

5.6 Measurement Uncertainty

	Measurement Uncertainty according to IEEE 1528						
Error Description	Uncertainty Value	Probability Distribution	Div.	c _i (1g)	c _i (10g)	Std. Unc. 1g	Std. Unc. 10g
Measurement System							
Probe Calibration	±6.55%	Ν	1	1	1	±6.55%	±6.55%
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Boundary effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%
Post processing	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%
Test Sample Related	•			÷			
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%
Test Sample Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%
Power Scaling	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%
Phantom and Setup Rela	ated						
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%
Liquid conductivity (measured)	±2.5%	Ν	1	0.78	0.71	±2.0%	±1.8%
Liquid permittivity (measured)	±2.5%	Ν	1	0.26	0.26	±0.1%	±0.1%
Temperature uncertainty - Conductivity	±5.2%	R	$\sqrt{3}$	0.78	0.71	±2.3%	±2.1%
Temperature uncertainty - Permittivity	±0.8%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%
Combined Standard Uncertainty						±12.8%	±12.7%
Expanded Standard Uncertainty						±25.6%	±25.4%

Measurement Uncertainty according to EN 62209-1								
Error Description	Uncertainty Value	Probability Distribution	Div.	c _i (1g)	c _i (10g)	Std. Unc. 1g	Std. Unc. 10g	
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	
Boundary effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	
Max. SAR Evaluation	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	
Test Sample Related								
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	
Power Scaling	±0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	
Phantom and Setup Rela	ated							
Phantom Uncertainty	±6.1%	R	$\sqrt{3}$	1	1	±3.5%	±3.5%	
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	
Liquid conductivity (measured)	±2.5%	Ν	1	0.78	0.71	±2.0%	±1.8%	
Liquid permittivity (measured)	±2.5%	N	1	0.26	0.26	±0.6%	±0.7%	
Temperature uncertainty - Conductivity	±5.2%	R	$\sqrt{3}$	0.78	0.71	±2.3%	±2.1%	
Temperature uncertainty - Permittivity	±0.8%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	
Combined Standard Uncertainty							±11.3%	
Expanded Standard Uncertainty							±22.7%	

Measurement Uncertainty according to EN 62209-2							
Error Description	Uncertainty Value	Probability Distribution	Div.	c _i (1g)	c _i (10g)	Std. Unc. 1g	Std. Unc. 10g
Measurement System							
Probe Calibration	±6.55%	Ν	1	1	1	±6.55%	±6.55%
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Boundary effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%
Post processing	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%
Test Sample Related	•						
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%
Test Sample Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%
Power Scaling	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%
Phantom and Setup Rela	ated						
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%
Liquid conductivity (measured)	±2.5%	Ν	1	0.78	0.71	±2.0%	±1.8%
Liquid permittivity (measured)	±2.5%	Ν	1	0.26	0.26	±0.1%	±0.1%
Temperature uncertainty - Conductivity	±5.2%	R	$\sqrt{3}$	0.78	0.71	±2.3%	±2.1%
Temperature uncertainty - Permittivity	±0.8%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%
Combined Standard Uncertainty						±12.8%	±12.7%
Expanded Standard Uncertainty						±25.6%	±25.4%

6 Test Conditions and Results

6.1 Recipes for Tissue Simulating Liquids

Body Tissue Simulating Liquids								
Ingredient	M 450-B weight (%)	M 900-B weight (%)	M 1800-B weight (%)	M 1950-A weight (%)	M 2450-B weight (%)			
Water	46.21	50.75	70.17	69.79	68.64			
Sugar	51.17	48.21	-	-	-			
Cellulose	0.18	-	-	-	-			
Salt	2.34	-	0.39	0.2	-			
Preventol	0.08	0.1	-	-	-			
DGBE	-	-	29.44	30	31.37			
	I	Head Tissue Sim	ulating Liquids					
Ingredient	HSL 450-A weight (%)	HSL 900-B weight (%)	HSL 1800-F weight (%)	HSL 1950-B weight (%)	HSL 2450-B weight (%)			
Water	38.91	40.29	55.24	55.41	55			
Sugar	56.93	57.9	-	-	-			
Cellulose	0.25	0.24	-	-	-			
Salt	3.79	1.38	0.31	0.08	-			
Preventol	0.12	0.18	-	-	-			
DGBE	-	-	44.45	44.51	45			

Water: deionized water, resistivity \ge 16 M Ω

Sugar: refined white sugar

Salt: pure NaCl

Cellulose: Hydroxyethyl-cellulose

Preservative: Preventol D-7

DGBE: Diethylenglycol-monobuthyl ether

The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., IEEE 1528-2003, IEC 62209-1)

The HBBL3-6GHz and MBBL 3-6 GHz liquids are direct from Speag.

