Spect Ref L Att SGL PIPK C	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A	nt1 Acc		ed		
Spect Ref L Att SGL PIPK C	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A	nt1 Acc		ed		
Spect Ref L Att SGL PIPK C	rum evel	1	3m	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1MHz A	nt1 Acc		ed		
Spect Ref L Att SGL PIPK C	rum evel	1	3m dB 👄	ell N Offse	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A	nt1 Acc		ed		
Spect Ref L Att SGL PIPK C	rum evel	1 20.00 d 30	3m dB 👄	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A					
Spect Ref L Att SGL PIPK C	rum evel		3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A			ed		
Spect Ref L Att SGL PIPK C	rum evel	1 20.00 d 30	3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A					
D1 Spect Ref L SGL 9 1Pk Cl 10 dBm -11 dBm -21 dBm -21 dBm -31 dBm	rum evel		3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A			ed		
D1 Spect Ref L SGL 10 dBm -12 dBm -21 dBm -31 dBm -31 dBm -50 dBm -60 dBm			3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A			ed		
D1 Spect Ref L SGL 10 dBm -12 dBm -22 dBm -32 dBm -35 dBm			3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2	1 MHz A					
D1 Spect Ref L SGL 10 dBm -12 dBm -21 dBm -31 dBm -31 dBm -50 dBm -60 dBm		1 20.00 d 30	3m dB •	Offse SWT	1.64 n VNT t 2.39	- 3-D dB ●	0.21 (H3 244 RBW 1 MH2					3.16 5,	

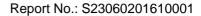
⊖1Pk Clrw	/ID								
					м	1[1]			-9.68 dBm -144.00 μs
10 dBm					D	1[1]			5.95 dB
0 dBm	WIDG 5 100		handerstandigen	mumulan 1				2	
-10 dBm—									
-20 dBm—									
-30 dBm									
-40 dBm									
	ļ			liye	Marildaria	and works	Mahamalahaha	Lewebull weter huged	und have been
-60 dBm						· ·	0.1		U
-70 dBm—									
CF 2.441	GHz		1	100	1 pts	1	1	1	800.0 µs/
Marker Type Re		X-value		Y-value	Func	tion	Fund	tion Result	
M1 D1 N	1 /1 1		44.0 μs 888 ms	-9.68 d 5.95					
						Read	v O		1
						n+1 / 00			
	Р								
		well NV	/NT 3-D	H5 244	1 MHZ A		unnulate	JU .	m
Spectrur	n						unuate	i a	
	n 20.00 dBm		'NI 3-D 2.39 dB ● F 31.6 s ● V	RBW 1 MH:	2		unnulate		
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL 1Pk Clrw 10 dBm-	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL ● 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL 1Pk Clrw 10 dBm-	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL 1Pk Clrw 10 dBm-	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MH:	2				
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm 0 c5m -10 dBm -20 dBm -30 dBm -40 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \	RBW 1 MH: /BW 1 MH:					
Ref Level Att SGL ● 1Pk Clrw 10 dBm ● 10k Clrw -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \						
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm -50 dBm -60 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \						3.16 s/
Ref Level Att SGL ● 1Pk Clrw 10 dBm ● 10k Clrw -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • \						3.16 s/

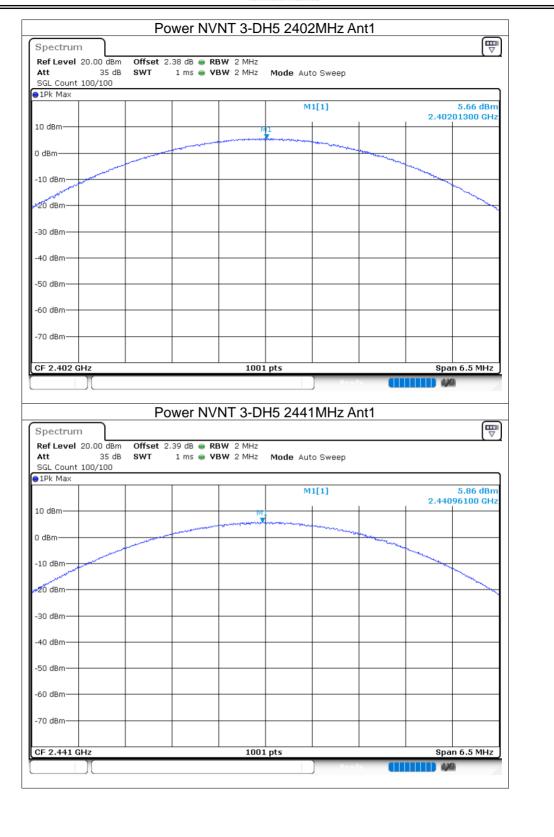

8.2 MAXIMUM CONDUCTED OUTPUT POWER

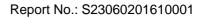
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	2.45	21	Pass
NVNT	1-DH5	2441	Ant1	2.65	21	Pass
NVNT	1-DH5	2480	Ant1	4.02	21	Pass
NVNT	2-DH5	2402	Ant1	4.93	21	Pass
NVNT	2-DH5	2441	Ant1	5.17	21	Pass
NVNT	2-DH5	2480	Ant1	6.33	21	Pass
NVNT	3-DH5	2402	Ant1	5.66	21	Pass
NVNT	3-DH5	2441	Ant1	5.86	21	Pass
NVNT	3-DH5	2480	Ant1	6.99	21	Pass

