

PRODUCT SPECIFICATION

6252B-SR

Wi-Fi Dual-band 2x2 11ax + Bluetooth 5.2

Combo Module

Version:v1.2

6252B-SR Module Datasheet

Ordering Information	Part NO.	Description
	FG6252BSRX-01	RTL8852BS ,a/b/g/n/ac/ax,Wi-Fi+BT5.2,2T2R,SDIO+UAR
	FG0232B3RX-01	T, 3 Antenna ,no shielding

customer: _	1/9		
1			
Customer P/	N:		
Signature:			

Office: 14th floor, Block B, phoenix zhigu, Xixiang Street, Baoan District, Shenzhen

Factory: NO.8, Litong RD., Liuyang Economic & Technical Development Zone, Changsha, CHINA

TEL:+86-755-2955-8186

Website:www.fn-link.com

Date:

CONTENTS

1. General Description	5
1.1 Introduction	5
1.2 Description	5
2. Features	6
3. Block Diagram	7
4. General Specification	8
4.1 WI-FI 2.4GHz Specification	8
4.2 WI-FI 5GHz Specification	9
4.3 Bluetooth Specification	11
5. ID setting information	11
6. Pin Definition	
6.1 Pin Outline	12
6.2 Pin Definition details	
7. Electrical Specifications	
7.1 Power Supply DC Characteristics	
7.2 Interface Circuit time series	
7.2.1 Power on sequence	15
7.2.2 SDIO Pin Description.	15
7.2.3 SDIO Default Mode Timing Diagram	
7.2.4 SDIO High Speed Mode Timing Diagram	17
7.2.5 SDIO Bus Timing Specifications in SDR Modes	
7.2.6 SDIO Bus Timing Specifications in DDR50 Mode	21
8. Size reference	22
8.1 Module Picture	22
8.2 Marking Description	23
8.3 Physical Dimensions	23
8.4 Layout Recommendation	24
9. The Key Material List	
10. Reference Design	
11. Recommended Reflow Profile	
12. Package	
12.1 Reel	
12.2 Carrier Tape Detail	
12.3 Packaging Detail	
13. Moisture sensitivity	28

Revision History

Version	Date	Contents of Revision Change	Preparde	Checked	Approved
V1.0	2021/08/27	Initial Release	FC	Lgp	Szs
V1.1	2021/7/30	Modify DBDC to DBSC	FC	LXY	QJP
V1.2	2021/11/5	Update the specification format	FC	LXY	QJP
					. 2
					: 24
				-O	116
			-	150	
			11		
			No.		
				397	
		1-1			
		4 10			
		See Stranding			
		Samuel State of the State of th			
الواي					
7					

1. General Description

1.1 Introduction

Fn-Link Technology would like to announce a low-cost and low-power consumption module which has all of the Wi-Fi functionalities. It is a highly-integrated IEEE 802.11 a/b/g/n/ac/ax MAC/Baseband/RF WLAN single chip. For Wireless LAN operation. The integrated module provides SDIO interface for Wi-Fi. The module provides simple legacy and 20MHz/40MHz/80MHz co-existence mechanism to ensure backward and network compatibility.

The wireless module complies with IEEE 802.11 a/b/g/n/ac/ax 2x2 MIMO standard and the speed can achieve up to 1201Mbps with dual stream in 802.11ax. The integrated module provides SDIO interface for Wi-Fi, UART / PCM interface for Bluetooth.

This combo module is a total solution for a combination of Wi-Fi and Bluetooth V5.2 technologies. The module is specifically developed for all portable devices.

1.2 Description

	20 ²⁷
Model Name	6252B-SR
Product Description	Support Wi-Fi/Bluetooth functionalities
Dimension	L x W x H: 15 x 13 x1.8 mm
Wi-Fi Interface	Support SDIO V1.0/V2.0/V3.0
BT Interface	UART / PCM
OS supported	Android /Linux/iOS /WIN10
Operating temperature	0°C to 70°C
Storage temperature	-40°C to 85°C

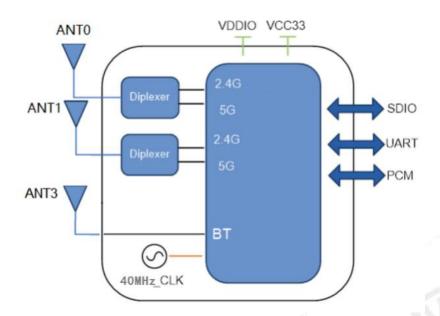
2. Features

General

- Highly integrated wireless local area network (WLAN) system-on-chip (SOC) for 802.11a/b/g/n/ac/ax WLAN applications
- Supports Dual band Single concurrent (2.4G/5G).

PHY Features

- Dual-stream spatial multiplexing up to 1201 Mbps data rate.
- Supports 20/40MHz at 2.4GHz and supports 20/40/80MHz at 5GHz
- Supports Transmit Beamforming


Host Interface

■ Supports low power SDIO3.0(complies with SDIO 1.1/2.0) interface for WLAN and UART/PCM interface for Bluetooth.

