	FCC TEST REPORT
	For
SHENZ	ZHEN ECARE ELECTRONICS CO., LTD
Wireless Inde	por/Outdoor Humidity and Temperature Monitor
	Model No.: TP-65S
	Additional Model: TX-3
Prepared for Address	 SHENZHEN ECARE ELECTRONICS CO., LTD 5-6/F., Block B, Huali Industrial Building, District 28, Bao An, Shenzhen, Guang Dong, China
Prepared by Address Tel Fax Web Mail	 Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report	 May 04, 2018 1 Prototype May 04, 2018~May 22, 2018 May 23, 2018

FCC TEST REPORT FCC CFR 47 PART 15 C(15.231): 2017

FUL	CFR 47 PART 15 C(15.231): 2017
Report Reference No	: LCS180427075AEA
Date of Issue	: May 23, 2018
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.
	 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Full application of Harmonised standards ■
5	Partial application of Harmonised standards Other standard testing method
Applicant's Name	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	 5-6/F., Block B, Huali Industrial Building, District 28, Bao An, Shenzhen, Guang Dong, China
Test Specification	
Standard	FCC CFR 47 PART 15 Subpart C: 2017, ANSI C63.10-2013
Test Report Form No	: LCSEMC-1.0
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	: Dated 2011-03
This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Cor	ing Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source mpliance Testing Laboratory Ltd. takes no responsibility for and wil esulting from the reader's interpretation of the reproduced material
Test Item Description.	: Wireless Indoor/Outdoor Humidity and Temperature Monito
Trade Mark	: N/A
Model/ Type reference	: TP-65S
Ratings	: DC3.6V by Rechargeable Li-ion Battery Recharge Voltage: DC 5V
Result	: Positive
Compiled by:	Supervised by: Approved by:
Aking Jin	Dick Sn Gains Fiang

Aking Jin/ File administrators

Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 27

FCC -- TEST REPORT

Test Report No. : LCS180427075AEA

May 23, 2018

Date of issue

EUT	: Wireless Indoor/Outdoor Humidity and Temperature Monitor
Type / Model	: TP-65S
Applicant	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	5-6/F., Block B, Huali Industrial Building, District 28, Bao An, Shenzhen, Guang Dong, China
Telephone	:/
Fax	:/
Manufacturer	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	: 5-6/F., Block B, Huali Industrial Building, District 28, Bao An,
	Shenzhen, Guang Dong, China
Telephone	: /
Fax	:/
Factory	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	: 5-6/F., Block B, Huali Industrial Building, District 28, Bao An,
	Shenzhen, Guang Dong, China
Telephone	:/
Fax	: /

Test Result	Positive
The test report merch conversion and to the test con	anla

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	May 23, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 27 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AATP-TP-65S Report No.: LCS180427075AEA

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. OBJECTIVE	6
1.4. HOST SYSTEM CONFIGURATION LIST AND DETAILS	6
1.5. External I/O Port	6
1.6. DESCRIPTION OF TEST FACILITY	7
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT Exercise	
2.3. GENERAL TEST PROCEDURES	8
2.5. TEST MODE	
3. SYSTEM TEST CONFIGURATION	9
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.3. Special Accessories	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	10
5. TEST ITEMS AND RESULTS	11
5.1. TRANSMITTER DEACTIVATION TIME	11
5.2. TRANSMITTER FIELD STRENGTH OF EMISSIONS	12
5.3. 20DB BANDWIDTH EMISSIONS	
5.5. POWER LINE CONDUCTED EMISSIONS	
5.6. ANTENNA REQUIREMENT	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS	27
8. EXTERIOR PHOTOGRAPHS OF THE EUT	27
9. INTERIOR PHOTOGRAPHS OF THE EUT	27

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT Model Number	: Wireless Indoor/Outdoor Humidity and Temperature Monitor : TP-65S, TX-3
Model Declaration	: PCB board, structure and internal of these model(s) are the same, so no additional models were tested
Test Model	: TP-65S
Hardware version	: TX-3V2
Software version	: XCT1802-750D
Power Supply	: DC3.6V by Rechargeable Li-ion Battery
	Recharge Voltage: DC 5V
433MHz Operation frequency	: 433.92MHz
Modulation Type	: ASK
Channel Number	:1
Antenna Type	: Internal Antenna
Antenna Gain	: 0dBi (Max)

