
-6dB Bandwidth NVNT b 2462MHz Ant1

Date: 2.SEP.2022 13:18:07

-6dB Bandwidth NVNT g 2412MHz Ant1

Date: 3.SEP.2022 05:52:38

-6dB Bandwidth NVNT g 2437MHz Ant1

		-601	o pano	awidth invir	11 g 24371V	IHZ ANTI	
Spectrum							
Ref Level	20.00 dE	m Offset	7.77 dB 🧉	• RBW 100 kHz			
Att	30			• VBW 300 kHz		FT	
SGL Count :	100/100						
😑 1Pk Max							
					M1[1]		2.04 dBm
10 dBm							2.4341230 GHz
10 00.00				N1	M2[1]		-2.79 dBm
0 dBm		M2	MARCH MAR	makymm	manderate	www.httmad	2.4288100 GHz
		$ T^{*} $		- 1 · · · ¶		and a survey of the	
-10 dBm			-				
		5		ľ		٩.	
-20 dBm		J.				1	
-30 dBm		1					h.
-30 0611	لر						In,
-40 dBm	6 And						
-MR MA	14						Man Maryan
-50 dBm				_			
-60 dBm							
-70 dBm							
-/U UBIII							
CF 2.437 G	Hz			1001	pts		Span 30.0 MHz
Marker							
Type Ref		X-valu		Y-value	Function	Fund	ction Result
M1 M2	1		123 GHz	2.04 dBn			
M3	1		881 GHz 522 GHz	-2.79 dBn -3.88 dBn			
		2,77		5.00 001		1 2111110	
					Ready		1.20

Date: 3.SEP.2022 05:55:24

-6dB Bandwidth NVNT g 2462MHz Ant1

		-001	Danu		1 9 2402101			
Spectru	m							ि
Ref Lev	el 20.00	dBm Offset	7.72 dB 👄	RBW 100 kHz				
Att	з	O dB SWT	37.9 µs 😑	VBW 300 kHz	Mode Auto FF	т		
SGL Cour	nt 100/10	0						
1Pk Max								
					M1[1]		2.3	8 dBn
10 dBm—							2.464248	O GH:
TO UBIII-					M1M2[1]		-2.0	5 dBn
0 dBm		M2	manna	a the strange and and a	and the second	-A. A. A. A. M.	2.453810	O GH2
5 abin						and a state of the state		
-10 dBm—	_							
		4		1		- I Y		
-20 dBm—	_	<u>_</u>	_			- 4		
		M					կ	
-30 dBm—	_	N					b	
	AMA A	1					Wh a	
~\$Q,4 ₽m ^L	An A A .						Wywit	MW
-50 dBm—								· V -
-30 ubiii—								
-60 dBm—								
oo abiii								
-70 dBm—	_							
CF 2.462				1001 p	+c		Span 30.0	MU-2
Marker				1001 p			3pan 30.0	11112
	lef Trc	X-valu		Y-value	Function	Eupr	tion Result	
M1	1		248 GHz	2.38 dBm	ranction	Func	alon Kesult	
M2	1		381 GHz	-2.05 dBm				
MЗ	1	2.47	025 GHz	-3.63 dBm				
	1				Dondy		03.09.20	22
							age of the second se	

Date: 3.SEP.2022 05:57:31

-6dB Bandwidth NVNT n20 2412MHz Ant1

			-60B	Bandy	viath invin	1 nzu z	412101	12 Anti		
Spectru	m)								₽
Ref Lev	el 20.0	IO dBm	Offset	7.63 dB 🧉	RBW 100 kH	z				
Att		30 dB			• VBW 300 kH		Auto FFT			
SGL Coun	t 100/1	100								
⊖1Pk Max										
						M	1[1]			0.94 dBm
10 dBm									2.41	.06210 GHz
10 000					M1	M	2[1]			-3.33 dBm
0 dBm			12		V			-1 M3	2.40	32100 GHz
			Joursell Marbury	Martin Martin	Rock marine	MUMMUN	1 welling	when when the state of the stat		
-10 dBm—						/				
					1					
-20 dBm—	-			-						
		- L							٩,	
-30 dBm—	-	Ĵ.							- M	
10.10-		ſ I							٦.	
-40 dBm—	1 and								N.	
<u>√1 40 0000</u> -50 dBm—	MM Im								MU YU	myhorto
-30 ubiii									· · · · · ·	
-60 dBm—										
-70 dBm—										
CF 2.412	GHz				1001	nts			Snan	30.0 MHz
Marker					1001	F			opun	
	ef Tro	c I	X-valu	e	Y-value	Func	tion	Fund	tion Result	
M1		1		021 GHz	0.94 dB			, and		
M2		1		21 GHz	-3.33 dB					
M3		1	2.420	82 GHz	-4.23 dB	m				
							le ad v		130	03.09.2022
									-	

Date: 3.SEP.2022 06:00:28

Spectrum					Ē
Ref Level 20.00	dBm Offset 7.77 dB	🔵 RBW 100 kHz			
		🔵 VBW 300 kHz	Mode Auto FFT		
SGL Count 100/100					
1Pk Max					
			M1[1]		1.04 dBm
10 dBm					2.4336730 GHz
		M1	M2[1]		-4.84 dBm
0 dBm	Burry manthe	MARKE PROM	Man My and Marin	MB	2.4281500 GHz
	W 2007 W00 11 10		and the second second	and a share way have	
-10 dBm					
	r l	P		. I I I I I I I I I I I I I I I I I I I	
-20 dBm	N			- fh	
20 db-r	N			N I	.
-30 dBm	1				6
-40 dBm					
MAMMAN					Wan I I I I
-50 dBm					Mundan
-60 dBm					
-70 dBm					
CF 2.437 GHz		1001 pt	s	'	Span 30.0 MHz
larker					
Type Ref Trc	X-value	Y-value	Function	Functio	n Result
M1 1	2.433673 GHz	1.04 dBm			
M2 1	2.42815 GHz	-4.84 dBm			
M3 1	2.44579 GHz	-3.79 dBm			
			Ready		03.09.2022

