	FCC TEST REPORT
	For
SHENZ	ZHEN ECARE ELECTRONICS CO., LTD
	ote Food Thermometer with Dual Probe
	Test Model No.: TP-21
	Additional Model: /
Prepared for	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	: 5-6/F., Block B, Huali Industrial Building, District 28, Bao An,
	Shenzhen, Guang Dong, China
Prepared by	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an
	District, Shenzhen, Guangdong, China
Tel	: (+86)755-82591330
Fax Web	: (+86)755-82591332 : www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
ividii	
Date of receipt of test sample	: July 07, 2018
Number of tested samples	: 1
Serial number	: Prototype
Date of Test	: July 07, 2018~July 20, 2018
Date of Report	: July 31, 2018

FCC TEST REPORT FCC CFR 47 PART 15 C(15.231): 2017

	, CFR 47 PART 15 C(15.231): 2017
Report Reference No	: LCS180427030AEA
Date of Issue	: July 31, 2018
Testing Laboratory Name	Shenzhen LCS Compliance Testing Laboratory Ltd.
	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure	 Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □
Applicant's Name	SHENZHEN ECARE ELECTRONICS CO., LTD
Address	5-6/F., Block B, Huali Industrial Building, District 28, Bao An, Shenzhen, Guang Dong, China
Test Specification	
Standard	FCC CFR 47 PART 15 Subpart C: 2017, ANSI C63.10-2013
Test Report Form No	LCSEMC-1.0
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	: Dated 2011-03
This publication may be reproduce Shenzhen LCS Compliance Testing of the material. Shenzhen LCS Cor	ing Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source mpliance Testing Laboratory Ltd. takes no responsibility for and will esulting from the reader's interpretation of the reproduced material
Test Item Description.	Remote Food Thermometer with Dual Probe
Trade Mark	: N/A
Model/ Type reference	: TP-21
Ratings	3.0VDC by AAA*2 batteries
Result	Positive
Compiled by:	Supervised by: Approved by:
Aking Jin	Calvin Weng Grains Piang

Aking Jin/ File administrators

Calvin Weng/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 25

FCC -- TEST REPORT

Test Report No. : LCS180427030AEA

July 31, 2018

Date of issue

EUT	: Remote Food Thermometer with Dual Probe
Type / Model	: TP-21
Applicant	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	5-6/F., Block B, Huali Industrial Building, District 28, Bao An, Shenzhen, Guang Dong, China
Telephone	: /
Fax	: /
Manufacturer	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	: 5-6/F., Block B, Huali Industrial Building, District 28, Bao An,
	Shenzhen, Guang Dong, China
Telephone	: /
Fax	: /
Factory	: SHENZHEN ECARE ELECTRONICS CO., LTD
Address	: 5-6/F., Block B, Huali Industrial Building, District 28, Bao An,
	Shenzhen, Guang Dong, China
Telephone	: /
Fax	: /

Test Result	Positive				
The fact report monthly connect and to the fact connects					

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	July 31, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 25 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AATP-TP-21 Report No.: LCS180427030AEA

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. OBJECTIVE	
1.4. HOST SYSTEM CONFIGURATION LIST AND DETAILS	6
1.5. External I/O Port	6
1.6. DESCRIPTION OF TEST FACILITY	7
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	-
2.2. EUT EXERCISE	
2.4. INSTRUMENT CALIBRATION	8
2.5. Test Mode	8
3. SYSTEM TEST CONFIGURATION	9
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	
3.5. Equipment Modifications	9
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	0
5. TEST ITEMS AND RESULTS	1
5.1. TRANSMITTER DEACTIVATION TIME	1
5.2. TRANSMITTER FIELD STRENGTH OF EMISSIONS	
5.3. 2006 BANDWIDTH EMISSIONS	
5.5. POWER LINE CONDUCTED EMISSIONS	
5.6. ANTENNA REQUIREMENT	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS	5
8. EXTERIOR PHOTOGRAPHS OF THE EUT	5
9. INTERIOR PHOTOGRAPHS OF THE EUT	5

