



Note: 1. Except for mode a, other modes test the MIMO status.
2. Mode a represents the worst data of antenna 1

## Band4

802.11a


Low: 5745 MHz


High: 5825 MHz
802.11n(HT20)


Low: 5745 MHz


High: 5825 MHz
802.11ac(HT20)


Low: 5745MHz


High: 5825 MHz
802.11ax20


Low: 5745 MHz
High: 5825 MHz
802.11n(HT40)


Low: 5755 MHz


High: 5795 MHz
802.11ac(HT40)


Low: 5755 MHz


High: 5795 MHz
802.11ax40


Low: 5755 MHz
802.11ac(HT80)


5775 MHz


High: 5795 MHz
802.11ax80


5775 MHz

Note: 1. Except for mode a, other modes test the MIMO status.
2. Mode a represents the worst data of antenna 1

### 4.7 Radiated Emission

| Test Requirement: | FCC Part15 C Section 15.209 and 15.205 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Test Method: | ANSI C63.10:2013 |  |  |  |  |
| Test Frequency Range: | 30 MHz to 40GHz |  |  |  |  |
| Test site: | Measurement Distance: 3m (Semi-Anechoic Chamber) |  |  |  |  |
| Receiver setup: | Frequency | Detector | RBW | VBW | Value |
|  | $\begin{gathered} 30 \mathrm{MHz}- \\ 1 \mathrm{GHz} \\ \hline \end{gathered}$ | Quasi-peak | 100KHz | 300 KHz | Quasi-peak Value |
|  | Above 1GHz | Peak | 1 MHz | 3 MHz | Peak Value |
|  |  | AV | 1 MHz | 3 MHz | Average Value |
| Limit: | Frequency |  | Limit (dBuV/m @3m) |  | Remark |
|  | $30 \mathrm{MHz}-88 \mathrm{MHz}$ |  | 40.0 |  | Quasi-peak Value |
|  | $88 \mathrm{MHz}-216 \mathrm{MHz}$ |  | 43.5 |  | Quasi-peak Value |
|  | $216 \mathrm{MHz}-960 \mathrm{MHz}$ |  | 46.0 |  | Quasi-peak Value |
|  | $960 \mathrm{MHz}-1 \mathrm{GHz}$ |  | 54.0 |  | Quasi-peak Value |
|  | Above 1GHz |  | 74.0 |  | Peak Value |
|  |  |  | 54.0 |  | Average Value |

Test Procedure:
Substitution method was performed to determine the actual ERP emission levels of the EUT.
The following test procedure as below:
1>. Below 1 GHz test procedure:

1. The EUT was placed on the top of a rotating table $(0.8 \mathrm{~m}$ for below 1 GHz and 1.5 meters for above 1 GHz ) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.
Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2>.Above 1 GHz test procedure:

1. On the test site as test setup graph above,the EUT shall be placed at the 1.5 m support on the turntable and in the position closest to normal use as declared by the provider.
2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
4. The test antenna shall be raised and lowered from 1 m to 4 m until a

|  | maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through $360^{\circ}$ in the horizontal plane, until the maximum signal level is detected by the measuring receiver. <br> 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. <br> 6. Remove the transmitter and replace it with a substitution antenna <br> 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. <br> 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. <br> 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: $\operatorname{EIRP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-$ cable loss $(\mathrm{dB})+$ antenna gain $(\mathrm{dBi})$ where: <br> Pg is the generator output power into the substitution antenna. |
| :---: | :---: |
| Test setup: | Below 1GHz |
|  | Above 1GHz |


|  |  |
| :---: | :---: |
| Test Instruments: | Refer to section 5.10 for details |
| Test mode: | Refer to section 5.3 for details |
| Test results: | Pass |

## Measurement Data:

## Below 1GHz



Remark: All modes have been tested, and only worst data of ax20 mode, Channel 5200 MHz was listed in this report.

## Above 1GHz:

## Band 1












Note: 1. Except for mode a, other modes test the MIMO status.