Date: 3.SEP.2022 06:02:54

-6dB Bandwidth NVNT n20 2462MHz Ant1

Page 58 of 79

			-60B I	Bandw	'idth invin	i nz	0 246211	HZ ANU		
Spectrur	n									□
Ref Leve	1 20.00) dBm	Offset	7.72 dB 🔵	RBW 100 kH	z				
Att	:	30 dB	SWT	37.9 µs 👄	VBW 300 kH	z Mo	de Auto FFT			
SGL Count	: 100/10	00								
⊖1Pk Max										
							M1[1]			1.31 dBm
10 dBm							_		2.45	577140 GHz
20 00.00				M1			M2[1]			-4.55 dBm
0 dBm		M	Fr. M. Comp	month	Mulling and the second	MAR		MM WAR MARK	3 2.48	530900 GHz
			1 · · · · · · · · · · · · · · · · · · ·	1	1.00.00	1			4	
-10 dBm—									1	
		M							4	
-20 dBm—									М.	
-30 dBm		AN I							1°N.	
-30 aBm—		∛ر							Ma	
	10m								<u>ил.</u>	
hand	MM								1 2	Munner
-50 dBm										A way broad
-60 dBm—	<u> </u>									
-70 dBm—					-					
CF 2.462	GHz				1001	pts		· · ·	Spar	30.0 MHz
Marker										
Type Re	ef Trc		X-value	e	Y-value	F	unction	Fun	ction Result	<u>ا</u>
M1	1	L	2.4577	14 GHz	1.31 dB	m				
M2	1			09 GHz	-4.55 dB					
M3	1	L	2.470	82 GHz	-3.38 dB	m]
							Ready		4,00	03.09.2022

Date: 3.SEP.2022 06:05:39

Spectrum										
Ref Level 20	.00 dBm	Offset 7	7.66 dB (RBW 100) kHz					
Att	30 dB	SWT	75.8 µs (> VBW 300) kHz	Mode A	uto FFT			
SGL Count 100	1/100									
●1Pk Max										
						M1	[1]			-1.21 dBm
10 dBm									2.42	209210 GHz
						M2	2[1]			-7.02 dBm
0 dBm					M1				2.40)41200 GHz
	M2	at weat	APHICKING P	When her yours	Ary Mu	Montpraise	Magneric	when my		
-10 dBm	- P4h	the hall						ALVIN MANNE		
					- Y					
-20 dBm					_ - [+		
	- 11								14	
-30 dBm									1	
10 10									1	
-40 dBm	1.18								4	A.
250 dBm	r0ru:								MM	ՈՒԿՈՆՈՒ
-30 ubin-										4
-60 dBm										
oo abiii										
-70 dBm				_						
CF 2.422 GHz				1	001 pt:	s			Spar	60.0 MHz
Marker										
	frc	X-value	.	Y-valu	e	Funct	ion	Fund	tion Result	: I
M1	1	2.4209		-1.2	1 dBm					
M2	1	2.404	12 GHz	-7.02	2 dBm					
M3	1	2.439	52 GHz	-7.14	4 dBm					
						R	eady	1	120	03.09.2022

Date: 3.SEP.2022 06:09:01

-6dB Bandwidth NVNT n40 2437MHz Ant1

Spectrum Ref Level									
Ref Level									
	20.00 dt	3m Offset	7.77 dB 👄	RBW 100 kH	z				
Att	30	db SWT '	75.8 µs 👄	VBW 300 kH	Z Mode A	Auto FFT			
SGL Count	100/100								
∋1Pk Max									
					M	1[1]			0.01 dBm
10 dBm								2.42	45920 GHz
		M			M	2[1]			-3.77 dBm
0 dBm		MP 🔻							.87600 GHz
		Manura hallon	harder hill	runninghrowing	Myphora	manner	V Remandered	7	
-10 dBm		1						1	
.		1		1				N	
-20 dBm		/		1	,				
-30 dBm		[]						1	
-30 ubiii	5							1	
r 49.048 pm	Mar Harrison								
Magazad C. L Add	lamy							Mar.	
-50 dBm		_						"WWW	montrainer
-60 dBm									
-70 dBm									
CF 2.437 G	Hz			1001	pts			Span	60.0 MHz
Marker									
Type Ref		X-value		Y-value	Fund	tion	Fund	tion Result	
M1	1	2.4245		0.01 dB					
M2	1		76 GHz	-3.77 dB					
M3	1	2.455	12 GHz	-5.83 dB	m				
	Υ Π				R	e ad y		444	03.09.2022