Report No.: LCS180427030AEA

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: Remote Food Thermometer with Dual Probe
Model Number	: TP-21
Model Declaration	:/
Test Model	: TP-21
Hardware version	: TP21TXV1
Software version	: XCT1615-one
Power Supply	: 3.0VDC by AAA*2 batteries
433MHz Operation frequency	: 433.92MHz
Modulation Type	: ASK
Channel Number	: 1
Antenna Type	: Internal Antenna
Antenna Gain	: 0dBi (Max)

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiator. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured. Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

1.4. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.5. External I/O Port

I/O Port Description	Quantity	Cable

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 25

1.6. Description of Test Facility

Site Description		
EMC Lab.	:	FCC Registration Number. is 254912.
		Industry Canada Registration Number. is 9642A-1.
		ESMD Registration Number. is ARCB0108.
		UL Registration Number. is 100571-492.
		TUV SUD Registration Number. is SCN1081.
		TUV RH Registration Number. is UA 50296516-001.
		NVLAP Registration Code is 600167-0.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
Padiation Upcortainty		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GH	±4.20dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	•••	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane and for below 1GHz and 1.5m for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.10

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of X axis was reported.

The EUT transmits signal as soon as it is powered on, and recorded the result in this report.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Rules	Description of test	Result
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band	Compliant
§15.209	General Requirement	Compliant
§15.231 (e)	Radiated Emissions	Compliant
§15.231 (c)	20dB Bandwidth Testing	Compliant
§15. 231(e)	Deactivation Testing	Compliant
§15.231	Duty cycle Factor	Compliant
§15.207	Conducted Emissions	N/A

Note: All buttons have been taken into consideration and only worst case reported.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 25

5. TEST ITEMS AND RESULTS

5.1. Transmitter Deactivation Time

FCC 15.231 (e)

5.1.1. Limit

Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

5.1.3. Test Results

Temperature	24.1℃	Humidity	53.6%
Test Engineer	Wilson Hong	Configurations	TX Mode

Frequency (MHz)	Duration of each Transmission Time (s)	Limit: not more than 1 seconds (1)	Conclusion
433.92	0.723	1	PASS

Frequency (MHz)	The silent period (s)	Limit: At least 30 times the duration of the transmission but in no case less than 10s	Conclusion
433.92	32.68	>10s	PASS

				Te	est Plo	t		
Keysight S	Spectrum Analyze	r - Swept SA				-		
a .		50 Ω AC		SENSE:		ALIGN AUTO	05:31:52 PM Jul 17, 2018	Marker
larker	3 ∆ 32. 68	00 s	PNO: Wide ←	Trig: Free Ru	in .	g Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	
			IFGain:Low	Atten: 20 dE				Select Marker
0 dB/div	Ref Offse Ref 10.	et0.5 dB 00 dBm					ΔMkr3 32.68 s -70.52 dB	3
.og		1Δ2						
0.00		₩ 4				Ь		Norma
-10.0								
20.0								
30.0								Delt
40.0								Den
50.0								
60.0								
70.0	water and the second	and have been	ward percention		water way wards	manufacturer however	mutanethermonet	Fixed
80.0								
Center 4	133.92000) MHz					Span 0 Hz	
tes BW	100 kHz		#VB	V 100 kHz		Sweep	60.00 s (1001 pts)	0
MKR MODE		Х		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
1 Δ2 2 F	t (Δ) t		723.0 ms (Δ 11.14 s	-1.89 dBm				
3 A4	t (Δ)		32.68 s (Δ 11.14 s	-70.52 dB -1.89 dBm				Properties
5			11.143	-1.03 46111			E	
6 7								
8								Mor
10								1 of
11 <u> </u>				III			• •	
						STATU	-	u

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 25

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

FCC §15.231 (e) /15.209

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (microvolt/meter)	Field Strength of spurious emissions (microvolt/meter)		
40.66-40.70	1,000	100		
70-130	500	50		
130-174	500 to 1,500	50 to 150		
174-260	1,500	150		
260-470	1,500 to 5,000	150 to 500		
Above 470	5,000	500		