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiator. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured. Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

1.4. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
HUAXU ELECTRONICS FACTORY	Adapter for EUT	XS-0500300HU		VOC

1.5. External I/O Port

I/O Port Description	Quantity	Cable
Power Port	1	0.5, Unshielded

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 27

FCC ID: 2AATP-TP-65S

1.6. Description of Test Facility

Site Description	
EMC Lab.	: FCC Registration Number. is 254912.
	Industry Canada Registration Number. is 9642A-1.
	ESMD Registration Number. is ARCB0108.
	UL Registration Number. is 100571-492.
	TUV SUD Registration Number. is SCN1081.
	TUV RH Registration Number. is UA 50296516-001.
	NVLAP Registration Code is 600167-0.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
Radiation Uncertainty		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GH	±4.20dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	•	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane and for below 1GHz and 1.5m for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.10

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of X axis was reported.

The EUT transmits signal as soon as it is powered on, and recorded the result in this report.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Rules	Description of test	Result
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band	Compliant
§15.209	General Requirement	Compliant
§15.231 (e)	Radiated Emissions	Compliant
§15.231 (c)	20dB Bandwidth Testing	Compliant
§15. 231(e)	Deactivation Testing	Compliant
§15.231	Duty cycle Factor	Compliant
§15.207	Conducted Emissions	Compliant

Note: All buttons have been taken into consideration and only worst case reported.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 27

5. TEST ITEMS AND RESULTS

5.1. Transmitter Deactivation Time

FCC 15.231 (e)

5.1.1. Limit

Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

5.1.3. Test Results

Temperature	24.1°C	Humidity	52.3%
Test Engineer	Ryan Hu	Configurations	TX Mode

Frequency (MHz)	Duration of each Transmission Time (s)	Limit: not more than 1 seconds (1)	Conclusion
433.92	0.72	1	PASS

Frequency (MHz)	The silent period (s)	Limit: At least 30 times the duration of the transmission but in no case less than 10s	Conclusion
433.92	32.52	>10s	PASS

			Test	Plot		
🖡 Keysight Sp	ectrum Analyzer - Swept	SA				
	RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	08:57:24 PM May 22, 2018	Marker
/larker 3	Δ 32.5200 s		Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Marker
		PNO: Wide ← IFGain:Low	Atten: 20 dB		DET P NNNN	Select Marker
					ΔMkr3 32.52 s	
	Ref Offset 0.5 c				-70.68 dB	3
0 dB/div	Ref 10.00 dE				-70.00 UB	
0.00	NA N	1Δ2				
						Norm
10.0						
20.0						
30.0						
						Del
40.0						Dei
50.0						
60.0						
				3∆4		
70.0 Handler er	and the second second	herefly was hard had a combined		www.wewnelsteiningerenter werestere	neveret theme ther mental with	Fixed
80.0						
	33.920000 MHz				Span 0 Hz	
tes BW 1	100 kHz	#VB	N 100 kHz	Sweep	60.00 s (1001 pts)	0
IKR MODE TI	RC SCL	х	Y FI	JNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 <u>A2</u>	t (Δ)	720.0 ms (Δ				
2 F	t (Δ)	11.10 s 32.52 s (Δ	-1.49 dBm			
3 Δ4 4 F		<u>32.52 S (A</u> 11.10 S) -70.68 dB -1.49 dBm			Properties
5					E	
6						
8						Мо
9						
						1 of
10						
10					*	

FCC ID: 2AATP-TP-65S

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

FCC §15.231 (e) /15.209

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (microvolt/meter)	Field Strength of spurious emissions (microvolt/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500	50 to 150
174-260	1,500	150
260-470	1,500 to 5,000	150 to 500
Above 470	5,000	500