Bluetooth Features

- Supports Bluetooth system (BT5.2 Logo Compliant)
- Supports WLAN/Bluetooth coexistence
- Compatible with Bluetooth v2.1+EDR.
- Dual Mode support: Simultaneous LE and BR/EDR
- BT host digital interface:
 - HCI UART
 - PCM for audio data

3. Block Diagram

--- 3 antenna version

4. General Specification

4.1 WI-FI 2.4GHz Specification

Feature	Description				
WLAN Standard	IEEE 802.11 b/g/n/ac/ax Wi-Fi compliant				
Frequency Range	2.412 GHz ~ 2.462 GHz (2.4 GHz ISM Band)				
Number of Channels	2.4GHz: Ch1 ~ Ch11				
Test Items	Typical Value	EVM			
	$802.11b / 11Mbps : 22dBm \pm 2 dB$	EVM ≤ -10dB			
	$802.11g / 54Mbps : 20dBm \pm 2 dB$	EVM ≤ -25dB			
	$802.11n / MCS7 : 22dBm \pm 2 dB$	EVM ≤ -28dB			
Output Power ¹	802.11ac vHT20 MCS8: 20dBm ± 2 dB	EVM ≤ -30dB			
	802.11ac vHT40 MCS9: $20dBm \pm 2 dB$	EVM ≤ -32dB			
	802.11ax HE20 MCS11: 20dBm ± 2 dB	EVM ≤ -35dB			
	802.11ax HE40 MCS11: 19dBm ± 2 dB	EVM ≤ -35dB			
Spectrum Mask	Meet with IEEE standard				
Freq. Tolerance	± 20 ppm	Sagar Paris			
SISO Receive Sensitivity	- 1Mbps PER @ -94 dBm	≤-83			
(11b,20MHz) @8% PER	- 11Mbps PER @ -85 dBm	≤-76			
SISO Receive Sensitivity	- 6Mbps PER @ -90 dBm	≤-85			
(11g,20MHz) @10% PER	- 54Mbps PER @ -71 dBm	≤-68			
SISO Receive Sensitivity	- MCS=0 PER @ -90 dBm	≤-85			
(11n,20MHz) @10% PER	- MCS=7 PER @ -69 dBm	≤-67			
SISO Receive Sensitivity	- MCS=0 PER @ -87 dBm	≤-82			
(11n,40MHz) @10% PER	- MCS=7 PER @ -66 dBm	≤-64			
SISO Receive Sensitivity	- MCS=0 PER @ -90 dBm	≤ -82			
(11ac,20MHz) @10% PER	- MCS=8 PER @ -66 dBm	≤ - 60			
SISO Receive Sensitivity	- MCS=0 PER @ -87 dBm	≤-79			
(11ac ,40MHz) @10% PER	- MCS=9 PER @ -59 dBm	≤-55			
SISO Receive Sensitivity	- MCS=0 PER @ -90 dBm	≤-74			
(11ax,20MHz) @10% PER	- MCS=11 PER @ -60 dBm	≤-52			
SISO Receive Sensitivity	- MCS=0 PER @ -87 dBm	≤-71			
(11ax ,40MHz) @10% PER	- MCS=11 PER @ -57 dBm	≤-49			
Maximum Input I aval	802.11b : -10 dBm				
Maximum Input Level	802.11g/n: -20 dBm				
Antenna Reference	Small antennas with 0~2.98 dBi peak gain				