Band2











Note: 1. Except for mode a, other modes test the MIMO status.

## Band3










n20 5700MHz



Note: 1. Except for mode a, other modes test the MIMO status.

## Band4












Note: 1. Except for mode a, other modes test the MIMO status.
2. Mode a represents the worst data of antenna 1

From 18G to 40 GHz Conclusion: PASS


Remark: 1.All modes have been tested, and only worst data of a mode, Channel 5200 MHz was listed in this 2. Mode a represents the worst data of antenna 1

### 4.8 Frequency stability

| Test limit | Manufacturers of U-NII devices are responsible for ensuring frequency <br> stability such that an emission is maintained within the band of operation <br> under all conditions of normal operation as specified in the user's <br> manual. |
| :---: | :--- |
| Test results: | Pass |

## Measurement Data:

| Mode | Voltage <br> (V) | $\begin{gathered} \text { FHL } \\ (5180 \mathrm{MHz}) \end{gathered}$ | Deviation (KHz) | $\begin{gathered} \text { FHH } \\ (5240 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Band 1 } \\ (5150-5250 \\ \mathrm{MHz}) \end{gathered}$ | DC 3.0V | 5179.996 | 4 | 5239.991 | 9 |
|  | DC 3.3V | 5179.997 | 3 | 5239.995 | 5 |
|  | DC 3.6V | 5179.997 | 3 | 5239.993 | 7 |
| Mode | Voltage (V) | $\begin{gathered} \mathrm{FHL} \\ (5260 \mathrm{MHz}) \end{gathered}$ | Deviation (KHz) | $\begin{gathered} \text { FHH } \\ (5320 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { Band } 2 \\ (5250-5350 \\ \mathrm{MHz}) \end{gathered}$ | DC 3.0V | 5259.994 | 6 | 5229.998 | 2 |
|  | DC 3.3V | 5259.994 | 6 | 5229.995 | 5 |
|  | DC 3.6V | 5259.992 | 8 | 5229.998 | 2 |
| Mode | Voltage (V) | $\begin{gathered} \mathrm{FHL} \\ (5500 \mathrm{MHz}) \end{gathered}$ | Deviation $(\mathrm{KHz})$ | $\begin{gathered} \mathrm{FHH} \\ (5700 \mathrm{MHz}) \end{gathered}$ | Deviation (KHz) |
| $\begin{gathered} \text { Band } 3 \\ (5470-5725 \\ \mathrm{MHz}) \end{gathered}$ | DC 3.0V | 5499.991 | 9 | 5699.987 | 13 |
|  | DC 3.3V | 5499.997 | 3 | 5699.986 | 14 |
|  | DC 3.6V | 5499.992 | 8 | 5699.987 | 13 |
| Mode | Voltage (V) | $\begin{gathered} \mathrm{FHL} \\ (5745 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { FHH } \\ (5825 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { Band 4 } \\ (5725-5850 \\ \mathrm{MHz}) \end{gathered}$ | DC 3.0V | 5744.991 | 9 | 5824.989 | 11 |
|  | DC 3.3V | 5744.991 | 9 | 5824.990 | 10 |
|  | DC 3.6V | 5744.988 | 12 | 5824.990 | 10 |