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, μ V/m at 3 meters = 16.66667(F) - 2833.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	608-614	4.5-5.15
¹ 0.495-0.505	16.69475-16.68525	960-1240	5.35-5.46
2.1735-2.1905	16.80425-16.80475	1300-1427	7.25-7.75
4.125-4.128	25.525.67	1435-1626.5	8.025-8.5
4.17725-4.17775	37.5-38.25	1645.5-1646.5	9.0-9.2
4.20725-4.20775	73-74.6	1660-1710	9.3-9.5
6.215-6.218	74.8-75.2	1718.8-1722.2	10.6-12.7
6.26775-6.26825	108-121.94 2200-2300		13.25-13.4
6.31175-6.31225	123-138	2310-2390	14.47-14.5
8.291-8.294	149.9-150.05	2483.5-2500	15.35-16.2
8.362-8.366	156.52475-156.52525	2655-2900	17.7-21.4
8.37625-8.38675	156.7-156.9	3260-3267	22.01-23.12
8.41425-8.41475	162.0125167.17	3332-3339	23.6-24.0
12.29-12.293	167.72-173.2	3345.8-3358	31.2-31.8
12.51975-12.52025	240-285	3600-4400	36.43-36.5
12.57675-12.57725	322-335.4		.(2)
13.36-13.41	399.9-410		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F (KHz)	300
0.490-1.705	24000 (KHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 27

FCC ID: 2AATP-TP-65S

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 1.5 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

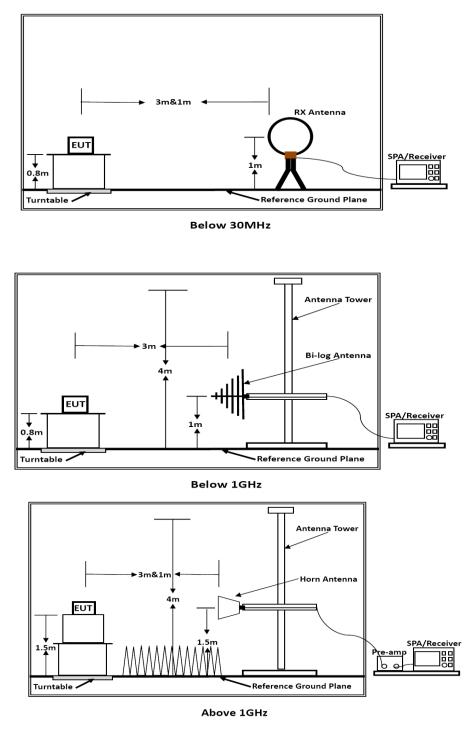
--- The antenna is polarized vertical and horizontal.

--- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.


--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

FCC ID: 2AATP-TP-65S

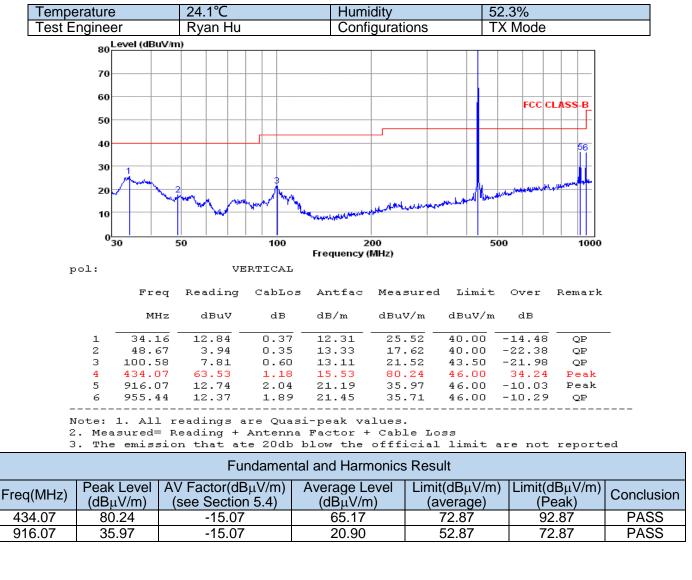
5.2.4 Block Diagram of Test Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 27 5.2.5. EUT Operation during Test

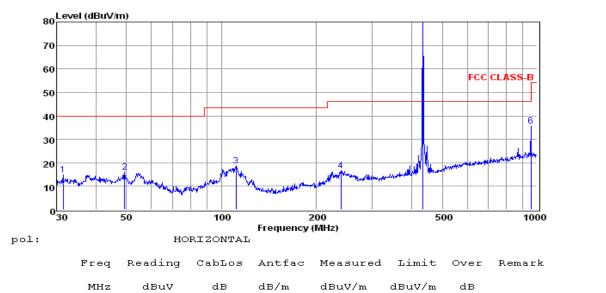
The EUT was programmed to be in continuously transmitting mode.