4.2 WI-FI 5GHz Specification

Feature	Description				
WLAN Standard	IEEE 802.11a/n/ac/ax, Wi-Fi compliant				
Frequency Range	5.15 GHz ~ 5.850 GHz(5.0 GHz ISM Band)				
Test Items	Typical Value	EVM			
	802.11a /54Mbps: 14 dBm ± 2 dB	EVM ≤ -25dB			
	802.11n /MCS7: 13 dBm ± 2 dB	EVM ≤ -28dB			
	802.11ac vHT20 MCS8: 12 dBm ± 2 dB	EVM ≤ -30dB			
Outroot Decreed	802.11ac vHT40 MCS9: 13 dBm ± 2 dB	EVM ≤ -32dB			
Output Power ¹	802.11ac vHT80 MCS9: 12 dBm ± 2 dB	EVM ≤ -32dB			
	802.11ax HE20 MCS11: 10 dBm ± 2 dB	EVM ≤ -35dB			
	802.11ax HE40 MCS11: 11 dBm ± 2 dB	EVM ≤ -35dB			
	802.11ax HE80 MCS11: 10 dBm ± 2 dB	EVM ≤ -35dB			
Spectrum Mask	Meet with IEEE standard				
Freq. Tolerance	±20ppm	and the second s			
SISO Receive Sensitivity	- 6Mbps PER @ -90 dBm	≤-85			
(11a,20MHz) @10% PER	- 54Mbps PER @ -71 dBm	≤-68			
SISO Receive Sensitivity	- MCS=0 PER @ -90 dBm	≤-85			
(11n,20MHz) @10% PER	- MCS=7 PER @ -69 dBm	≤-67			
SISO Receive Sensitivity	- MCS=0 PER @ -87 dBm	≤-82			
(11n,40MHz) @10% PER	- MCS=7 PER @ -66 dBm	≤-64			
SISO Receive Sensitivity	- MCS=0, NSS1 PER @ -90 dBm	≤ -82			
(11ac,20MHz) @10% PER	- MCS=8, NSS1 PER @ -66 dBm	≤ - 60			
SISO Receive Sensitivity	- MCS=0, NSS1 PER @ -87 dBm	≤ -79			
(11ac ,40MHz) @10% PER	- MCS=9, NSS1 PER @ -59 dBm	≤ -55			
SISO Receive Sensitivity	- MCS=0, NSS1 PER @ -84 dBm	≤-79			
(11ac,80MHz) @10% PER	- MCS=9, NSS1 PER @ -56 dBm	≤-54			
SISO Receive Sensitivity	- MCS=0 PER @ -90 dBm	≤-74			
(11ax,20MHz) @10% PER	- MCS=11 PER @ -60 dBm	≤-52			
SISO Receive Sensitivity	- MCS=0 PER @ -87 dBm	≤-71			
(11ax ,40MHz) @10% PER	- MCS=11 PER @ -57 dBm	≤-49			
SISO Receive Sensitivity	- MCS=0 PER @ -84 dBm	≤-68			
(11ax,80MHz) @10% PER	- MCS=11 PER @ -54 dBm	≤-46			
Maximum Input Level	802.11a/n: -30 dBm				
Antenna Reference	Small antennas with 0~4.56 dBi peak gain				

^{2. 2.4}G,5G output power control by firmware power by rate table, the table value must same with module target power

¹5GHz(20MHz) Channel table

D 1	Operating Channel	Channel center
Band range	Numbers	frequencies(MHz)
	36	5180
5100MH 5240MH	40	5200
5180MHz~5240MHz	44	5220
	48	5240
	52	5260
52(0) (II - 5220) (II	56	5280
5260MHz~5320MHz	60	5300
	64	5320
	100	5500
	104	5520
	108	5540
	112	5560
	116	5580
5550MHz~5700MHz	132	5660
	136	5680
	140	5700
	149	5745
	153	5765
5745MHz~5825MHz	157	5785
	161	5805
	165	5825

Note: The Wi-Fi RF specification data will be updated in future version.

4.3 Bluetooth Specification

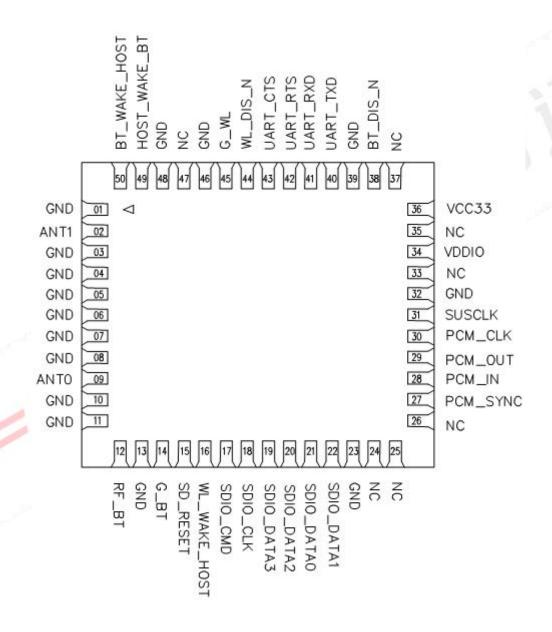
Feature	Description
General Specification	
Bluetooth Standard	Bluetooth V5.2.
Host Interface	UART
Antenna Reference	Small antennas with 0~2.98dBi peak gain
Frequency Band	2402 MHz ~ 2480 MHz
Number of Channels	79 channels
Modulation	GFSK, π/4-DQPSK, 8-DPSK

RF Specification

	Min (dBm)	Typical(dBm)	Max(dBm)	
Output Power (Class 1)	-0.468	1.202	2.872	
Sensitivity @ BER=0.1% for GFSK (1Mbps)	- 14	-92		
Sensitivity @ BER=0.01% for π/4-DQPSK (2Mbps)		-86		
Sensitivity @ BER=0.01% for 8DPSK (3Mbps)		-85		
1	GFSK (1Mbps):-20d	lBm		
Maximum Input Level	π/4-DQPSK (2Mbps) :-20dBm			
	8DPSK (3Mbps) :-20	0dBm		

Note: The Bluetooth Specification will be updated in future version.