| Mode | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { FHL } \\ (5180 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ | $\begin{gathered} \text { FHH } \\ (5240 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Band 1 } \\ (5150-5250 \\ \mathrm{MHz}) \end{gathered}$ | $0^{\circ} \mathrm{C}$ | 5179.992 | 8 | 5239.993 | 7 |
|  | $+10^{\circ} \mathrm{C}$ | 5179.998 | 2 | 5239.993 | 7 |
|  | $+20^{\circ} \mathrm{C}$ | 5179.995 | 5 | 5239.997 | 3 |
|  | $+30^{\circ} \mathrm{C}$ | 5179.995 | 5 | 5239.995 | 5 |
|  | $+40^{\circ} \mathrm{C}$ | 5179.997 | 3 | 5239.995 | 5 |
|  | $+50^{\circ} \mathrm{C}$ | 5179.994 | 6 | 5239.998 | 2 |
|  | $+60^{\circ} \mathrm{C}$ | 5179.997 | 3 | 5239.994 | 6 |
|  | $+70^{\circ} \mathrm{C}$ | 5179.995 | 5 | 5239.998 | 2 |
| Mode | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{FHL} \\ (5260 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ | $\begin{gathered} \text { FHH } \\ (5320 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ |
| $\begin{gathered} \text { Band 2 } \\ (5250-5350 \\ \mathrm{MHz}) \end{gathered}$ | $0^{\circ} \mathrm{C}$ | 5259.991 | 9 | 5229.994 | 6 |
|  | $+10^{\circ} \mathrm{C}$ | 5259.996 | 4 | 5229.997 | 3 |
|  | $+20^{\circ} \mathrm{C}$ | 5259.994 | 6 | 5229.991 | 9 |
|  | $+30^{\circ} \mathrm{C}$ | 5259.998 | 2 | 5229.998 | 2 |
|  | $+40^{\circ} \mathrm{C}$ | 5259.997 | 3 | 5229.997 | 3 |
|  | $+50^{\circ} \mathrm{C}$ | 5259.993 | 7 | 5229.993 | 7 |
|  | $+60^{\circ} \mathrm{C}$ | 5259.993 | 7 | 5229.997 | 3 |
|  | $+70^{\circ} \mathrm{C}$ | 5259.997 | 3 | 5229.994 | 6 |
| Mode | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{FHL} \\ (5500 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ | $\begin{gathered} \text { FHH } \\ (5700 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ |
| $\begin{gathered} \text { Band } 3 \\ (5470-5725 \\ \mathrm{MHz}) \end{gathered}$ | $0^{\circ} \mathrm{C}$ | 5499.994 | 6 | 5699.998 | 2 |
|  | $+10^{\circ} \mathrm{C}$ | 5499.993 | 7 | 5699.994 | 6 |
|  | $+20^{\circ} \mathrm{C}$ | 5499.996 | 4 | 5699.997 | 3 |
|  | $+30^{\circ} \mathrm{C}$ | 5499.995 | 5 | 5699.997 | 3 |
|  | $+40^{\circ} \mathrm{C}$ | 5499.997 | 3 | 5699.997 | 3 |
|  | $+50^{\circ} \mathrm{C}$ | 5499.993 | 7 | 5699.997 | 3 |
|  | $+60^{\circ} \mathrm{C}$ | 5499.993 | 7 | 5699.997 | 3 |
|  | $+70^{\circ} \mathrm{C}$ | 5499.996 | 4 | 5699.996 | 4 |
| Mode | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{FHL} \\ (5745 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ | $\begin{gathered} \text { FHH } \\ (5825 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \hline \text { Deviation } \\ (\mathrm{KHz}) \end{gathered}$ |
| $\begin{gathered} \text { Band 4 } \\ (5725-5850 \\ \mathrm{MHz}) \end{gathered}$ | $0^{\circ} \mathrm{C}$ | 5744.992 | 8 | 5824.993 | 7 |
|  | $+10^{\circ} \mathrm{C}$ | 5744.996 | 4 | 5824.995 | 5 |
|  | $+20^{\circ} \mathrm{C}$ | 5744.992 | 8 | 5824.993 | 7 |
|  | $+30^{\circ} \mathrm{C}$ | 5744.995 | 5 | 5824.993 | 7 |
|  | $+40^{\circ} \mathrm{C}$ | 5744.992 | 8 | 5824.994 | 6 |
|  | $+50^{\circ} \mathrm{C}$ | 5744.998 | 2 | 5824.996 | 4 |
|  | $+60^{\circ} \mathrm{C}$ | 5744.995 | 5 | 5824.997 | 3 |
|  | $+70^{\circ} \mathrm{C}$ | 5744.998 | 2 | 5824.997 | 3 |