Date: 3.SEP.2022 06:12:28

-6dB Bandwidth NVNT n40 2452MHz Ant1

Ref Level	00.00 40						[₩
	20.00 UB	m Offset 7.75 dB	🔵 RBW 100 kHz				
Att	30 d	lB SWT 75.8 μs	👄 VBW 300 kHz	Mode Auto FFT			
SGL Count	100/100						
1Pk Max							
				M1[1]			-1.29 dBm
10 dBm						2.44	11510 GHz
		M1		M2[1]			-3.55 dBm
D dBm	N				M	2.43	37600 GHz
		June programing	man-manutal pre	open and a second and the second s	pharter marging	7	
-10 dBm					- Y '		
		/				1	
-20 dBm							
	1					3	
-30 dBm	, d					<u> </u>	
ga Pantha	u all					hallow	Martin
Clar Manager	Hote Mart					1.40	M. C. A. W.
-50 dBm					_		
-60 dBm							
-70 dBm							
CF 2.452 G	Hz		1001 pt	s	1	Span	60.0 MHz
1arker							
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result	
M1	1	2.441151 GHz	-1.29 dBm				
M2	1	2.43376 GHz	-3.55 dBm				
M3	1	2.47024 GHz	-5.35 dBm				
				Ready		100	3.09.2022

Date: 3.SEP.2022 06:15:46

	•	Securica onamici	Bunamati	
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	ax20	2412	Ant1	18.641
NVNT	ax20	2437	Ant1	18.941
NVNT	ax20	2462	Ant1	18.881
NVNT	ax40	2422	Ant1	37.103
NVNT	ax40	2437	Ant1	37.642
NVNT	ax40	2452	Ant1	37.882
NVNT	b	2412	Ant1	13.906
NVNT	b	2437	Ant1	14.955
NVNT	b	2462	Ant1	14.955
NVNT	g	2412	Ant1	16.184
NVNT	g	2437	Ant1	16.394
NVNT	g	2462	Ant1	16.334
NVNT	n20	2412	Ant1	17.562
NVNT	n20	2437	Ant1	17.562
NVNT	n20	2462	Ant1	17.622
NVNT	n40	2422	Ant1	35.604
NVNT	n40	2437	Ant1	36.204
NVNT	n40	2452	Ant1	36.264

Occupied Channel Bandwidth

OBW NVNT ax20 2412MHz Ant1

		ODW	INVINI axzu A				_
Spectrum							[₩
Ref Level	20.00 di	3m Offset 7.63 dB	🖷 RBW 200 kHz				
Att	30	dB SWT 19 µs	VBW 1 MHz	Mode Auto FF	Г		
SGL Count :	100/100						
1Pk Max							
				M1[1]			49.32 dBm
10 dBm							70000 GHz
				Occ Bw	1	18.6413	58641 MHz
0 dBm 🕂		T.1 - 0D.0	a hand to	www.	A 0	T.0.	
		T1 mmm	~ m … N/	wwww	V/mar	1 x	
-10 dBm						N N	
-20 dBm							
20 0000						$\langle \rangle$	
-30 dBm						\rightarrow	
	(
-40 dBm —							
0							!
₅\$\$\$\$\$	-W					- V	an the second second
-60 dBm							
-00 0800							
-70 dBm							
CF 2.412 G	Hz		1001 pt	s		Span	30.0 MHz
larker							
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result	
M1	1	2.427 GHz	-49.32 dBm				
Τ1	1	2.4027093 GHz	-8.24 dBm	Occ Bw		18.64135	58641 MHz
T2	1	2.4213506 GHz	-7.96 dBm				
				Ready		120	3.09.2022
				J		- Martin	

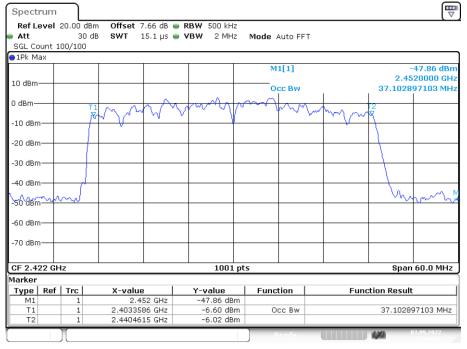
Date: 3.SEP.2022 07:27:30

OBW NVNT ax20 2437MHz Ant1

Page 61 of 79

		, c			XZU 2	24371				_
Spectrum										
Ref Level	20.00 d	Bm Offset	7.77 dB 🧉	RBW 20	0 kHz					
Att	30	dB SWT	19 µs 🧉	VBW 1	L MHz	Mode 4	uto FFT			
SGL Count 1	100/100									
⊖1Pk Max										
						M	1[1]		-	50.80 dBm
10 dBm										20000 GHz
10 000						00	CC BW		18.9410	58941 MHz
0 dBm		1		- 0m	_	~ ~			T2	
		m m	have	www	$\mathcal{M}_{\mathcal{N}}$	\sim	w w	mound	•ম্ব	
-10 dBm				_	_₩_					
									1 1	
-20 dBm				_						
									$ \rangle$	
-30 dBm					_					
-40 dBm										
-40 aBm									5.	
~50 dBm~~	M								1 Vin	A ANY
çie dean										N. 1.0. 4
-60 dBm				_						
-70 dBm				_						
CF 2.437 GH	Hz			1	1001 pts	5			Span	30.0 MHz
Marker					pt.				opun	
Type Ref	Trc	X-value	e	Y-valı	ue	Fund	tion	Eun	ction Result	· 1
M1 M1	1		52 GHz		0 dBm			- un	c	· · · · · ·
T1	1	2.42749	95 GHz	-3.9	8 dBm	0	c Bw		18.9410	58941 MHz
T2	1	2.44644	06 GHz	-4.6	9 dBm					
)[eadv		120	13.09.2022