5. ID setting information


WI-FI

Vendor ID	TBD
Product ID	TBD

6. Pin Definition

6.1 Pin Outline

< TOP VIEW >

6.2 Pin Definition details

NO. N	Name	Type	Description	Voltage	
-------	------	------	-------------	---------	--

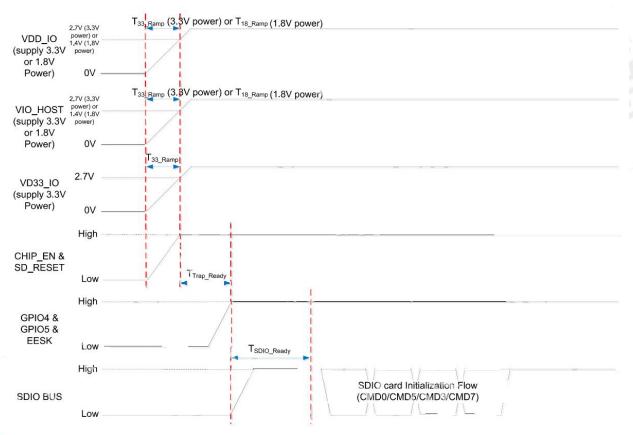
1	GND	_	Ground connections	
1	GND			
2	ANT1	I/O	RF I/O port chain 1, dual band Wi-Fi and BT (for	
2	CNID		2ant type)	
3	GND	_	Ground connections	
4	GND	_	Ground connections	
5	GND	_	Ground connections	
6	GND	_	Ground connections	
7	GND	_	Ground connections	
8	GND	_	Ground connections	
9	ANT0	I/O	RF I/O port chain0, dual band Wi-Fi	
10	GND	_	Ground connections	1
11	GND	_	Ground connections	. 2 Ok
12	NC on DT. TDV	1/0	Reserved for BT RF I/O port, used only in 3 ANT	
12	NC or BT_TRX	I/O	version	1
13	GND	_	Ground connections	2
			GPIO5. G_BT	Silver State of
14	G_BT	_	If not used keep NC.	VDDIO
		-36	Do not connect to GND.	
			Reset Pin for SDIO interface	
15	SD_RESET	I //	ON: pull high; OFF: pull low	VDDIO
		1.00	Low for disable SDIO interface	
		4	GPIO10.	
16	WL_WAKE_HOST	О	WLAN to wake-up HOST	VDDIO
17	SDIO_CMD	I/O	SDIO command line	VDDIO
18	SDIO_ CLK	I/O	SDIO clock line	VDDIO
19	SDIO DATA3	I/O	SDIO data line 3	VDDIO
20	SDIO DATA2	I/O	SDIO data line 2	VDDIO
21	SDIO DATA0	I/O	SDIO data line 0	VDDIO
22	SDIO_DATA1	I/O	SDIO data line 1	VDDIO
23	GND	_	Ground connections	
24	NC	_	No connect	
25	NC		No connect	
26	NC		No connect	
27	PCM_SYNC	I/O	PCM sync signal	VDDIO
28	PCM_IN	I	PCM data input	VDDIO
29	_	O		VDDIO
	PCM_OUT		PCM clash	
30	PCM_CLK	I/O	PCM clock	VDDIO

			- 17 - D - G1 - 1 - 1 - (22 - COTTE)	
31	31 SUSCLK		External Low Power Clock input (32.768KHz)	
			If not used keep NC	
32	GND	_	Ground connections	
33	NC	_	No connect	
34	VDDIO	P	I/O Voltage supply input 1.8V or 3.3V	1.8V or3.3V
35	NC	_	No connect	
36	VCC33	P	Main power voltage source input 3.3V	3.3V
37	NC	_	No connect	
			Enable pin for Bluetooth device	
38	BT_DIS_N	I	ON: pull high; OFF: pull low	VDDIO
			External pull low to shut down BT	1
39	GND	_	Ground connections	100
40	UART_TXD	0	Bluetooth UART interface	VDDIO
41	UART_RXD	I	Bluetooth UART interface	VDDIO
42	UART_RTS	0	Bluetooth UART interface	VDDIO
43	UART_CTS	I	Bluetooth UART interface	VDDIO
			Enable pin for WLAN Radio	200
44	WL_DIS_N		ON: pull high; OFF: pull low	VDDIO
	A		External pull low to disable WLAN Radio	
		- 11	GPIO4, G_WL	
45	G_WL		If not used keep NC.	VDDIO
		4	Do not pull high on this pin.	
46	GND	1-0	Ground connections	
47	NC	_	No connect	
48	GND		Ground connections	
49	HOST_WAKE_BT	I	HOST wake-up Bluetooth device	VDDIO
50	BT_WAKE_HOST	0	Bluetooth device to wake-up HOST	VDDIO
		l	<u> </u>	1

