8.2. Block Diagram of Test setup

8.2.1 In 3m Anechoic Chamber Test Setup Diagram for below 30MHz

8.2.1 In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

8.2.2 In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.

8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

From 30MHz to 1000MHz: Conclusion: PASS

Remark: All modes have been tested, and only worst data of GFSK mode, Channel 2441MHz was listed in this report.

From 1G to 18GHz Conclusion: PASS

From 18G to 26.5GHz Conclusion: PASS

Remark: All modes have been tested, and only worst data of GFSK mode, Channel 2441MHz was listed in this report.

Conducted RF Spurious Emission

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref

Date: 5.SEP.2022 14:44:05

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission

Date: 5.SEP.2022 14:44:18

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Ref

Date: 5.SEP.2022 14:45:38

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission

Date: 5.SEP.2022 14:45:52

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Ref

Date: 5.SEP.2022 14:47:31

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission

Date: 5.SEP.2022 14:47:44

Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Ref

Date: 5.SEP.2022 15:49:01

Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Emission

Date: 5.SEP.2022 15:49:15

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Ref

Date: 5.SEP.2022 15:06:20

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Emission

Date: 5.SEP.2022 15:06:33

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Ref

Date: 5.SEP.2022 15:51:12

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Emission

Date: 5.SEP.2022 15:51:25

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Ref

Date: 5.SEP.2022 15:44:47

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Emission

Date: 5.SEP.2022 15:45:01

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Ref

Date: 5.SEP.2022 15:08:40

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Emission

Date: 5.SEP.2022 15:08:53

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Ref

Date: 5.SEP.2022 15:46:40

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Emission

Date: 5.SEP.2022 15:46:53

9. BAND EDGE COMPLIANCE

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

All restriction band and non- restriction band have been tested , only worse case is reported.

9.4. Test Result

PASS. (See below detailed test data)

V

2.484370000 G 33.259 dBµV/

2500

2490

Test Mode: GFSK-High Hopping-off

Test Mode: GFSK-Low Hopping-on

Test Mode: GFSK-High Hopping-on

Note: 1. *: Maximum data; x: Over limit; !: over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Test Mode: $\pi/4$ DQPSK-Low Hopping-on

Test Mode: π/4 DQPSK-High Hopping-on

Note: 1. *: Maximum data; x: Over limit; !: over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Test Mode: π/4 DQPSK-High Hopping-off

Test Mode: 8DPSK-High Hopping-off

Test Mode: 8DPSK-Low Hopping-on

Test Mode: 8DPSK-High Hopping-on

Note: 1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Conducted Method

GFSK Mode:

No-hopping mode

Hopping mode

Test channel:		Highest channel						
Spectrum 🕅		Spectrum						
Ref Level 20.00 dBm Offset 7.60 dB RBW 100 kHz Att 30 dB SWT 113.8 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 SWT 113.8 µs VBW 300 kHz Mode Auto FFT		Ref Level 20.00 dBm Att 30 dB SGL Count 2000/2000	Offset 7.60 dB ● SWT 113.8 µs ●	RBW 100 kHz VBW 300 kHz	Mode Auto FFT			
PIPk Max M1[1]	4.17 dBm	● 1Pk Max			M1[1]	0.4760	4.60 dBm	
10/dgm M2[1]	-53.01 dBm 2.48350000 GHz	10 dBm			M2[1]	-5	i2.99 dBm i0000 GHz	
-10 dBm		-19 dBm						
-20 dBm		-20 cBm D1 -16.172 c	dBm					
-30 dBm		-30 dBm						
-40 dBm		-40 dBm	МЗ					
10 call and a second	allongene and the strategic to the	-60 dBm	an other and the second	both minute the state	moresona	and and a second being a second	uktrining starter to b	
-70 dBm		-70 dBm						
Start 2.476 GHz 1001 pts	Stop 2.576 GHz	Start 2.476 GHz		1001 pt	s	Stop 2	.576 GHz	
Marker]	Marker						
Type Ref Trc X-value Y-value Function M1 1 2.48005 GHz 4.17 dBm	Function Result	Type Ref Trc M1 1	2.47605 GHz	Y-value 4.60 dBm	Function	Function Result		
M2 1 2.4835 GHz -53.01 dBm		M2 1	2.4835 GHz	-52.99 dBm				
M4 1 2.4969 GHz -51.96 dBm		M4 1	2.4863 GHz	-51.42 dBm				
. Readv	15.09.2022				Ready	4,40	.09.2022	
Date: 5.SEP.2022 14:47:21		Date: 5.SEP.2022 15:	04:03					

No-hopping mode

Hopping mode

π/4DQPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

8DPSK Mode:

No-hopping mode

Date: 5.SEP.2022 15:30:29

Hopping mode

No-hopping mode

Hopping mode

10. POWER LINE CONDUCTED EMISSIONS

10.1.Block Diagram of Test Setup

 \blacksquare :50 Ω Terminator

10.2.Limit

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	dB(µV)	dB(μV)			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.3.Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1

(3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 :2013on conducted Emission test.

(4) The bandwidth of test receiver is set at 10KHz.

(5) The frequency range from 150 KHz to 30MHz is checked.

10.4.Test Result

PASS. (See below detailed test data)

Note: If peak Result comply with AV limit, QP and AV Result is deemed to comply with AV limit

57.16 -18.45

56.00 -27.09

56.00 -15.99

60.00 -22.05

60.00 -13.30

peak

peak

peak

peak

peak

Line:

*:Maximum data x:Over limit !:over margin

2

3

4

5

6

0.4350

0.9570

3.1170

11.4389

22.3890

28.76

18.97

30.05

27.71

36.25

9.95

9.94

9.96

10.24

10.45

38.71

28.91

40.01

37.95

46.70

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

(Reference Only

Neutral:

Note: All modes and channels have been tested and only the GFSK 2402MHz mode with the worst data is listed.

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

*:Maximum data

x:Over limit

I:over margin

11. ANTENNA REQUIREMENTS

11.1.Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The use of an antenna that is uniquely coupled to the intended radiator shall be considered sufficient to comply with the provisions of this section.

12. TEST SETUP PHOTO

12.1.Photo of Radiated Emission test

12.2.Photo of Conducted Emission test

13. EUT Photo