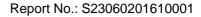

Spectrum						
Att 35 dB		dB 👄 RBW 2 MHz ms 👄 VBW 2 MHz	Mode Auto Sweep			
SGL Count 100/100 1Pk Max						
			M1[1]		2.	45 dBm
10 dBm					2.401770	20 GHz
		M1				
0 dBm						
-10_d8m						
-10 (1811						
-20 dBm						
-30 dBm						
-30 0811						
-40 dBm	+		<u> </u>			
-50 dBm						
-55 ubiii						
-60 dBm	+		+			
-70 dBm						
-70 UBIII						
			1 1			
CF 2.402 GHz		100	1 pts		Span 5.	0 MHz j
Spectrum		er NVNT 1-D	H5 2441MHz A	nt1	Span 5.	.0 MHz)
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2.39	er NVNT 1-D	Rea	nt1	Span 5.	Îħ
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.39	er NVNT 1-D	H5 2441MHz A Mode Auto Sweep	nt1	4,421	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2.39	er NVNT 1-D	H5 2441MHz A	nt1	4,421	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm	Offset 2.39	er NVNT 1-D	H5 2441MHz A Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	Iv (111)	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep		2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	nt1	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.39	er NVNT 1-D	Mode Auto Sweep	Iv (11)	2.	(₩)
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2.39	Per NVNT 1-D	Mode Auto Sweep		2.	65 dBm 190 GHz

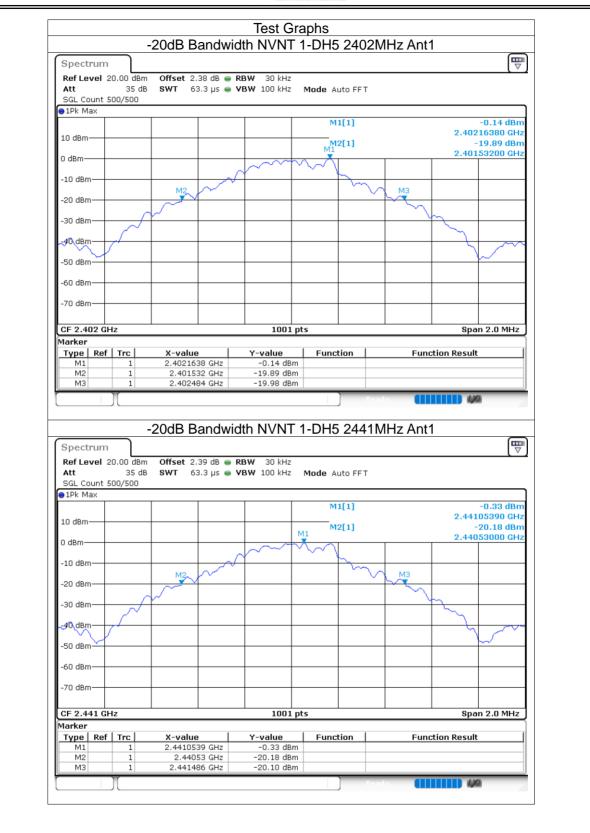


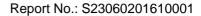

Spectrum Ref Level 20.00 dBm Att 35 dE SGL Count 100/100		2.42 dB 👄 R 1 ms 👄 V	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep			
1Pk Max	1	1			1[1]			4.02 dBm
				IVI	1[1]	I	2.48	015980 GHz
LO dBm				M1				
) dBm								
10 dBm								
20 dBm	1							
30 dBm								
40 dBm								
40 ubin								
50 dBm		+	+				+	<u> </u>]
60 dBm							_	<u> </u>
-70 dBm								
CF 2.48 GHz			1001	l pts			Sna	an 5.0 MHz
	P	ower N∖	/NT 2-D	H5 2402	2MHz A	nt1		
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100	n Offset :	2.38 dB 👄 R	/NT 2-D			nt1		
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut		nt1		4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max .0 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max .0 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPK Max .0 dBm .0 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPK Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 IPK Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 11Pk Max 10 10 dBm 0 10 dBm 0 20 dBm 20 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max .0 dBm .0 dBm .0 dBm 10 dBm .0 dBm 20 dBm .0 dBm 30 dBm .0 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
SGL Count 100/100 1Pk Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max .0 dBm .0 dBm .0 dBm 10 dBm .0 dBm 20 dBm .0 dBm 30 dBm .0 dBm	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dBm Att 35 dE SGL Count 100/100 1Pk Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dem Att 35 de SGL Count 100/100 IPK Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	2.40	4.93 dBm
Ref Level 20.00 dem Att 35 de SGL Count 100/100 IPK Max	n Offset :	2.38 dB 👄 R	BW 2 MHz	Mode Aut	o Sweep	nt1	sp	4.93 dBm 212990 GHz
Ref Level 20.00 dBm SGL Count 100/100 1Pk Max 0 0 dBm 0 dBm 0 10 dBm 0 30 dBm 0 40 dBm 0 50 dBm 0 50 dBm 0 50 dBm 0 50 dBm 0	n Offset :	2.38 dB 👄 R	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		4.93 dBm 212990 GHz