6.2 Test Conditions and Results – Tissue Validation

Tissue Validation acc. to 865664 D01 SAR Measurement 100 MHz to 6 GHz / ISED RSS-102							
Test ac	cording to		Reference	Method			
measurem	ent reference	865664	D01 SAR Measure	ment 100 MHz t	o 6 GHz		
		Target V	alues				
	Head	b	Bod	у	Permitted		
Frequency [MHz]	Relative dielectric constant ε _r	Conductivity σ [S/m]	Relative dielectric constant ε _r	Conductivity σ [S/m]	tolerance [%]		
150	52.3	0.76	61.9	0.80	$\leq \pm 5$		
300	45.3	0.87	58.2	0.92	$\leq \pm 5$		
450	43.5	0.87	56.7	0.94	$\leq \pm 5$		
835	41.5	0.90	55.2	0.97	$\leq \pm 5$		
900	41.5	0.97	55.0	1.05	$\leq \pm 5$		
915	41.5	0.98	55.0	1.06	$\leq \pm 5$		
1450	40.5	1.20	54.0	1.30	$\leq \pm 5$		
1610	40.3	1.29	53.8	1.40	$\leq \pm 5$		
1800 – 2000	40.0	1.40	53.3	1.52	$\leq \pm 5$		
2450	39.2	1.80	52.7	1.95	$\leq \pm 5$		
3000	38.5	2.40	52.0	2.73	$\leq \pm 5$		
5200	36.0	4.66	49.0	5.30	$\leq \pm 5$		
5500	35.6	4.96	48.6	5.65	$\leq \pm 5$		
5800	35.3	5.27	48.2	6.00	$\leq \pm 5$		

Test results									
Frequency [MHz]	Tissue	Measured ε _r	Target ε _r	Delta ε _r [%]	Measured σ [S/m]	Target σ [S/m]	Delta σ [%]		
2450	Body	50.455	52.7	-4.26	2.016	1.95	3.38		
2402	Body	50.650	52.7	-3.89	1.939	1.95	-0.56		
2441	Body	50.563	52.7	-4.06	1.999	1.95	2.51		
2480	Body	50.360	52.7	-4.44	2.040	1.95	4.62		
Comments: * M	leasured ra	adio frequencies							

6.3 Test Conditions and Results – System Validation

6.4 Test Conditions and Results – Standalone SAR Measurement

Standalone SAR acc. to 865664 D01 SAR Measurement 100 MHz to 6 GHz / ISED RSS-102								
Toet	according to		Reference Method					
measure	ement referer	nce	86	5664 D01	SAR N ISED	leasurement 1 RSS-102 Issu	00 MHz to 6 0 ie 5	GHz
Room	n temperature	;				22.0 – 22.6 °C		
Lie	quid depth					15.5 cm		
Er	vironment				ļ	general public		
			<u>.</u>	Limits				
	Region		Occupational SAR values [W/kg]			General public SAR values [W/kg]		
Whole b	ody average S	AR		0.4			0.08	
Localized S SAR ave	AR (Head and raging mass =	trunk) 1g		8			1.6	
Localiz SAR aver	ed SAR (Limbs raging mass =	s) 10g		20			4	
			T	est result	S			
Mode	Position	Channel	Frequency [MHz]	Drift [dB]	Scaling Factor*	Measured SAR [W/kg (1g)]	Reported SAR [W/kg (1g)] **	SAR Limit [W/kg (1g)]
BT-TX	FRONT 0mm	39	2441	0.16	1.58	0.038	0.06	1.6
Comments:*tune	up limit power (m	nW) / measu	ired conducte	d power (mV	V) = sca	ing factor		

** attached measurement plot: highest SAR value for the communication system

According to KDB 865664 D02 v01r02 only the SAR plots for the highest SAR results for each EUT configuration and operating condition are given in the "SAR Results" part of the report.