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, μ V/m at 3 meters = 16.66667(F) - 2833.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	608-614	4.5-5.15
¹ 0.495-0.505	16.69475-16.68525	960-1240	5.35-5.46
2.1735-2.1905	16.80425-16.80475	1300-1427	7.25-7.75
4.125-4.128	25.525.67	1435-1626.5	8.025-8.5
4.17725-4.17775	37.5-38.25	1645.5-1646.5	9.0-9.2
4.20725-4.20775	73-74.6	1660-1710	9.3-9.5
6.215-6.218	74.8-75.2	1718.8-1722.2	10.6-12.7
6.26775-6.26825	108-121.94	2200-2300	13.25-13.4
6.31175-6.31225	123-138	2310-2390	14.47-14.5
8.291-8.294	149.9-150.05	2483.5-2500	15.35-16.2
8.362-8.366	156.52475-156.52525	2655-2900	17.7-21.4
8.37625-8.38675	156.7-156.9	3260-3267	22.01-23.12
8.41425-8.41475	162.0125167.17	3332-3339	23.6-24.0
12.29-12.293	167.72-173.2	3345.8-3358	31.2-31.8
12.51975-12.52025	240-285	3600-4400	36.43-36.5
12.57675-12.57725	322-335.4		.(2)
13.36-13.41	399.9-410		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F (KHz)	300
0.490-1.705	24000 (KHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 25

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 1.5 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

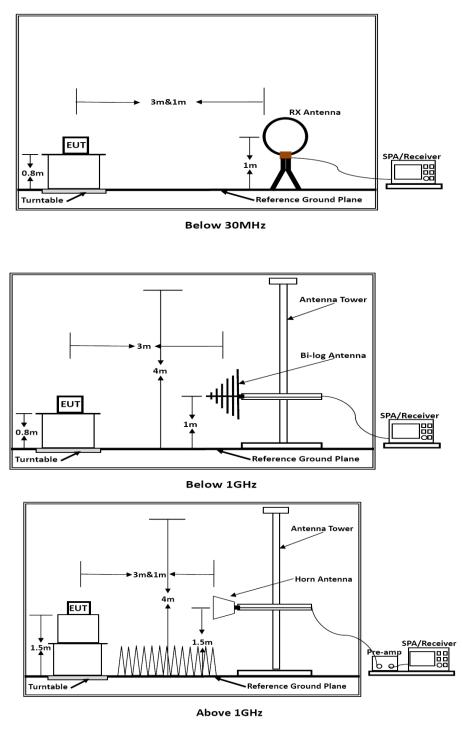
--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:


--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

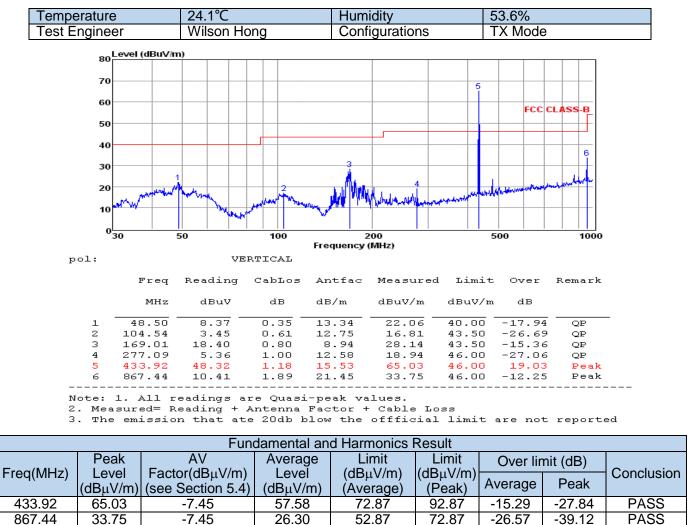
5.2.4 Block Diagram of Test Setup

5.2.5. EUT Operation during Test

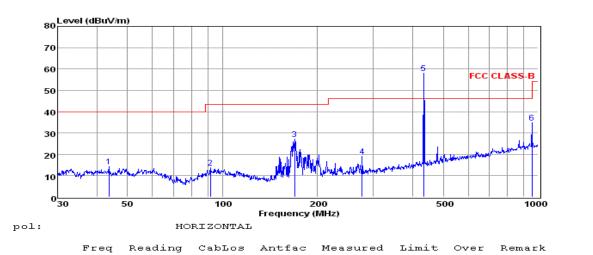
The EUT was programmed to be in continuously transmitting mode.

5.2.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	24.1°C	Humidity	,	53.6%		
Test Engineer	Wilson Hong	Configur	ations	TX Mode		
		-	-			
Freq.	Level	Over Limit	Over Limit	Remark		
(MHz)	(dBuV)	(dB)	(dBuV)	Roman		
-	-	-	-	See Note		


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2.7. Results of Radiated Emissions (30MHz~1GHz)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 25

	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	43.66	0.24	0.41	13.56	14.21	40.00	-25.79	QP
2	91.49	0.96	0.56	12.18	13.70	43.50	-29.80	QP
3	169.01	17.40	0.80	8.94	27.14	43.50	-16.36	QP
4	277.09	5.36	1.00	12.58	18.94	46.00	-27.06	QP
5	433.92	41.32	1.18	15.53	58.03	46.00	12.03	Peak
6	867.44	11.41	1.89	21.45	34.75	46.00	-11.25	Peak

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

	Fundamental and Harmonics Result									
	Peak AV		Average Limit			Over limit (dB)		Osmaliusian		
Freq(MHz)		Factor(dBµV/m) (see Section 5.4)		(dBµV/m) (Average)	(dBµV/m) (Peak)	Average	Peak	Conclusion		
433.92	58.03	-7.45	50.58	72.87	92.87	-22.29	-34.84	PASS		
867.44	34.75	-7.45	27.30	52.87	72.87	-25.57	-38.12	PASS		

5.2.8. Results of Radiated Emissions (Above 1GHz)

Temperature	24.1°C		Humidity		52.3%	
Test Engineer	Wilson Hong		Configurations		TX Mode	
Deal Males						
Peak Value:						
Frequency (MHz)	Level (dBuV/m)	Limit L	.ine (dBuV/m)	Ov	er limit (dB)	Polarization
1307.02	44.84		74.00		-29.16	Horizontal
2170.89	48.20		74.00		-25.80	Horizontal
1307.02	44.15		74.00		-29.85	Vertical
2170.89	43.48		74.00		-30.52	Vertical

Average Value:								
Frequency (MHz)	Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization		
1307.02	44.84	-7.45	37.39	54.00	-16.61	Horizontal		
2170.89	48.20	-7.45	40.75	54.00	-13.25	Horizontal		
1307.02	44.15	-7.45	36.70	54.00	-17.30	Vertical		
2170.89	43.48	-7.45	36.03	54.00	-17.97	Vertical		

1. Measuring frequencies from 9k~10th harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.

- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.3. 20dB Bandwidth Emissions

FCC 15.231 (c)

5.3.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

5.3.3. Test Data

Temperature	24.1°C	Humidity	53.6%
Test Engineer	Wilson Hong	Configurations	TX Mode

Center Frequency of	Maximum allowed	Measured 20dB	Result	
operation	bandwidth	bandwidth		
MHz	kHz	kHz		
433.92	1084.80	30.65	PASS	
Maximum allowed bandwidth:	0.25% of the centre operating frequency			
RBW:	X10kHz ☐100kHz	other kHz		
VBW:	X30kHz ☐300kHz	other kHz		