P:POWER I:INPUT O:OUTPUT VDDIO:3.3V

7. Electrical Specifications

7.1 Power Supply DC Characteristics


	Min.	Тур.	Max.	Unit
Operating Temperature	0	25	70	deg.C

←□-LĨ□ ←欧智通 625	52B-SR
------------------------	--------

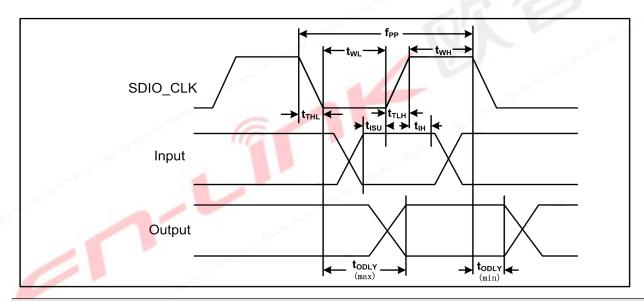
VCC33	3.15	3.3	3.45	V
VDDIO (3.3V)	-	3.3	3.6	V
VDDIO (1.8V)	1.68	1.8	1.98	V

7.2 Interface Circuit time series

7.2.1 Power on sequence

	Min.	Typical	Max.	Unit	Description
T18 Ramp	0.5	1.5	5	ms	The 1.8V power ramp up duration.
T33 Ramp	0.5	1.5	5	ms	The 3.3V power ramp up duration.
TTrap_Ready	400	500	X	ms	WLAN eFuse autoload. TTrap_Ready = 500ms (Typical)
TSDIO_Ready	10	20	X	ms	SDIO Not Ready Duration. In this state, the RTL8852BS may respond to commands without the ready bit being set. After the ready bit is set, the host will initiate complete card detection procedure.

7.2.2 SDIO Pin Description

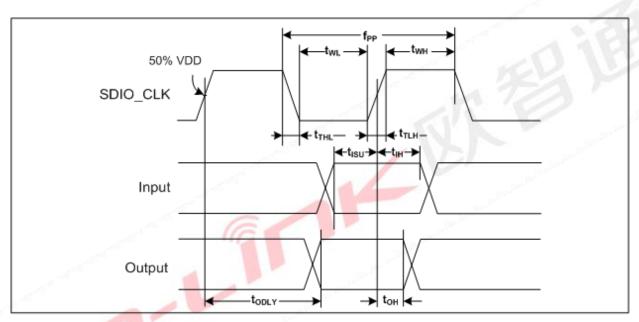

The module supports SDIO version 3.0 for all 1.8V 4-bit UHSI speeds: SDR50(100 Mbps), SDR104(208MHz) and DDR50(50MHz, dual rates) in addition to the 3.3V default speed(25MHz) and high speed (50 MHz). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band'

interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

SDIO Pin Description

	SD 4-Bit Mode					
DATA0	Data Line 0					
DATA1 Data Line 1 or Interrupt						
DATA2	Data Line 2 or Read Wait					
DATA3	Data Line 3					
CLK	Clock					
CMD	Command Line					

7.2.3 SDIO Default Mode Timing Diagram



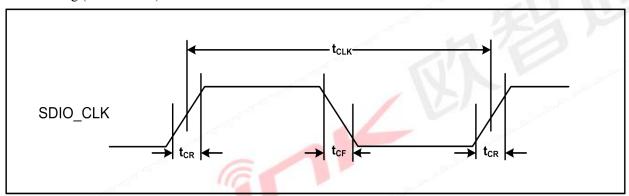
Parameter	Symbol	Minimum	Typical	Maximum	Unit		
SDIO CLK(All values are referred to minimum VIH and maximum VILb)							
Frequency - Data Transfer mode	fPP	0	-	25	MHz		
Frequency - Identification mode	fOD	0	-	400	kHz		
Clock low time	tWL	10	-	-	ns		
Clock high time	tWH	10	-	-	ns		
Clock rise time	tTLH	-	-	10	ns		
Clock low time	tTHL	-	-	10	ns		
Inputs:CMD, DAT(referenced to CLK)							
Input setup time	tISU	5	-	-	ns		
Input hold time	tIH	5	-	-	ns		

FD-LÎDK 欧智通					6252B-SR
Outputs:CMD, DAT(referenced to CLK)					
Output delay time - Data Transfer mode	tODLY	0	-	14	ns
Output delay time - Identification mode	tODLY	0	-	50	ns

a. Timing is based on $CL \le 40$ pF load on CMD and Data.