6.5 Test Conditions and Results – Multi-transmitter SAR Result

No multi-transmitter evaluation

ANNEX A Calibration Documents

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Eurofins**

Certificate No: DAE3-522_Sep16

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	DAE3 - SD 000 D	03 AA - SN: 522	· 전문 · · · · · · · · · · · · · · · · · ·
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	dure for the data acquisition electror	nics (DAE)
Calibration date:	September 28, 20	16	e na statu do d
This calibration certificate documer The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	nts the traceability to natio ainties with confidence pro ed in the closed laboratory critical for calibration)	nal standards, which realize the physical units of obability are given on the following pages and are rfacility: environment temperature (22 ± 3)°C and	measurements (SI). e part of the certificate. I humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	09-Sep-16 (No:19065)	Sep-17
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	05-Jan-16 (in house check)	In house check: Jan-17
Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17
Calibrated by:	Name Eric Hainfeld	Function Technician	Signature
			e e e
Approved by:	Fin Bomholt	Deputy Technical Manager	: V. B/UUM
			Issued: September 28, 2016
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
 - Service suisse d'étalonnage
- C Service suisse d etalonnage Servizio svizzero di taratura Swice Calibration Service
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	parameters: Aut	o Zero Time: 3	sec: Measuring	time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.445 ± 0.02% (k=2)	404.110 ± 0.02% (k=2)	404.959 ± 0.02% (k=2)
Low Range	3.95998 ± 1.50% (k=2)	3.93992 ± 1.50% (k=2)	3.99728 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	56.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199998.65	1.51	0.00
Channel X	+ Input	20003.67	1.49	0.01
Channel X	- Input	-19998.57	1.81	-0.01
Channel Y	+ Input	199997.59	-0.07	-0.00
Channel Y	+ Input	20000.66	-1.46	-0.01
Channel Y	- Input	-19999.61	0.87	-0.00
Channel Z	+ Input	199997.76	0.55	0.00
Channel Z	+ Input	19999.68	-2.27	-0.01
Channel Z	- Input	-20000.13	0.36	-0.00

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2002.77	0.92	0.05
Channel X	+ Input	202.84	0.66	0.33
Channel X	- Input	-196.58	1.09	-0.55
Channel Y	+ Input	2002.44	0.71	0.04
Channel Y	+ Input	202.20	0.08	0.04
Channel Y	- Input	-198.06	-0.28	0.14
Channel Z	+ Input	2002.08	0.42	0.02
Channel Z	+ Input	200.37	-1.61	-0.80
Channel Z	- Input	-199.14	-1.33	0.67

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.54	-5.21
	- 200	6.25	4.83
Channel Y	200	-0.35	-0.64
	- 200	-0.21	-0.07
Channel Z	200	15.29	15.53
	- 200	-18.32	-18.03

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	0.24	-4.36
Channel Y	200	7.55	1 .	0.52
Channel Z	200	9.68	4.92	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15770	16653
Channel Y	15724	15421
Channel Z	16050	15178

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.44	-0.31	2.82	0.59
Channel Y	-0.40	-1.67	0.99	0.60
Channel Z	0.67	-1.25	2.04	0.58

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Schmid & Partner Engineering AG				s p	<u>e</u>	<u>a g</u>
Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com						CUSTOME COPY
DAE REPAIR	REPORT – SPEA	AG Pr	oduction	n Cent	er	
PRODUCT	DAE4 - Data Acc	quisitio	on Electr	ronics		
SERIAL Nr.:	522			IN DAT	'E: 16	-Sep-2016
CUSTOMER:	Eurofins		1. 18 y	and an end	an for	process the second
DAE REPAIR						
MATERIAL	WORK DESCRIPTIC	ON	19 ⁴ 1			WORKING TIME (
Emergency stop:	fixed O exchang	Jed O	6 new m	agnets	0	hours
DAE Connector:	fixed O exchang	Jed O			0	hours
DAE Battery Cover:	fixed O exchang	ed O			0	hours
AD Converter Print:	fixed O exchang	ed X			0	1.00 hours
Battery Connector:	fixed O exchang	ed O			0	hours
Battery Con. PCB:	fixed O exchang	ed O			0	hours
DAE 3 - 4 upgrade	fixed O installed	0			0	hours
Input PCB:	fixed O exchang	ed O			0	hours
DAE Bottom Cover	fixed O exchang	ed O				hours
Analysis:		200.40				1.50 hours
Final Assembly:						hours
Total hours						2.50 hours
COMMENTS:	This DAE was return input range of the Y the channel wasn't af printed circuit board H calibrated.	ed for ca channel fected. 1 nas beer	libration. In (4.104) is To re-estab replaced.	t failed th to high (t blish full f After this	e receiving olerance 3.8 unctionality s repair the	inspection test. The 9 - 4.1). The linearity of of this DAE the ADC DAE will get newly
CONDUCTED BY:	A. Gr		APPRO	VED BY:		
DATE:	26-Sep-2016		DATE:	1	26-Sep-20	016
REPAIR COST: MATERIA BEPAIR	L COST:fr		SD		Euro	0
FOTAL COST:	fre	ee 🔽	QUOTA	TION #:		
APPROVED BY:	26-Sep-2016	_				

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Eurofins** Certificate No: EX3-3893_Sep16

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3893
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	September 23, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power motor NPP	SNI: 104779		
	SIN. 104776	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Milles
Approved by:	Katja Pokovic	Technical Manager	folks
			Issued: September 28, 2016
This calibration certificate	e shall not be reproduced except in full	without written approval of the laboratory	<i>.</i>

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D Polarization ϕ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).