Date: 3.SEP.2022 07:30:50


OBW NVNT ax20 2462MHz Ant1

		ODVV	INVINI axzu A		Anti	
Spectrun	n					
Ref Leve	l 20.00 dBr	n Offset 7.72 dB	RBW 200 kHz			
Att 🛛	30 d	В SWT 19 µs	VBW 1 MHz	Mode Auto FF	т	
SGL Count	100/100					
∋1Pk Max						
				M1[1]		-45.50 dBm
10 dBm						2.4470000 GHz
to abiii				Occ Bw		18.881118881 MHz
0 dBm	т1		0-0-0-0			T2
	<u>۲</u>	man		~ mm ~	w how have a second of the sec	MY
-10 dBm	- /		¥_			
-20 dBm—						
-30 dBm—						
-40 dBm						
-+0 ubiii 	M					
-50 dBm-	· ·					www.w./ M
-60 dBm						
-70 dBm—						
CF 2.462 (GHz		1001 pt	s	1	Span 30.0 MHz
Marker						
Type Re	f	X-value	Y-value	Function	Fund	tion Result
M1	1	2.447 GHz	-45.50 dBm			
T1	1	2.4525594 GHz	-4.75 dBm	Occ Bw		18.881118881 MHz
T2	1	2.4714406 GHz	-4.62 dBm			
				Ready		03.09.2022

Date: 3.SEP.2022 07:33:33

OBW NVNT ax40 2422MHz Ant1

Page 62 of 79

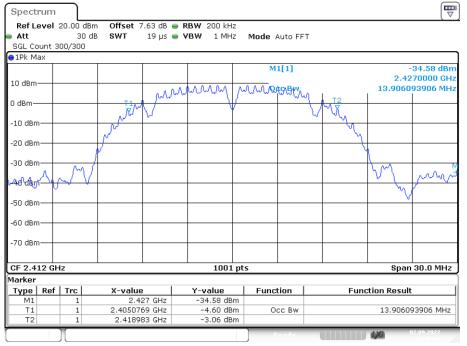
Date: 3.SEP.2022 07:38:28

OBW NVNT ax40 2437MHz Ant1

Spectrum Ref Level : Att SGL Count 1 PIPk Max 10 dBm 0 dBm	30 dB		 RBW 500 kHz VBW 2 MHz 	Mode Auto FFT			
Att SGL Count 1 PR Max	30 dB		-	Mode Auto FFT			
SGL Count 1 PPK Max 10 dBm		SWT 15.1 µs	● VBW 2 MHz	Mode Auto FFT			
1Pk Max	00/100						
1Pk Max							
10 dBm							
				M1[1]		-	47.88 dBm
							70000 GH
1 dBm				Occ Bw		37.6423	57642 MH
	T1						1
Jubin	74	www		Leven and and a second	mr.m	¥.	
-10 dBm					×γ	+	
-20 dBm —						-	+
	- 7 1					1	
-30 dBm							
						$\langle \rangle$	
-40 dBm						In	
-50 dBm	\sim					V ~	myn
-30 UBIII							
-60 dBm							
-oo abiii							
-70 dBm							
CF 2.437 GH	17		1001 pt			Snan	60.0 MHz
larker	12		1001 p			opun	00.0 1112
	Trc	X-value	Y-value	Function	Eupo	tion Result	
Type Ref M1	1	2.467 GHz	-47.88 dBm	Function	Func	cion Result	
T1	1	2.4180589 GHz	-1.39 dBm	Occ Bw		37.6423	57642 MHz
T2	1	2.4557013 GHz	-4.50 dBm			2.10120	
)(· · ·		420	13.00.2022

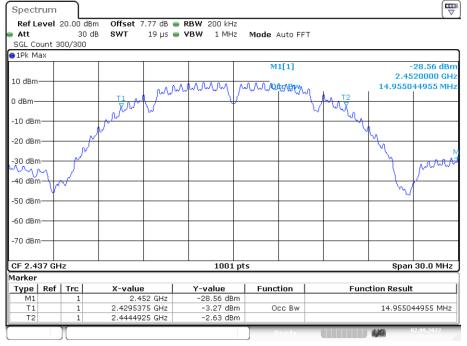
Date: 3.SEP.2022 07:42:43

1

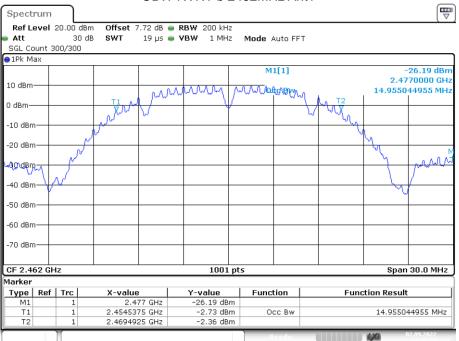

OBW NVNT ax40 2452MHz Ant1

Page 63 of 79

Number Net Set 100 dBm Offset 7.75 dB RBW 500 kHz Att 30 dB SWT 15.1 µs VBW 2 MHz Mode Auto FFT SGL Count 100/100 Image: Set 10 dBm Imag
SGL Count 100/100 ID dBm ID dBm<
1Pk Max 10 dBm 10 dBm T1 T2 T2
M1[1] -44.58 10 dBm 0cc Bw 37.882117882 0 dBm T1 0cc Bw 37.882117882 -10 dBm 0 0 0
10 dBm 0cc Bw 37.882117882 0 dBm T1 T2 -10 dBm 0 dBm T2
10 dBm Occ Bw 37.882117882 0 dBm 71 72 -10 dBm 72 72
0 dBm T1 T2 -10 dBm T1 T2
-10 dBm
-20 dBm
-30 dBm
-40 dBm
-50 dBm
-60 dBm
-70 dBm
CF 2.452 GHz 1001 pts Span 60.01
Marker
Type Ref Trc X-value Y-value Function Function Result
M1 1 2.482 GHz -44.58 dBm
T1 1 2.432999 GHz -2.91 dBm Occ Bw 37.882117882
T2 1 2.4708811 GHz -2.98 dBm
Ready 03.09.202