5.2.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	24.1°C	Humidity	/ ÷	52.3%
Test Engineer	Ryan Hu	Ryan Hu Configura		TX Mode
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2.7. Results of Radiated Emissions (30MHz~1GHz)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 27

1	31.51	2.14	0.37	12.32	14.83	40.00	-25.17	QP
2	49.36	2.28	0.54	13.29	16.11	40.00	-23.89	QP
3	110.96	6.04	0.61	12.08	18.73	43.50	-24.77	QP
4	239.15	3.61	0.96	12.05	16.62	46.00	-29.38	QP
5	434.07	68.03	1.18	15.53	84.74	46.00	38.74	Peak
6	955.44	12.37	1.89	21.45	35.71	46.00	-10.29	Peak

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

	Fundamental and Harmonics Result								
Freq(MHz)	Freq(MHz)Peak Level (dBμV/m)AV Factor(dBμV/m) (see Section 5.4)Average Level (dBμV/m)Limit(dBμV/m) (average)Limit(dBμV/m) (Peak)Conclusion								
434.07	434.07 84.74 -15.07 69.67 72.87 92.87 PASS								
955.44	35.71	-15.07	20.64	52.87	72.87	PASS			

FCC ID: 2AATP-TP-65S

5.2.8. Results of Radiated Emissions (Above 1GHz)

Temperature	24.1°C		Humidity		52.3%	
Test Engineer	Ryan Hu		Configurations		TX Mode	
Peak Value:						
Frequency (MHz)	Level (dBuV/m)	Limit L	.ine (dBuV/m)	Ov	er limit (dB)	Polarization
1306.36	39.65		74.00		-34.35	Horizontal
2169.88	47.07		74.00		-26.93	Horizontal
1306.36	41.88		74.00		-32.12	Vertical
2169.88	48.17		74.00		-25.83	Vertical

Average Value:									
Frequency (MHz)	Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization			
1307.02	45.82	-15.07	30.75	54.00	-23.25	Horizontal			
2170.89	48.25	-15.07	33.18	54.00	-20.82	Horizontal			
1307.02	44.60	-15.07	29.53	54.00	-24.47	Vertical			
2170.89	43.54	-15.07	28.47	54.00	-25.53	Vertical			

1. Measuring frequencies from 9k~10th harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.

- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.3. 20dB Bandwidth Emissions

FCC 15.231 (c)

5.3.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

5.3.3. Test Data

Temperature	24.1℃	Humidity	52.3%
Test Engineer	Ryan Hu	Configurations	TX Mode

Center Frequency of	Maximum allowed	Measured 20dB	Result
operation	bandwidth	bandwidth	
MHz	kHz	kHz	
433.92	1084.80	47.80	PASS
Maximum allowed bandwidth:	○ 0.25% of the centre operating frequency ○ 0.5% of the centre operating frequency		
RBW:	X10kHz ☐100kHz	other kHz	
VBW:	X30kHz ☐300kHz	other kHz	

📕 Keysight Spectrum Analyzer - Occupied BW				_	
X RF 50 Ω AC Span 250.00 kHz	Center	SENSE:INT Freq: 433.940000 MHz	Ra	1:50:39 PM May 22, 2018 dio Std: None	Span
		ree Run Avg Hol : 20 dB		dio Device: BTS	Span
10 dB/div Ref 20.00 dBm					250.00 kHz
Log					
0.00					
-10.0		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $			
-20.0					
-30.0					Full Span
-40.0					
-50.0					
-70.0					
Center 433.9 MHz				Span 250 kHz	
#Res BW 10 kHz	#1	VBW 30 kHz		Sweep 2.4 ms	Last Span
Occupied Bandwidt	h	Total Power	-3.31 dl	Bm	
-	50.16 kHz				
Transmit Freq Error	-12.303 kHz	OBW Power	99.00) %	
x dB Bandwidth	47.80 kHz	x dB	-20.00	dB	
MSG			STATUS		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 27

5.4. Duty cycle

5.4.1. Limit

No dedicated limit specified in the Rules.