📕 Keysight Spectrum Analyzer - Occupied BV					
X RF 50 Ω AC Span 200.00 kHz	Center	SENSE:INT Freq: 433.920000 MHz	Radio Sto	AM Jul 17, 2018 d: None	Span
		ree Run Avg Holo : 10 dB		vice: BTS	Span
10 dB/div Ref -30.00 dB	n				200.00 kHz
-40.0					
-50.0					
-60.0					
-70.0					
-80.0					Full Span
-90.0	/				
-100				~~~-	
-110					
-120					
Center 433.9 MHz				n 200 kHz	
#Res BW 10 kHz	#	VBW 30 kHz	Sweep	2.533 ms	Last Span
Occupied Bandwidt	h	Total Power	-62.0 dBm	F	
2	3.369 kHz				
Transmit Freq Error	-7.217 kHz	OBW Power	99.00 %		
x dB Bandwidth	30.65 kHz	x dB	-20.00 dB		
MSG			STATUS		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 25

5.4. Duty cycle

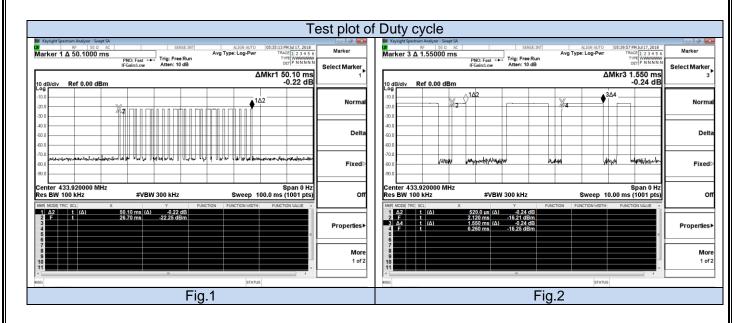
5.4.1. Limit

No dedicated limit specified in the Rules.

5.4.2. Test Procedure

- 5.4.2.1. Place the EUT on the table and set it in transmitting mode.
- 5.4.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.4.2.3. Set centre frequency of spectrum analyzer=operating frequency.
- 5.4.2.4. Set the spectrum analyzer as RBW=100 kHz, VBW=300 KHz, Span=0Hz, Adjust Sweep=100ms.
- 5.4.2.5. Repeat above procedures until all frequency measured was complete.

5.4.3. Test Data

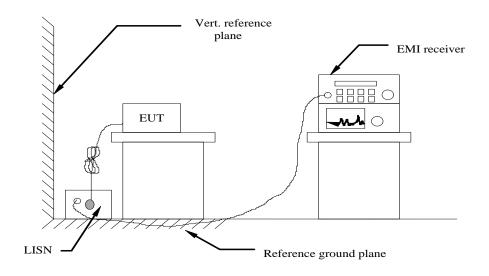

Ton = 0.52*17+1.55*8 ms= 21.24 (ms)

Tp = 50.10 (ms)

The duty cycle=21.24/50.10=42.40%

Average Correction Factory = 20log (Ton/Tp) =20log (21.24/100) = -7.45dB

Note: A sample is RBW (100 KHz) > 2/PW (0.52), so PDCF is not required.


5.5. Power line conducted emissions

5.5.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

5.5.2 Block Diagram of Test Setup

5.5.3 Test Results

Not applicable to this device.

Because this device power by AAA*2 batteries.

5.6. Antenna Requirement

FCC 15.203

5.6.1. Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This EUT uses an integral antenna which is permanently attached.

5.6.2. Result

Compliant.

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15	
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15	
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15	
4	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16	
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15	
6	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15	
7	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15	
8	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15	
9	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15	
10	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15	
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16	
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21	
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30	
14	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2018-07-02	2019-07-01	
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20	
16	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20	
17	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15	
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15	
19	TEST RECEIVER	R&S	ESCI	101142	2018-06-16	2019-06-15	
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2018-06-16	2019-06-15	
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00 32	2018-06-16	2019-06-15	
22	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15	
23	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27	
24	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A	
Note: A	Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.						

7. TEST SETUP PHOTOGRAPHS

Please refer to separated files for External Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF TEST REPORT------