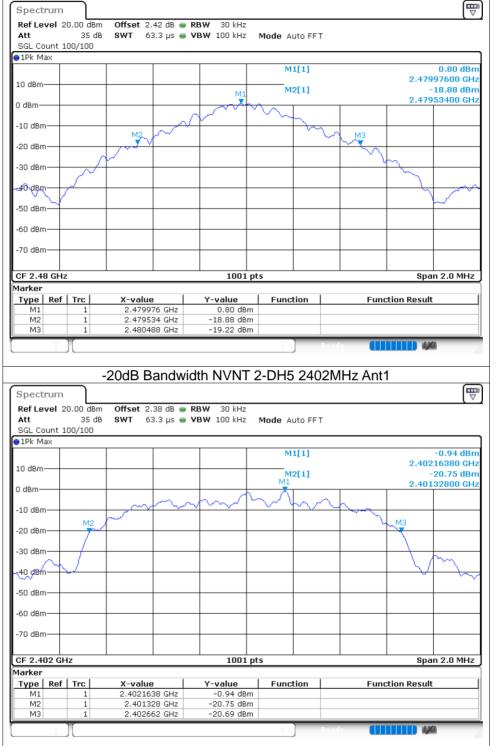


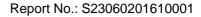


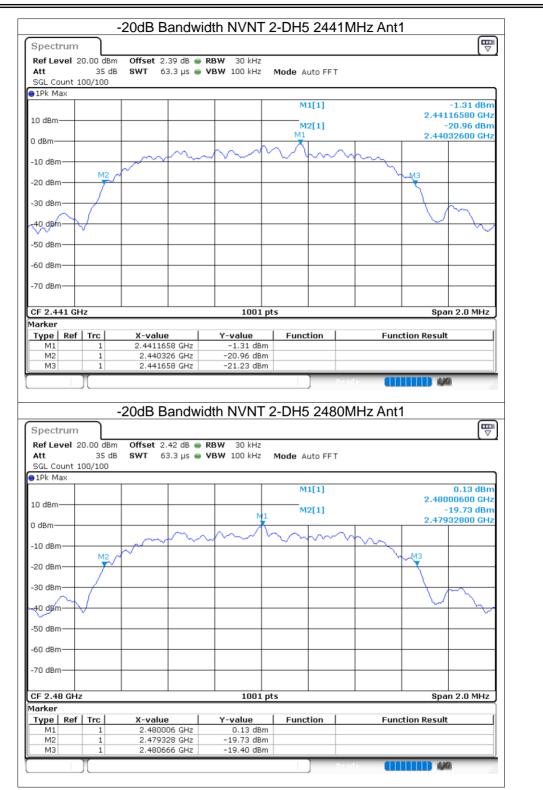

m				Po		
						pectrum
			42 dB 🖷 RBW 2 MHz		20.00 dBm	
		Mode Auto Sweep	1 ms 🖷 VBW 2 MHz	SWT	35 dB	Att .
					100/100	GL Count : 1Pk Max
6.99 dBm		M1[1]				TEK MIGY
005840 GHz	2.480	milil				
		41				0 dBm
	warm when the state of the stat		water and the second			dBm
	man				1. Alexandree	
	and the second s				and the second s	LO dBm
					1	.o dom
						and Date
~						20 dBm
						30 dBm
						40 dBm
						50 dBm —
						50 dBm —
						70 dBm
an 6.5 MHz	Spa	1 pts	100:		lz	F 2.48 GH

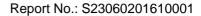

8.3 -20DB BANDWIDTH

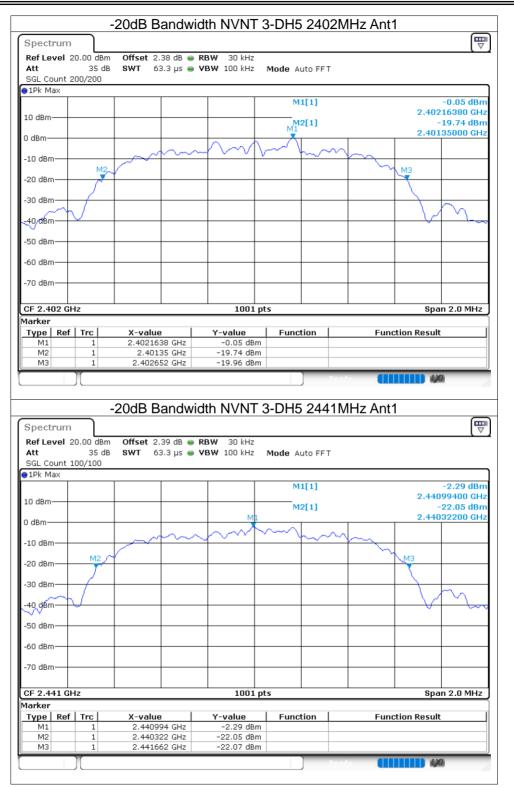

		•			
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.952	Pass
NVNT	1-DH5	2441	Ant1	0.956	Pass
NVNT	1-DH5	2480	Ant1	0.954	Pass
NVNT	2-DH5	2402	Ant1	1.334	Pass
NVNT	2-DH5	2441	Ant1	1.332	Pass
NVNT	2-DH5	2480	Ant1	1.338	Pass
NVNT	3-DH5	2402	Ant1	1.302	Pass
NVNT	3-DH5	2441	Ant1	1.34	Pass
NVNT	3-DH5	2480	Ant1	1.292	Pass





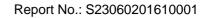






ac-ME

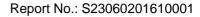
ACCREDITED



AC-MR

ACCREDITED

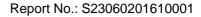
Spectrum							
Ref Level 20.00	dBm Offset 2	2.42 dB 😑	RBW 30 kHz				
Att 3	5 dB SWT 6	63.3 μs 👄	VBW 100 kHz	Mode Auto FFT			
SGL Count 100/1	00						
1Pk Max							
				M1[1]			1.84 dBm
10 dBm						2.480	16380 GHz
				M12[1]			17.72 dBm
) dBm				<u>×</u>		2.479	35400 GHz
		1	h	\sim \sim	\sim		
-10 dBm	-1	1	~ V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\gamma \gamma$		L
	M2					M3	
-20 dBm	7						
1	'						
-30 dBm 🕂 🦯		+					\sim
\sim h/							\sim
-40 dBm		+				+ V	
~							
50 dBm							
-60 dBm							
-70 dBm							
/ C GDIII							
CF 2.48 GHz			1001 pt	s		Spa	n 2.0 MHz
larker							
Type Ref Trc			Y-value	Function	Fun	ction Result	
		538 GHz	1.84 dBm				
M2 :		354 GHz	-17.72 dBm				
M3 :	. 2.4806	546 GHz	-18.16 dBm				