7.2.4 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit		
SDIO CLK(all values are referred to minimum VIH and maximum VIL ^b)							
Frequency - Data Transfer mode	fPP	0	-	50	MHz		
Frequency - Identification mode	fOD	0	-	400	kHz		
Clock low time	tWL	7	-	-	ns		
Clock high time	tWH	7	-	-	ns		
Clock rise time	tTLH	-	-	3	ns		
Clock low time	tTHL	-	-	3	ns		
Inputs:CMD, DAT(referenced to CLK)							
Input setup time	tISU	6	-	-	ns		
Input hold time	tIH	2	-	-	ns		
Outputs:CMD, DAT(referenced to CLK)							
Output delay time - Data Transfer mode	tODLY	-	-	14	ns		
Output delay time - Identification mode	tODLY	2.5	-	-	ns		

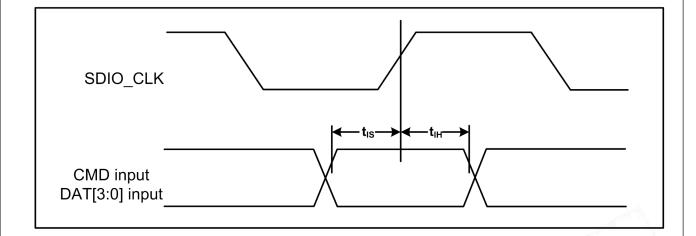

b. $Min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

FD-LĨDK 欧智通					6252B-SR
Total system capacitance(each line)	CL	-	-	40	pF

- a. Timing is based on CL \leq 40 pF load on CMD and Data.
- b. $Min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

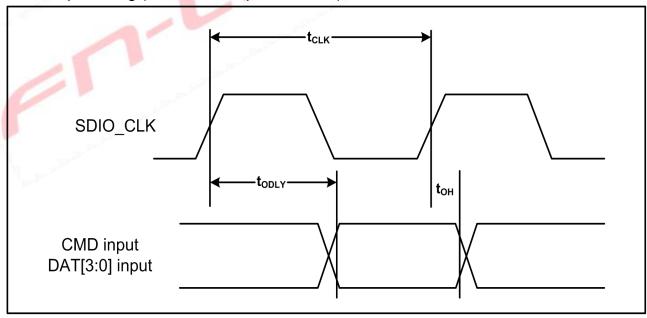
7.2.5 SDIO Bus Timing Specifications in SDR Modes

Clock timing (SDR Modes)



Parametwer	Symbol	Minimum	Maximum	Unit	Comments
<u>-</u> 46	t _{CLK}	40	- 250	ns	SDR12 mode
		20		ns	SDR25 mode
		10	-	ns	SDR50 mode
		4.8	-	ns	SDR104 mode
-300	t _{CR} , t _{CF}	=	0.2 × t _{CLK}	ns	t _{CR} , t _{CF} < 2.00 ns (max)@100 MHz,
					C _{CARD} = 10 pF
					t_{CR} , t_{CF} < 0.96 ns (max)@208 MHz,
					C _{CARD} = 10 pF
Clock duty	-	30	70	%	-

Card Input timing (SDR Modes)

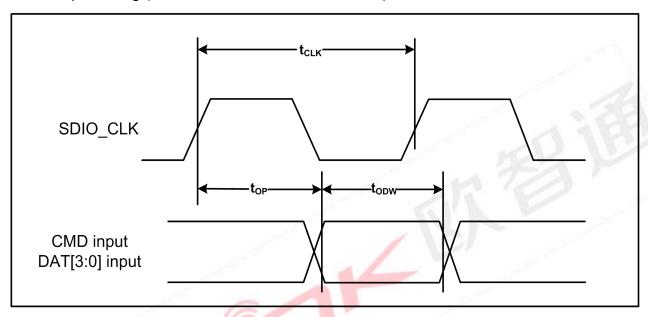

6252B-SR

Symbol	Minimum	Maximum	Unit	Comments	
SDR104 M	ode			JE'S	
t _{IS}	1.70ª	-	ns	C _{CARD} = 10pF, VCT = 0.975V	2
t _{IH}	0.80	-	ns	C _{CARD} = 5pF, VCT = 0.975V	
SDR50 Mo	de			/ \75/	jan jan ^{dar}
t _{IS}	3.00	-	ns	C _{CARD} = 10pF, VCT = 0.975V	
t _{IH}	0.80	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ns	C _{CARD} = 5pF, VCT = 0.975V	

a. SDIO 3.0 specification value is 1.40 ns.

Card output timing (SDR Modes up to 100MHz)

|--|


FD-LÎDK 欧智通

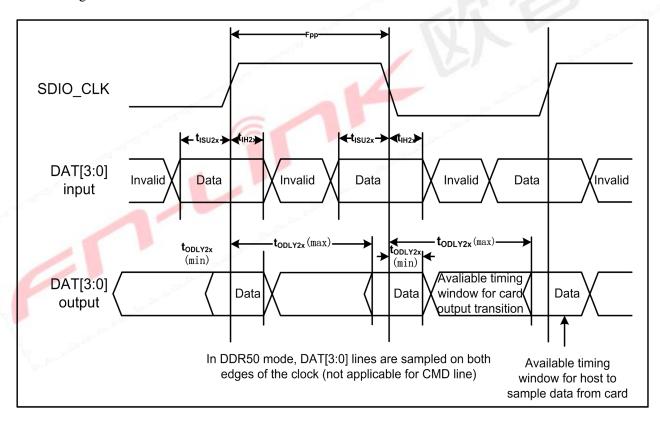
6252B-SR

t _{ODLY}	-	7.85 ^a	ns	t _{CLK} ≥10 ns C _L =30 pF using driver type B for SDR50
todly	-	14.0	ns	t _{CLK} ≥20 ns C _L =40 pF using for SDR12, SDR25
tон	1.5	-	ns	Hold time at the t _{ODLY} (min) CL=15 pF

a. SDIO 3.0 specification value is 7.5 ns.