5.4.2. Test Procedure

- 5.4.2.1. Place the EUT on the table and set it in transmitting mode.
- 5.4.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.4.2.3. Set centre frequency of spectrum analyzer=operating frequency.
- 5.4.2.4. Set the spectrum analyzer as RBW=100 kHz, VBW=300 KHz, Span=0Hz, Adjust Sweep=100ms.
- 5.4.2.5. Repeat above procedures until all frequency measured was complete.

5.4.3. Test Data

Ton = 0.49*36 ms= 17.64 (ms)

Tp = 100 (ms)

The duty cycle=17.64/100=17.64%

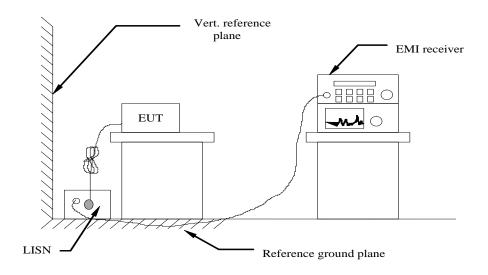
Average Correction Factory = 20log (Ton/Tp) =20log (17.64/100) = -15.07dB

Note: A sample is RBW (100 KHz) > 2/PW (0.48), so PDCF is not required.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AATP-TP-65S

Report No.: LCS180427075AEA

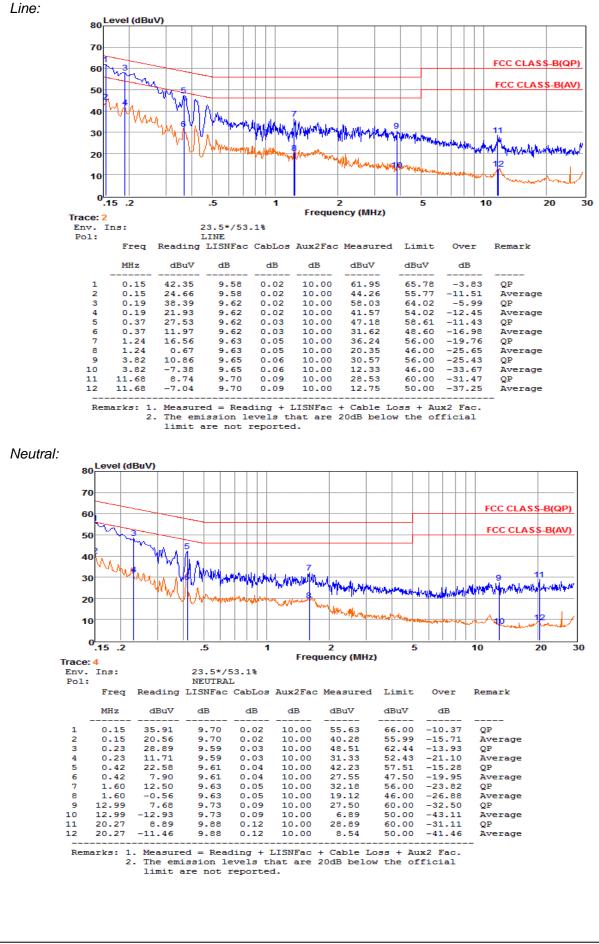
Т	est plot o	f Duty cycle	
Keysight Spectrum Analyzer - Swept SA μ RF 50 Ω AC SENSE:INT ALIGN AUTO 02:41:26 PM May 22, 2018	- 6 💌	Bit Keysight Spectrum Analyzer - Swept SA CM RF 50 Q AC SENSE:INT ALIGN AUTO 02:54:46 PM May 22, 2018	- 6 💌
Marker 1 ∆ 116.000 ms Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 PNO: Wide → Trig: Free Run Trig: Free Run	Marker	Marker 1 ∆ 490.000 µs PN0: Wide → Trig: Free Run PN0: Wide → Trig: Free Run	Marker
AMkr1 116 0 mg	Select Marker		Select Marker
Ref 10.00 dBm -0.03 dB 10 dB/div Ref 10.00 dBm -0.03 dB		Ref Offset 0.5 dB Дикт 1 490.0 μS 10 dB/div Ref 10.00 dBm -26.11 dB	
	Normal		Normal
		20.0	
30.0			
-40.0	Delta	40.0	Delta
40.0		40.0	
-70.0	Fixed⊳	-70.0	Fixed⊳
80.0		200 participation and a startight the startight to be a starting to be a starting to be a starting and the s	
Center 433.940000 MHz Span 0 Hz Res BW 100 kHz #VBW 100 kHz Sweep 400.0 ms (1001 pts)	Off	Center 433.940000 MHz Span 0 Hz Res BW 100 kHz #VBW 100 kHz Sweep 10.00 ms (1001 pts)	Off
R MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE Δ2 t (Δ) 116.0 ms (Δ) -0.03 dB		R MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE * Δ2 t (Δ) 490.0 μg (Δ) -26.11 dB - <	
1 Δ2 t (Δ) 116.0 ms (Δ) -0.03 dB 2 F t 194.8 ms -7.04 dBm	Properties►	1 Δ2 t (Δ) 490.0 μs (Δ) -26.11 dB 2 F t 4.470 ms -7.36 dBm	Properties►
	More		More
	1 of 2		1 of 2
Mag Ug status		MSG USATUS	
Fig.1		Fig.2	
🗱 Keysight Spectrum Analyzer - Swept SA		5	
Ø №	Marker		
AMI#2.405.0 mg	Select Marker		
Ref Offset 0.5 dB ΔΝΙΚΓ3 125.0 ms 10 dB/div Ref 10.00 dBm 0.45 dB Log	3		
ι.og 			
-10.0 - 10.0 + 0.0 + 1 + 1 + 0.1 + 1 + 0.0 + 1 + 1 + 0.0 + 	Normal		
300			
-40.0	Delta		
-50.0			
000 	Fixed⊳		
80.0 A. K. Han rings (Martin Star Andrew Ann Drashdi Marthalan Manual startan harden fa Martin Startan State Association A			
Center 433,940000 MHz Span 0 Hz Res BW 100 kHz #VBW 100 kHz Sweep 200.0 ms (1001 pts)	Off		
R MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE			
Δ Δ2 t Δ164 mm 68.69 dB 4 2 F t 40.00 mm -75.12 dBm - 3 A4 t (Δ) -75.12 dBm - - 3 A4 t (Δ) -75.12 dBm - - - 3 C4 t (Δ) 0.75.12 dBm - - -			
3 Δ4 t (Δ) 125.0 ms (Δ) 0.45 dB F t 40.00 ms -76.12 dBm	Properties►		
	More 1 of 2		
Fig.3			