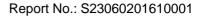


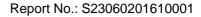
8.4 OCCUPIED CHANNEL BANDWIDTH

	•••••••••			
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.879
NVNT	1-DH5	2441	Ant1	0.877
NVNT	1-DH5	2480	Ant1	0.869
NVNT	2-DH5	2402	Ant1	1.195
NVNT	2-DH5	2441	Ant1	1.201
NVNT	2-DH5	2480	Ant1	1.201
NVNT	3-DH5	2402	Ant1	1.191
NVNT	3-DH5	2441	Ant1	1.197
NVNT	3-DH5	2480	Ant1	1.183

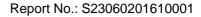

ACCREDITED Certificate #4298.01

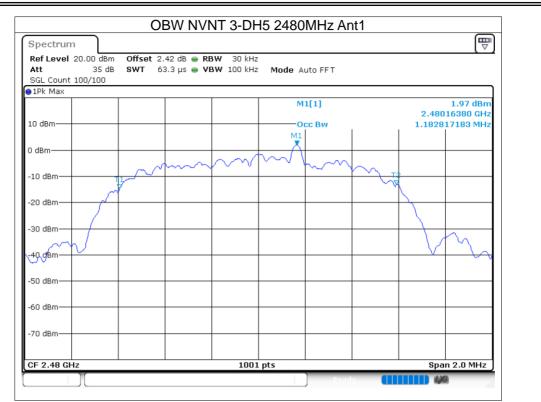

ilac-N

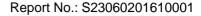










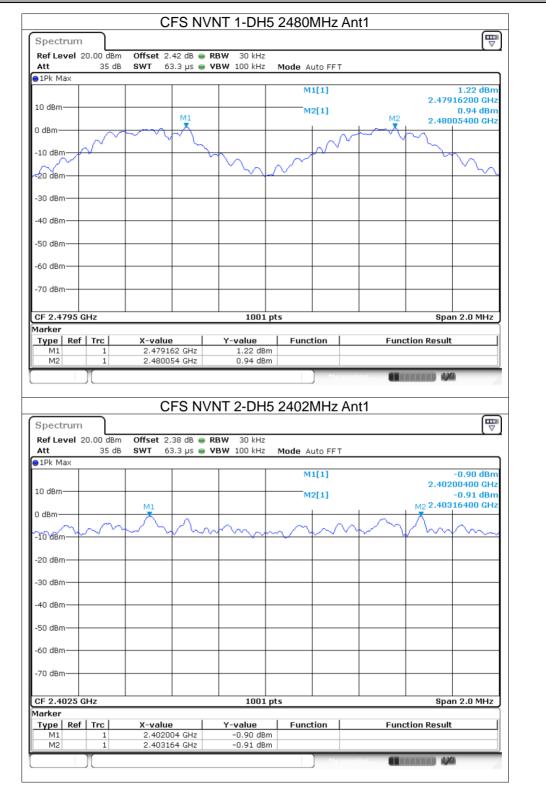


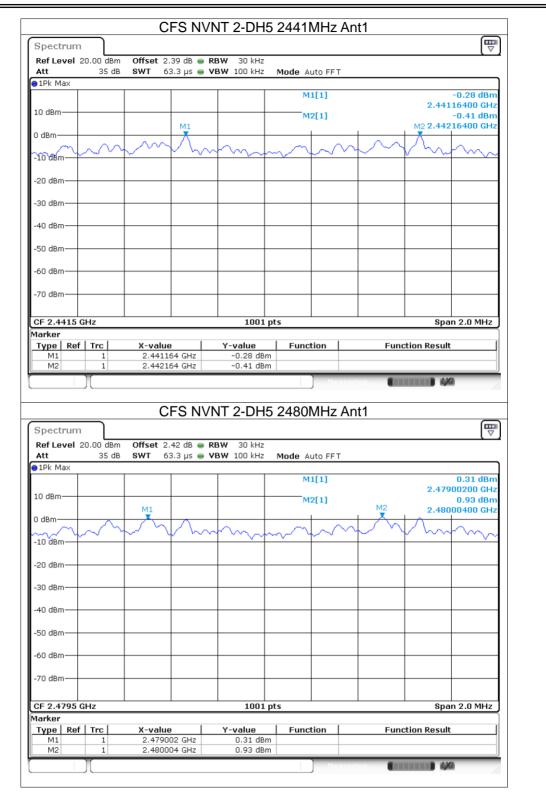
8.5 CARRIER FREQUENCIES SEPARATION

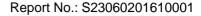
0.								
	Condition	Mode	Antenna	Hopping	Hopping	HFS	Limit	Verdict
				Freq1 (MHz)	Freq2 (MHz)	(MHz)	(MHz)	
	NVNT	1-DH5	Ant1	2402.004	2403.004	1	0.635	Pass
	NVNT	1-DH5	Ant1	2440.974	2441.98	1.006	0.637	Pass
	NVNT	1-DH5	Ant1	2479.162	2480.054	0.892	0.636	Pass
	NVNT	2-DH5	Ant1	2402.004	2403.164	1.16	0.889	Pass
	NVNT	2-DH5	Ant1	2441.164	2442.164	1	0.888	Pass
	NVNT	2-DH5	Ant1	2479.002	2480.004	1.002	0.892	Pass
	NVNT	3-DH5	Ant1	2402.164	2403.164	1	0.868	Pass
	NVNT	3-DH5	Ant1	2441.166	2442.164	0.998	0.893	Pass
	NVNT	3-DH5	Ant1	2479.162	2480.164	1.002	0.861	Pass