Date: 3.SEP.2022 07:50:57

OBW NVNT b 2412MHz Ant1



Date: 2.SEP.2022 12:49:01

OBW NVNT b 2437MHz Ant1

Date: 2.SEP.2022 13:15:17

OBW NVNT b 2462MHz Ant1

Date: 2.SEP.2022 13:17:55

_

OBW NVNT	g 2412MHz Ant1
----------	----------------

Spect	rum									
Ref Lo	evel	20.00 dBm	Offset 7	.63 dB 😑 I	RBW 200 kH	z				
🗕 Att		30 dB	SWT	19 µs 😑 🕯	VBW 1 MH	z Mode	Auto FF1	г		
SGL Co	ount 1	00/100								
😑 1Pk M	ax									
						P	41[1]			-43.73 dBm
10 dBm										270000 GHz
10 000					A . A	. (Dec Bw		16.1838	16184 MHz
0 dBm-			T1 And	partison	my	mon	mm			
			pro v		1 1	1		a she		
-10 dBm	∩		1			·		\rightarrow		
			/							
-20 dBm	η 		/							
		/								
-30 dBm	+-י									
-40 dBm		and the second second							m.	par w
-50 dBm		v"							· ·	0.000 W
-50 aBm										
-60 dBm										
-00 001	'									
-70 dBm	ι									
CF 2.4		-			1001				0	30.0 MHz
	IZ GF	12			1001	. pts			spar	130.0 MHZ
Marker						1 -				
Туре	Ref		X-value		Y-value		ction	Fund	tion Result	<u> </u>
M1 T1		1	2.403908	27 GHz	-43.73 dB -2.22 dB		DCC BW		16 1000	16184 MHz
T2		1	2.403908		-2.22 de		JCC DW		10.1038	10104 10102
			2, 12009.		2.00 42					02.00.2022
		Л							1/0	111

Date: 3.SEP.2022 05:52:29

OBW NVNT g 2437MHz Ant1

Spectrum)					
Ref Level	20.00 dBr	m Offset 7.77 dB	RBW 200 kHz			· · · ·
Att	30 d	В SWT 19 µs	🔵 VBW 1 MHz	Mode Auto FFT		
SGL Count :	100/100					
∎1Pk Max						
				M1[1]		-42.23 dBn
10 dBm						2.4520000 GH
		T1 0 0m		Occ Bw	1 70	16.393606394 MH
0 dBm		Timm	mont	mont	whom T2	
			¥_		1	
-10 dBm						
-20 dBm-+						
-30 dBm						
-30 ubiii	. N					
40/dBit-4	N.					
						1
-50 dBm						
-60 dBm —						
-70 dBm						
CF 2.437 G	Ηz		1001 pt	s		Span 30.0 MHz
/larker						
Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	2.452 GHz	-42.23 dBm			
T1	1	2.4288182 GHz	-0.64 dBm	Occ Bw		16.393606394 MHz
T2	1	2.4452118 GHz	-1.72 dBm			
				Ready		03.09.2022

Date: 3.SEP.2022 05:55:13

OBW NVNT g 2462MHz Ant1

				OBW	NVNIG	246211/1	HZ AN	τı		
Spect	rum									₽
Ref L	evel	20.00 0	IBm Offset	7.72 dB 👄	RBW 200 kH	z				
Att			dB SWT	19 µs 👄			Auto FF1	r		
SGL Co	unt 1	.00/100								
😑 1Pk M	ах									
						N	11[1]		-	39.13 dBm
10 dBm									2.47	70000 GHz
10 ubiii			T1				CC BW		16.3336	66334 MHz
0 dBm-			Amm	how	month	www	1 mar	Manny T2		
			17			/		1		
-10 dBm	י—⊢									
-20 dBr			1				+			
			1						\mathbf{X}	
-30 dBr	<u>ו</u> רי	~							1. 4	
-40 886	2 m	1^{n}							When	An mr
10 abri	~ 1	2								· • • •
-50 dBrr	ı—⊢				_					
-60 dBrr	ν -+ -						+			
-70 dBr	+-י									
CF 2.4	62 GF	Ηz	•		1001	pts			Span	30.0 MHz
Marker										
Туре	Ref	Trc	X-valu		Y-value		ction	Fund	tion Result	
M1		1		77 GHz	-39.13 dB					
T1		1	2.45384		0.78 dB		Dec Bw		16.33366	6334 MHz
T2		1	2.47018	18 GHZ	0.01 dB	m				
		П					Ready		1)(1)	13.09.2022
		- <u> </u>								