Card output timing (SDR Modes 100MHz to 208MHz)

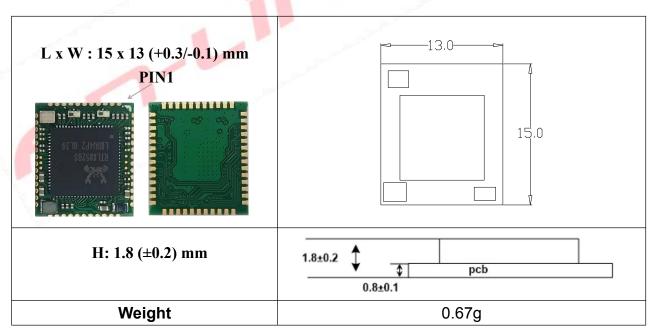
Symb	ol Minimum	Maximum	Unit	Comments
t _{OP}	0	2	UI	Card output phase
$\triangle t_{OP}$	-350	+1550	ps	Delay variation due to temp change after tuning
todw	0.6	- 200	UI	t _{ODW} = 2.88 ns @ 208 MHz


- $\triangle t_{OP}$ = +1550 ps for junction temperature of $\triangle t_{OP}$ = 90 degrees during operation
- $\triangle t_{OP} = -350$ ps for junction temperature of $\triangle t_{OP} = -20$ degrees during operation
- $\triangle t_{OP}$ = +2600 ps for junction temperature of $\triangle t_{OP}$ = -20 to +125 degrees during operation

7.2.6 SDIO Bus Timing Specifications in DDR50 Mode

parameter	Symbol	Minimum	Maximum	Unit	Comments
-	t _{CLK}	20	-	ns	DDR50 mode
-	t _{CR} , t _C	-	0.2 ×t _{CLK}	ns	t _{CR} , t _{CF} < 4.00 ns (max)@50 MHz,
					C _{CARD} = 10 pF
Clock duty	-	45	55	%	

Data Timing

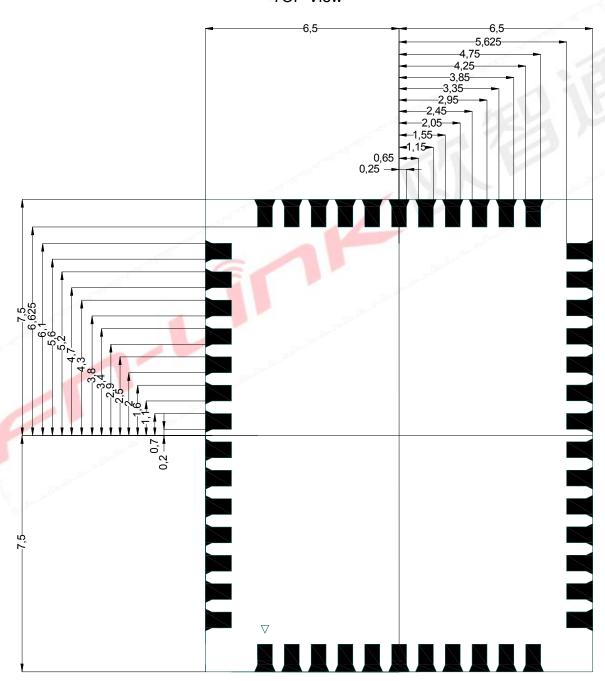

parameter	Symbol	Minimum	Maximum	Unit	Comments
Input CMD					
Input setup time	t _{ISU}	6	-	ns	C _{CARD} < 10 pF (1 Card)
Input hold time	t _{IH}	0.8	-	ns	C _{CARD} < 10 pF (1 Card)
Output CMD					

FN-LÎNK欧智	6252B-SR				
Output delay time	todly	-	13.7	ns	C _{CARD} < 30 pF (1 Card)
Output hold time	tон	1.5	-	ns	C _{CARD} < 15 pF (1 Card)
Input DAT					
Input setup time	t _{ISU2x}	3	-	ns	C _{CARD} < 10 pF (1 Card)
Input hold time	t _{IH2x}	8.0	-	ns	C _{CARD} < 10 pF (1 Card)
Output CMD					
Output delay time	t _{ODLY2x}	-	7.85 ^a	ns	C _{CARD} < 25 pF (1 Card)
Output hold time	t _{ODLY2x}	1.5	-	ns	C _{CARD} < 15 pF (1 Card)