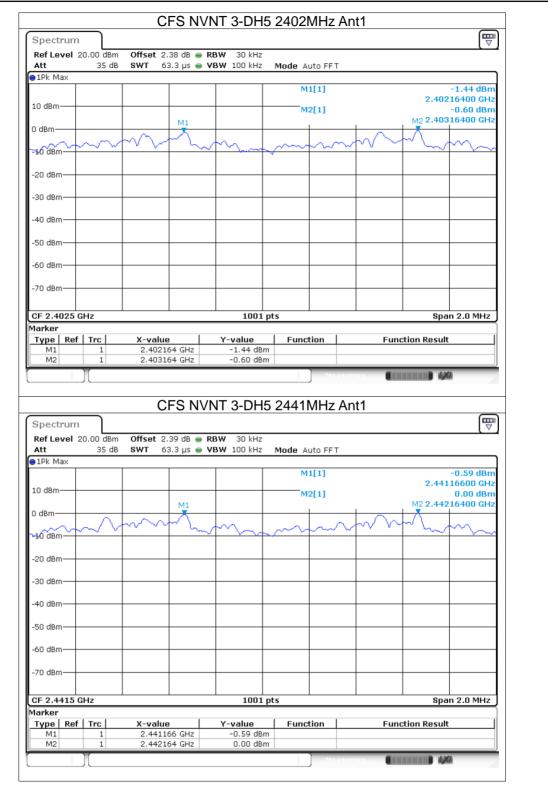
ACCREDITED Certificate #4298.01

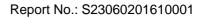
ilac-MR

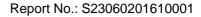


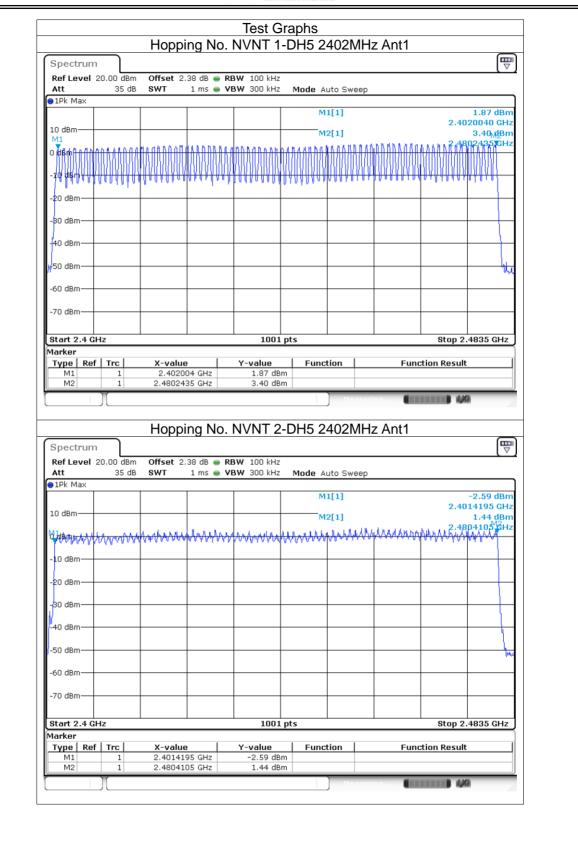









Spectrum Ref Level 2		m Offset 2.42 dB 👄	RBW 30 kHz				
Att	35 d	_		Mode Auto FFT			
1Pk Max							
				M1[1]			1.48 dBm
10 dBm				M2[1]		2.479	16200 GHz 1.71 dBm
		M1		MZ[1]		M2 2.480	1.71 uBm 16400 GHz
0 dBm	<u> </u>				1 0	LA-	
m	~ 1		m	$\sim\sim\sim\sim$	$\gamma\gamma\gamma\gamma\gamma$	$\sim \sim$	m
-10 dBm-+							· •
-20 dBm							
-30 dBm							
So abiii							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
-70 UBIII							
CF 2.4795 (GHZ		1001 pt	s		Spa	n 2.0 MHz
larker Type Ref	Tre	X-value	Y-value	Function	Fund	tion Result	. 1
M1	1	2.479162 GHz	1.48 dBm	rancton	- Tune	Alon Kesun	·
M2	1	2.480164 GHz	1.71 dBm				


8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

pectrum			<u></u>						
ef Level 20.1 tt			_	RBW 100 kHz					
rt Pk Max	35 dB	SWT	1 ms 🛑	VBW 300 kHz	Mode A	uto Sweep)		
РК Мах									0.00.10
					IVI	1[1]		2.40	-0.03 dBm)16700 GHz
dBm					M	2[1]		2.40	0.93 dBm
L								2.48	804940 ⁴ GHz
₩₩₩₩₩₩	AND A	ᡪᡀ᠋ᡎ᠋ᢦᠰᠰᠰᡟ	_┲ ┨ _╋ ╗ _╋ ╋ _╋	WWW.WWW	where the states of the states	MAAAAAA	vynnpaszyn	PPAPAPAP	And
				1.5					
) dBm									
0 dBm									
) dBm									
) dBm									
) dBm									ار (
) dBm									
) dBm									
art 2.4 GHz				1001	pts			Stop 2	.4835 GHz
rker									
ype Ref 1		X-value		Y-value	Func	ion 📃	Fund	tion Result	t
M1 M2	1	2.401	57 GHz	-0.03 dBr 0.93 dBr					

8.7 BAND EDGE

'								
	Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	1-DH5	2402	Ant1	No-Hopping	-52.29	-20	Pass
	NVNT	1-DH5	2480	Ant1	No-Hopping	-56.48	-20	Pass
	NVNT	2-DH5	2402	Ant1	No-Hopping	-51.09	-20	Pass
	NVNT	2-DH5	2480	Ant1	No-Hopping	-55.15	-20	Pass
	NVNT	3-DH5	2402	Ant1	No-Hopping	-54.04	-20	Pass
	NVNT	3-DH5	2480	Ant1	No-Hopping	-59.12	-20	Pass