Date: 3.SEP.2022 05:57:21

OBW NVNT n20 2412MHz Ant1

Spectrur	n					(E
Ref Leve	el 20.00 d	iBm Offset 7.63 dB (BRBW 200 kHz			
Att	30	dB SWT 19 µs (VBW 1 MHz	Mode Auto FFT		
SGL Count	t 100/100					
∋1Pk Max						
				M1[1]		-41.60 dBr
10 dBm						2.3970000 GH
10 UBIII-				Occ Bw		17.562437562 MH
0 dBm		T1_mermonary	a Massara A	month	T2	
o abiii		Jurino .	·		" " "	
-10 dBm—			¥			
-20 dBm—						
	1 1					\mathbf{X}
-30 dBm—					+ +	
-40 dBm-	N [×]					- Mart
	×					44° - L
-50 dBm—						
-60 dBm—						
-60 aBm—						
-70 dBm—						
-/0 ubm						
CF 2.412	GHZ		1001 pt:	s		Span 30.0 MHz
Marker						
	ef Trc	X-value	Y-value	Function	Fund	tion Result
M1 T1	1	2.397 GHz 2.4032188 GHz	-41.60 dBm -2.76 dBm	Occ Bw		17.562437562 MHz
T2	1	2.4032188 GHz 2.4207812 GHz	-2.76 dBm	OCC BW		17.502437502 MHZ
12	1 1	2,7207012 012	2.07 0011			
				Ready		100 03:09:2022

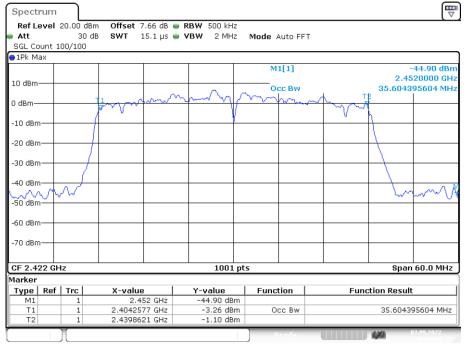
Date: 3.SEP.2022 06:00:15

OBW NVNT n20 2437MHz Ant1

Page 67 of 79

		ODW		-+07 1011 127	(IIC)	
Spectrum	·					l □ □
Ref Level	20.00 dB	m Offset 7.77 dB	RBW 200 kHz			
Att	30 c	IB SWT 19 µs	VBW 1 MHz	Mode Auto FF	т	
SGL Count	100/100					
●1Pk Max						
				M1[1]		-44.01 dBm
10 dBm						2.4520000 GHz
TO OBU				Occ Bw		17.562437562 MHz
0 dBm		Lamon Man	mon m	mannon	non a mont	
o abiii						
-10 dBm			¥			
		/				A I
-20 dBm	/	,				
-30 dBm						
-40 dBm	\sim					
We WY						www
-50 dBm						
co do-						
-60 dBm						
-70 dBm						
-/0 0011						
CF 2.437 G	Hz		1001 pt	s		Span 30.0 MHz
Marker						
Type Ref		X-value	Y-value	Function	Fun	ction Result
M1 T1	1	2.452 GHz 2.4282188 GHz	-44.01 dBm -1.11 dBm	Occ Bw		17.562437562 MHz
T2	1	2.4282188 GHz 2.4457812 GHz	-1.11 dBm -2.48 dBm	OCC BW		17.502437502 MHZ
12	<u> </u>	2.115/012 012	2.40 0000			
				Ready		1000 031012022

Date: 3.SEP.2022 06:02:41


OBW NVNT n20 2462MHz Ant1

Spectrum)						[₩
Ref Level 2	20.00 dBr	n Offset 7.72 dB	BRBW 200 kHz				
Att	30 di	в SWT 19 µs (VBW 1 MHz	Mode Auto FFT			
SGL Count 10	00/100						
1Pk Max							
				M1[1]		-	43.67 dBm
10 dBm						2.47	70000 GHz
10 dBm				Occ Bw		17.6223	77622 MHz
		11 min mm	month in	montant	num I2		
o ubiii					0.04		
-10 dBm			V				
-10 abiii	/					Λ	
-20 dBm							
-30 dBm							
1 and	1						
-40 dBm	V					- March	and the
							n ma . Mi
-50 dBm —							
-60 dBm							
-70 dBm							
CF 2.462 GH	z	· · · ·	1001 pt:	5		Span	30.0 MHz
1arker							
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result	
M1	1	2.477 GHz	-43.67 dBm				
T1	1	2.4531588 GHz	-2.91 dBm	Occ Bw		17.6223	77622 MHz
T2	1	2.4707812 GHz	-0.76 dBm				
	(Ready		120	13.09.2022

Date: 3.SEP.2022 06:05:25

OBW NVNT n40 2422MHz Ant1

Page 68 of 79

Date: 3.SEP.2022 06:08:44

OBW NVNT n40 2437MHz Ant1

Spectrum				
Ref Level 20.00 dBm	Offset 7.77 dB 👄			
Att 30 dB	SWT 15.1 µs 👄	VBW 2 MHz	Mode Auto FFT	
SGL Count 100/100				
1Pk Max				
			M1[1]	-42.65 dBr
10 dBm				2.4670000 GH
T			Occ Bw	36.203796204 MH
D dBm 🤺 🤺	\sim	man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	×	-1 W		
-10 dBm /		₩		
-20 dBm /				
-30 dBm / /				
49 ABR - 19 - 1				March 1
-50 dBm				
-60 dBm				
70 - 10				
-70 dBm				
CF 2.437 GHz		1001 pt	5	Span 60.0 MHz
1arker				
Type Ref Trc	X-value	Y-value	Function	Function Result
M1 1	2.467 GHz	-42.65 dBm		
T1 1	2.4188382 GHz	-0.35 dBm	Occ Bw	36.203796204 MHz
T2 1	2.455042 GHz	-0.74 dBm		
			Ready	03.09.2022