5.5. Power line conducted emissions

5.5.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		


5.5.2 Block Diagram of Test Setup

5.5.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of power adapter @ AC 120V/60Hz (worst case)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 27

5.6. Antenna Requirement

FCC 15.203

5.6.1. Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This EUT uses an integral antenna which is permanently attached.

5.6.2. Result

Compliant.

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
1	Power Meter	R&S	NRVS	100444	2017-06-17		
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16	
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16	
	ESA-E SERIES						
4	SPECTRUM	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16	
	ANALYZER		1				
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16	
	SPECTRUM		FOD	400500	0047 00 47	0040.00.40	
6	ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16	
7	3m Semi Anechoic	SIDT			2047 06 47	2010 06 16	
1	Chamber	FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16	
0	Positioning	MF	ME 7092	/	2017-06-17	2018-06-16	
8	Controller		MF-7082	/	2017-00-17	2010-00-10	
9	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16	
10	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16	
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16	
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22	
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30	
14	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22	
15	Broadband Horn			701	2017 00 21	2010 00 20	
15	Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20	
16	Broadband	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20	
10	Preamplifier		DDV 3113	9/19-020	2017-03-21	2010-09-20	
17	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16	
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16	
19	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16	
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16	
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00	2017-06-17	2018-06-16	
21				32	2017-00-17	2010-00-10	
22	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16	
23	RF Control Unit	JS Tonscend	150906.0	178060073	2017-10-28	2018-10-27	
20		Corporation	JS0806-2	17000073	2017-10-20	2010-10-27	
24	JS1120-3 BT/WIFI	JS Tonscend	JS1120-3		N/A	N/A	
	Test Software	Corporation		/			
Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.							

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 27

7. TEST SETUP PHOTOGRAPHS

Please refer to separated files for External Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF TEST REPORT------