	J		1-DH5 2402			ig itoi	
Spectrur							
Ref Level Att		Offset 2.38 dB SWT 18.9 µs (Mode Auto FET			
SGL Count							
1Pk Max	1			M1[1]			2.08 dBm
						2.402	15980 GHz
10 dBm			M	11			
0 dBm			<u>تہ</u>				
-10 dBm—				\rightarrow			
-20 dBm—							
20 0011							
-30 dBm—		+					
40 db			\wedge	h			
-40 dBm—				Ĩ			
-50 dBm—							
vm	\sim	$\gamma \gamma \gamma \gamma$			· m	\sim	m
-60 dBm—							
-70 dBm							
CF 2.402			1 1				
E	Band Ec	lge NVNT 1-I	1001 p DH5 2402MI	R	Hopping		
E Spectrur Ref Level	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No-			a ///
E Spectrur Ref Level Att	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No-			n
E Spectrur Ref Level Att SGL Count	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No-			n (The second se
E Spectrur Ref Level Att SGL Count JPk Max	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No-		Emissic	2.36 dBm
E Spectrur Ref Level Att SGL Count JPk Max 10 dBm-	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No-		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level Att SGL Count SGL Count 1Pk Max	Band Ec	Offset 2.38 dB	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 215000 GHz
E Spectrur Ref Level Att SGL Count 10 Max 10 dBm	3and Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level Att SGL Count 10 Max 10 dBm	Band Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level Att SGL Count SGL Count JPK Max 10 dBm	3and Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level Att SGL Count 10 dBm	3and Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level SGL Count JPK Max 10 dBm	3and Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		2.400	2.36 dBm 215000 GHz 53.27/dBm 000000 GHz
E Spectrur Ref Level SGL Count 10 dBm	3and Ec	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Hz Ant1 No- Mode Auto FFT		Emissic	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm
E Spectrur Ref Level 10 dBm	Band Ec 1 20.00 dBm 35 dB 500/500	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT M1[1] M2[1] M2[1]		2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz Ma
E Spectrur Ref Level Att SGL Count 10 dBm	Band Ec 1 20.00 dBm 35 dB 500/500	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT M1[1] M2[1] M2[1]		2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz Ma
E Spectrur Ref Level 31Pk Max 10 dBm	Band Ec n 20.00 dBm 35 dB 500/500 D1 -17.910	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT		2.402 2.400	2.36 dBm 215000 GHz 53.274Bm 000000 GHz
E Spectrur Ref Level SGL Count 10 dBm	Band Ec n 20.00 dBm 35 dB 500/500 D1 -17.910	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT		2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz Ma
E Spectrur Ref Level Att SGL Count JIPK Max 10 dBm	Band Ec 1 20.00 dBm 35 dB 500/500 D1 -17.910 06 GHz ef Trc	Offset 2.38 dB SWT 227.5 µs	DH5 2402MI	Mode Auto FFT		2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3
E Spectrur Ref Level 11 Att SGL Count 11 dBm	Band Ec 20.00 dBm 35 dB 500/500 D1 -17.910 01 -17.910 01 -17.910	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT		2.402 2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3
E Spectrur Ref Level Att SGL Count 10 dBm 0 dBm 0 dBm -0 dBm -0 dBm -20 dBm 	Band Ec 1 20.00 dBm 35 dB 500/500 D1 -17.910 0 -17	Offset 2.38 dB SWT 227.5 μs	DH5 2402MI	Mode Auto FFT		2.402 2.402 2.400	2.36 dBm 2.36 dBm 15000 GHz 53.274Bm 000000 GHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3

Spec		L								
Att			db SWT		 RBW 100 kH; VBW 300 kH; 		uto FFT			
SGL C		.00/100								
						м	1[1]		2.47	3.75 dBm 983220 GHz
10 dBr					M1					
0 dBm					~					
-10 dB	m									
-20 dB	m					$ \rightarrow $				
-30 dB	m									
-40 dB	m				\bigwedge		Λ			
-50 dB	m			\sim				m		
-60 dB	~~~ /	m	- maria						han	
-70 dB	m									
					1	1	1		1	1
05.0					100	1				
CF 2.4	Ba)[Edge N	/NT 1-I	100 DH5 2480	u pts MHz An)) t1 No-H	Hopping		
Spec Ref L Att	Ba trum evel 2	and E	am Offset dB SWT	t 2.42 dB		MHz An		Hopping		KA)
Spec Ref L Att	Ba trum evel 2		am Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT	dv II		on (The second s
Spec Ref L Att SGL C • 1Pk M	Ba trum evel 2 ount 1 1ax	and E	am Offset dB SWT	t 2.42 dB	DH5 2480	MHz An		lopping	Emissi	200
Spec Ref L Att SGL C	Ba trum evel 2 ount 1 1ax	and E	am Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT	lopping	Emissio	on (The second s
Spec Ref L SGL C 1Pk M	Ba trum evel 2 ount 1 flax	and E	am Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT 1[1]	Hopping	Emissio 2.47	0000000000000000000000000000000000000
Spec Ref L Att SGL C 10,dBr 0 dBm	Ba trum avel 2 1ax	20.00 di 35	am Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT 1[1]	Hopping	Emissio 2.47	0000000000000000000000000000000000000
Spec Ref L Att SGL C 10,dBr 0 dBm -10 dB	Ba trum evel 2 ount 1 4ax	20.00 di 35	Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT 1[1]	lopping	Emissio 2.47	0000000000000000000000000000000000000
Spece Ref L Att SGL C 1Pk N 10,dBr 0 dBm -10 dB -20 dB -30 dB -40 dB	Battrum trum evel 2 oount 2 Max	20.00 di 35	Bm Offset dB SWT	t 2.42 dB	DH5 2480	MHz An	Auto FFT 1[1]	lopping	Emissio 2.47	0000000000000000000000000000000000000
Spece Ref L Att SGL C 10,dBr 0 dBm -10 dB -20 cB -30 dB -30 dB -30 dB	Ba trum ount 1 tax	20.00 di 35	Bin Offset dB SWT	t 2.42 dB 227.5 µs	DH5 2480	MHz An	Auto FFT 1[1] 2[1]		2.47 2.48	0000000000000000000000000000000000000
Spece Ref L Att SGL C 1Pk N 10,dBr 0 dBm -10 dB -20 dB -30 dB -40 dB		1 -16.3	3m Offset dB SWT	t 2.42 dB 227.5 µs	DH5 2480I	MHz An	Auto FFT 1[1] 2[1]		2.47 2.48	0000000000000000000000000000000000000
Spece Ref L SGL C 1Pk N 10,dBr 0 dBm -10 dB -20 cB -30 dB -40 dB -40 dB -50 dB	Ba trum avel 2 ount 1 navel 2 navel 2 nave	ות ביישר איז	3m Offset dB SWT	t 2.42 dB 227.5 µs	DH5 2480	MHz An	Auto FFT 1[1] 2[1]		2.47 2.48	0000000000000000000000000000000000000
Spec Ref L Att SGL C ● 1Pk f 10,d8m -10,d8m -20,d8m -20,d8m -20,d8m -20,d8m -20,d8m -40,d8m -20,d8		<u>וות E</u> 10.000 di 35 00/100 1 -16.3	Am Offset dB SWT	t 2.42 dB 227.5 µs	DH5 2480	MHz An	Auto FFT 1[1] 2[1]		Emissio	00 3.26 dBm 995000 GHz -54.23 dBm 350000 GHz - 2.576 GHz
Spec Ref L Att SGL C ● 1Pk f 10,d8m -10,d8m -20,d8m -20,d8m -20,d8m -20,d8m -20,d8m -40,d8m -20,d8	Battrum	<u>וות E</u> 10.000 di 35 00/100 1 -16.3	Bin Offset dB SWT	t 2.42 dB 227.5 µs	DH5 2480	MHz An	Auto FFT 1[1] 2[1]		2.47 2.48	00 3.26 dBm 995000 GHz -54.23 dBm 350000 GHz - 2.576 GHz
Spece Ref L Att SGL C IPk f 10 dBm -10 dB -20 cB -30 dB -40 dB -40 dB -50 dB -70 dB Start Marke Type	Ba trum evel 2 ount 1 tax m m m m m 2.476 Ref	<u>ind E</u> 0.0.00 dd 35 00/100 01 -16.3	Am Offset dB SWT 253 dBm Mtta Mtta Mtta X-ve 2.1	t 2.42 dB 227.5 µs	DH5 2480	MHz An	Auto FFT 1[1] 2[1]		Emissio	00 3.26 dBm 995000 GHz -54.23 dBm 350000 GHz - 2.576 GHz