Date: 3.SEP.2022 06:12:10

Spectrum							(₿
Ref Level	20.00 dBm	Offset	7.75 dB 😑	RBW 500 kHz				-
Att	30 dB	SWT	15.1 µs 👄	VBW 2 MHz	Mode Auto FFT			
SGL Count 1	.00/100							
∋1Pk Max								
					M1[1]		-34.52 d	
10 dBm			_				2.4820000	
	т	· · · ·			Occ Bw		36.263736264 M	4H2
0 dBm	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	-Amy /	mont	V May ~~	7	
	- 1			I V		V	N I	
-10 dBm				Y				
-20 dBm								
-30 dBm								
	20/						how a	ろ
-40 dBm	~0						v w	u
-50 dBm-+								
-60 dBm								
-70 dBm								
CF 2.452 GI	Ηz			1001 pt	s	•	Span 60.0 M	Hz
Marker								
Type Ref	Trc	X-valı	ie	Y-value	Function	Fun	ction Result	
M1	1		482 GHz	-34.52 dBm				
T1	1		382 GHz	-0.31 dBm	Occ Bw		36.263736264 M	Hz
T2	1	2.4701	019 GHz	-0.46 dBm				_
	Y				Ready		03.09.2022	

OBW NVNT n40 2452MHz Ant1

Page 69 of 79

Date: 3.SEP.2022 06:15:22

Note: Both antennas have been tested and only the worst data of antenna 1 is shown.

8. BAND EDGE CHECK

8.1. Test limits

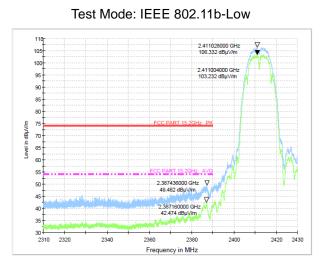
Please refer RSS-GEN & FCC PART 15: 15.247

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits and RSS-GEN limits.

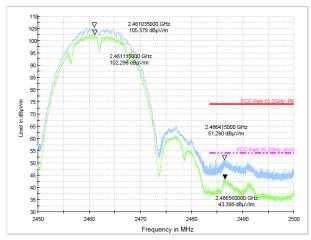
8.2. Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

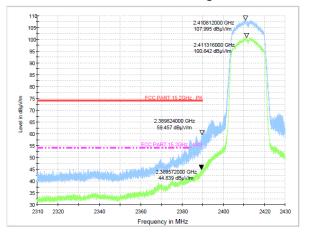
- 8.2.1 Put the EUT on a 1.5m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 10Hz, RMS detector for AV value.

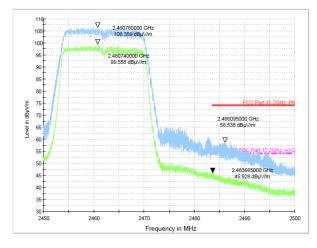

8.3. Test Setup

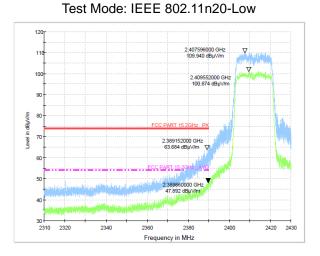
Same as 5.2.2.


8.4. Test Results

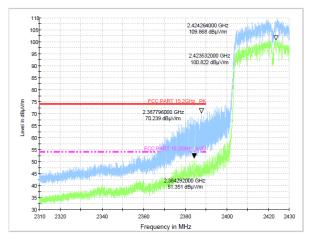
PASS.


Detailed information please see the following page.