Spectrum									
Ref Level	35 dB			3W 100 kHz 3W 300 kHz		uto FFT			
SGL Count	100/100								
					М	1[1]			0.92 dBm
10 dBm						L	L	2.40	200000 GHz
10 UDIII				м	1				
0 dBm				- mark	ton the second s				
-10 dBm				/					
				/ /					
-20 dBm				1					
-30 dBm					(h			
50 0011			la 1			\mathbb{N}			
-40 dBm			$(\sim \sim)$			- L-7			
			ł				N		
-50 dBm		m					1 00	<u></u>	~ ~
-60 dBm	www.							- ~~~~	1 m v
-JU UBIII									
-70 dBm									
			1						
CF 2.402 G Ba Spectrum	and Ed	ge NVN	IT 2-DH	1001 5 2402N) Poor t1 No-H	opping		an 8.0 MHz) DN
Ba	and Ed	Offset 2	2.38 dB 👄 R		/Hz Ant		opping		m
Ba Spectrum Ref Level Att SGL Count	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant		opping		m
Ba Spectrum Ref Level Att SGL Count	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT	opping		on (The second s
B: Spectrum Ref Level Att SGL Count • 1Pk Max	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /		opping	Emissio	m
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT	opping	Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
B: Spectrum Ref Level Att SGL Count • 1Pk Max	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]	opping	Emissio 2.40	0000000000000000000000000000000000000
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm	and Ed	Offset 2	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]	opping	Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
Backson Backso	and Ed	Offset 2 SWT 22	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]	opping	Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]	opping	Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
Backson Backso	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 👄 R	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]		Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	/Hz Ant ^z Mode /	Auto FFT 1[1]		Emissio 2.40	-0.40 dBm 185000 GHz -53.80 dBm
Backson Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50, dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	/Hz Ant ^z Mode / 	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz 53.80 dBm 000000 GHz
Ba Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	/Hz Ant ^z Mode / 	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz 53.80 dBm 000000 GHz
Barrier Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	/Hz Ant ^z Mode / 	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz 53.80 dBm 000000 GHz
Ba Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	/Hz Ant ^z Mode / 	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz 53.80 dBm 000000 GHz
Barrier Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm	D1 -19.084	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V	5 2402N	AHz Ant z Mode / M M	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz 53.80 dBm 000000 GHz
Bar Spectrum Ref Level Att SGL Count IN Max IN dBm O dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB ● R 27.5 μs ● V M4	5 2402N	MHz Ant	Auto FFT 1[1] 2[1]		Emissic 2.40 2.40	-0.40 dBm 185000 GHz -53.80 dBm 000000 GHz -0.40 dBm 2.406 GHz
Ba Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 Marker Type Ref	20.00 dBm 35 dB 100/100 D1 -19.084	Offset 2 SWT 22 dBm dBm	2.38 dB	5 2402N	MHz An1	Auto FFT 1[1] 2[1]		2.40 2.40	-0.40 dBm 185000 GHz -53.80 dBm 000000 GHz -0.40 dBm 2.406 GHz
Barren Spectrum Ref Level Att SGL Count •1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm	D1 -19.084	Offset 2 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	2.38 dB	5 2402N BW 100 kH; BW 300 kH; 300 kH;	MHz Ant	Auto FFT 1[1] 2[1]		Emissic 2.40 2.40	-0.40 dBm 185000 GHz -53.80 dBm 000000 GHz -0.40 dBm 2.406 GHz
Barrowski spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dB	20.00 dBm 35 dB 100/100 D1 -19.084	Offset 2 SWT 22 dBm dBm <u>kn/kh.uku/k</u> <u>kn/kh.uku/k</u> <u>kn/kh.uku/k</u> 2.4016 2.1	2.38 dB P27.5 μs V V V V V V V V V V V V V	5 2402N	MHz An1	Auto FFT 1[1] 2[1]		Emissic 2.40 2.40	-0.40 dBm 185000 GHz -53.80 dBm 000000 GHz -0.40 dBm 2.406 GHz

Spect											
Ref Le Att SGL Co		35	dB SW			3W 100 kHz 3W 300 kHz		uto FFT			
⊖1Pk M											
							м	1[1]		2 40	3.16 dBm 015980 GHz
10 dBm	\rightarrow									2.40	013900 GH2
							M1				
0 dBm—						محسم	m hang				
-10 dBn	-+						\rightarrow				
-20 dBn											
-20 UBI	'										
-30 dBn	n						,	2			
					N			lη			
-40 dBn	+י				\smile						
-50 dBn				M				<u> </u>	man	ha	
-50 aBn	'Ψ	\sim									mm
-60 dBn	∩										
-70 dBn	+-י										+
CF 2.4	Ba	I and					/Hz An) Rea t1 No-H	lopping		an 8.0 MHz
Spect Ref Le Att	Ba rum vel 3	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R		/Hz An	Ree 1 No-H Auto FFT	lopping		on
Spect Ref Le Att SGL Co	Ba rum vel 2 punt :	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An		lopping		on
Spect Ref Le Att	Ba rum vel 2 punt :	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode		de O pping	Emissi	200 (₩ 3.67 dBm
Spect Ref Le Att SGL Co	Ba rum vel 2 ount : ax	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	de 🚺	Emissio	000
Spect Ref Le Att SGL CC IPk M	Ba rum vel 2 ount : ax	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	de I	Emissio	200 (₩ 3.67 dBm
Spect Ref Le SGL CC 9 1Pk M 10 dBm-	Ba rum vel 2 ount 2 ax	and 20.00 (35	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	de I	Emissio	3.67 dBm 005000 GHz -52.00 dBm
Spect Ref Le Att SGL Cc IPk M 10 dBm- -10 dBm-	Bá rum vel :	20.00 (35 100/10	IBm Offs dB SW D	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	lopping	Emissio	3.67 dBm 005000 GHz -52.00 dBm
Spect Ref Le SGL CC IPk M 10 dBm 0 dBm-	Bá rum vel :	20.00 (35 100/10	iBm Offs dB SW	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	dy III	Emissio	3.67 dBm 005000 GHz -52.00 dBm
Spect Ref Le Att SGL Cc IPk M 10 dBm- -10 dBm-	Ba rum vel 2 ax	20.00 (35 100/10	IBm Offs dB SW D	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	dv III	Emissio	3.67 dBm 005000 GHz -52.00 dBm
Spect Ref Le Att SGL CC 10rdBm 0 dBm -10 dBm -20 dBm -20 dBm	Ba rum vel : ax	20.00 (35 100/10	IBm Offs dB SW D	set 2.42	2 dB 👄 R	5 2480N	/Hz An ^z Mode	Auto FFT	dy III	Emissio	3.67 dBm 005000 GHz -52.00 dBm
Spect Ref Le SGL CC 9 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Barrum vel : ax	20.00 (35 100/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		2.48 2.48	000000 GHz -52.00 dBm -52.00 dBm
Spect Ref Le Att SGL Co IPk M 10 dBm- -10 dBm -20 dBm -30 dBm -30 dBm	Barrum vel : ount : ount :	20.00 (35 100/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		2.48 2.48	000000 GHz -52.00 dBm -52.00 dBm
Spect Ref Le SGL CC 9 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Barrum vel : ount : ount :	and 20.00 (10) 35 100/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		2.48 2.48	3.67 dBm 005000 GHz -52.00 dBm 350000 GHz
Spect Ref Le Att SGL Co IPk M 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm		and 20.00 (10) 35 100/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		2.48 2.48	3.67 dBm 005000 GHz -52.00 dBm 350000 GHz
Spect Ref Le Att SGL Cc 9 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -70 dBm		200.00 (35 300/10 00/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	/Hz An	Auto FFT 1[1] 2[1]		2.48 2.48	3.67 dBm 005000 GHz -52.00 dBm 350000 GHz
Spect Ref Le Att SGL CC PIPk M 10,dBm -10,dBm -20,dBm -20,dBm -30,dBm -30,dBm -40,dBm -60,dBm -70,dBm -70,dBm		200.00 (35 300/10 00/10	IBm Offs dB SW 0 841 dBm	set 2.42 T 227.5	2 dB	5 2480N	/Hz An	Auto FFT 1[1] 2[1]		2.48 2.48	3.67 dBm 005000 GHz -52.00 dBm 350000 GHz
Spect Ref Le SGL CC IPk M 0 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 2 Marker Type		and 20.00 (35 35 35 35 35 35 35 35 35 35	Bm Offs dB SW 0 841 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	Set 2.42 T 227.5	2 dB	5 2480N	/Hz An	Auto FFT 1[1] 2[1]		2.48 2.48	2.576 GHz
Spect Ref Le Att SGL CC PIPK M 10,qRm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm Start 2 Marker Type M1		and 220.00 (0 35 35 35 100/10 01 -16	Bm Offs dB SW 0 841 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		Emissie 2.48 2.48 2.48	2.576 GHz
Spect Ref Le SGL CC IPk M 0 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 2 Marker Type		and 20.00 (35 35 35 35 35 35 35 35 35 35	Bm Offs dB SW 0 841 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	Set 2.42 T 227.5	2 dB	5 2480N	MHz An	Auto FFT 1[1] 2[1]		Emissie 2.48 2.48 2.48	2.576 GHz