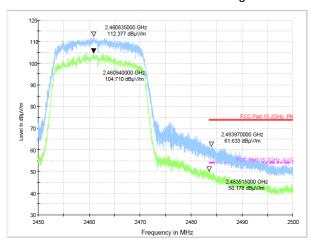

Test Mode: IEEE 802.11b-High

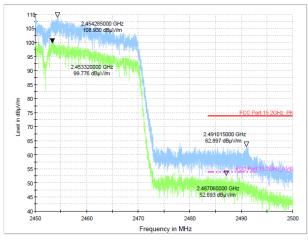


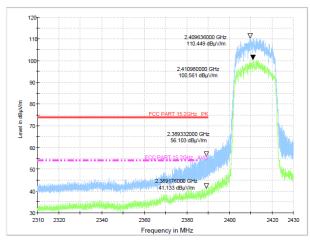
Test Mode: IEEE 802.11g-Low



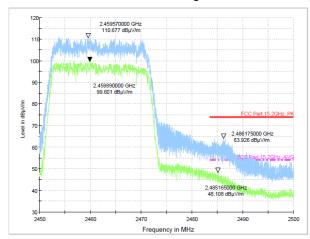
Test Mode: IEEE 802.11g-High

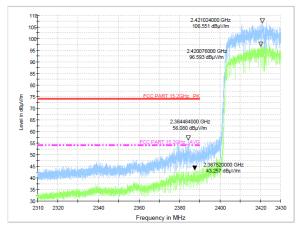



Test Mode: IEEE 802.11n40-Low

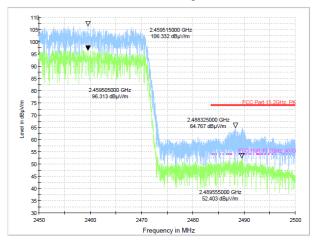


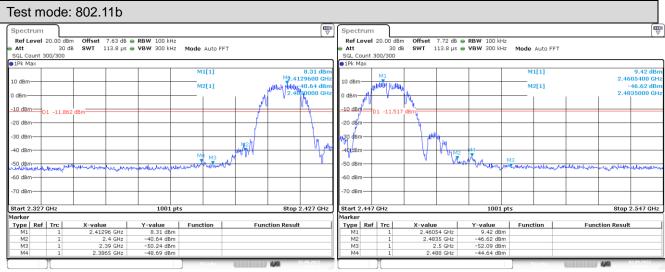
Test Mode: IEEE 802.11n20-High


Test Mode: IEEE 802.11n40-High



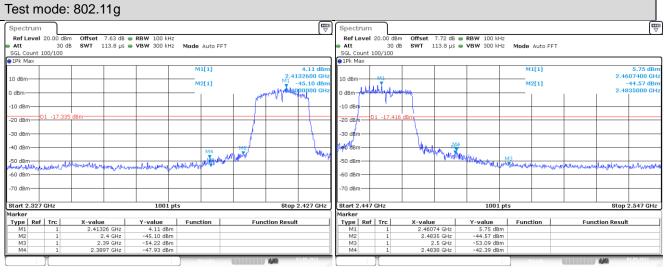
Test Mode: IEEE 802.11ax20-Low


Test Mode: IEEE 802.11ax20-High



Test Mode: IEEE 802.11ax40-Low

Test Mode: IEEE 802.11ax40-High



Date: 2.SEP.2022 12:49:48

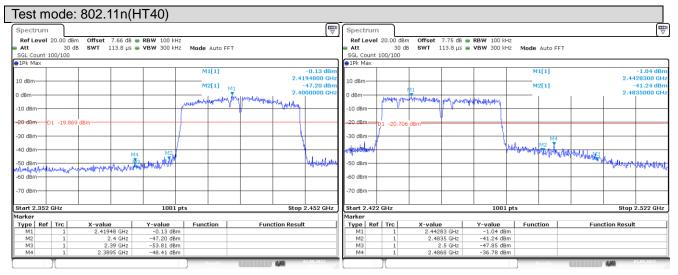
Lowest channel

Date: 2.SEP.2022 13:18:47

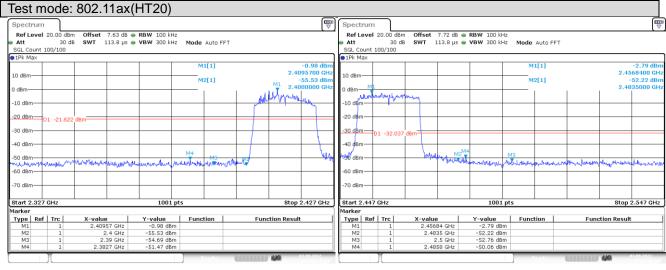
Highest channel

Date: 3.SEP.2022 05:53:11

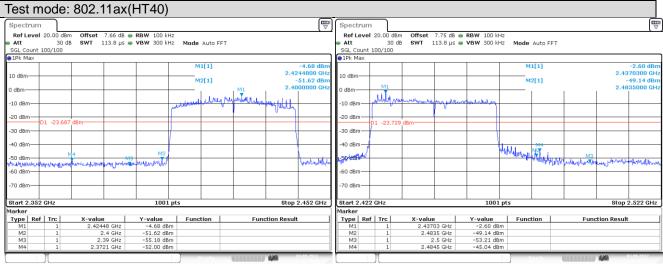
Lowest channel


Date: 3.SEP.2022 05:58:08

Highest channel


Lowest channel

Highest channel


Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

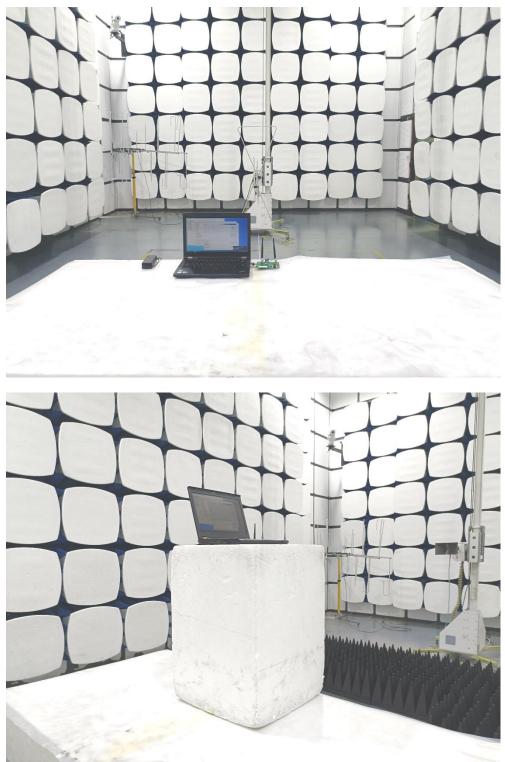
Note: 1. Except for mode b/g, other modes test the MIMO status. 2. Only the worst data of each pattern is reflected.

9. ANTENNA REQUIREMENT

9.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction


The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

9.3. Results

The use of an antenna that is uniquely coupled to the intended radiator shall be considered sufficient to comply with the provisions of this section.

10. TEST SETUP PHOTO

10.1. Photos of Radiated emission

10.2.Photos of Conducted Emission test

-----END OF REPORT------