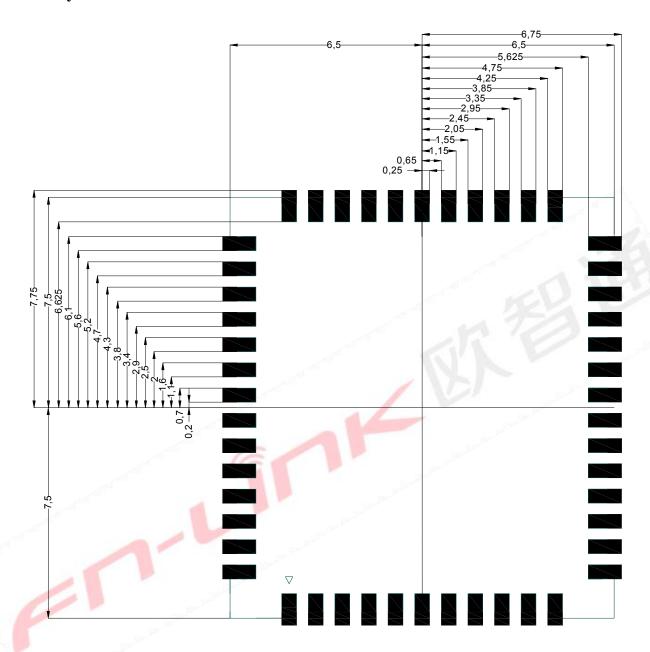
a. SDIO 3.0 specification value is 7.0 ns

8. Size reference

8.1 Module Picture

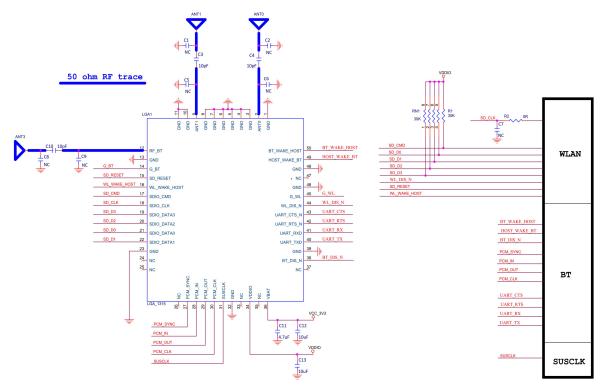


8.2 Marking Description


NA

8.3 Physical Dimensions

<TOP View>


8.4 Layout Recommendation

9. The Key Material List

Chipset	RTL8852BS	Realtek		
РСВ	FR4, 4 LAYER, GREEN	XY-PCB, GDKX, Sunlord, SLPCB		
Crystal	2016 40MHz ±10ppm	ECEC, TKD, Hosonic, JWT, TXC		
Inductor	2016 1.0uH,±20%	Sunlord, Ceaiya, Cenker		
Inductor	0603 2.2UH,±10%	Sunlord, Ceaiya, Cenker		
Diplexer	1608 Dual-band, dual-mode 2.4GHz/5GHz WLAN	Glead, Walsin, ACX, Murata, MAG.LAYERS		

10. Reference Design

C11, C12 should be placed close to pin 36 of the module C13 should be placed close to pin 34 of the module

Note:

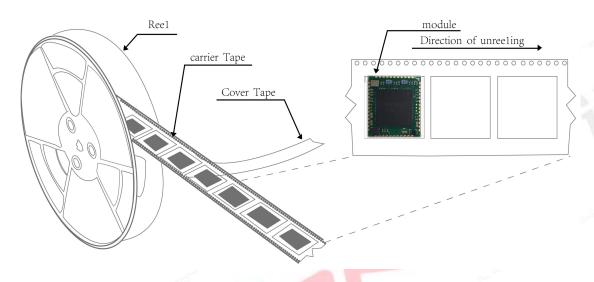
ANT3 is optional for 3 ANT vertion

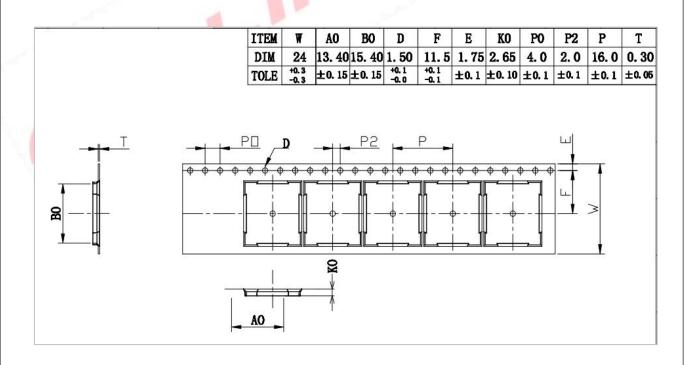
11. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

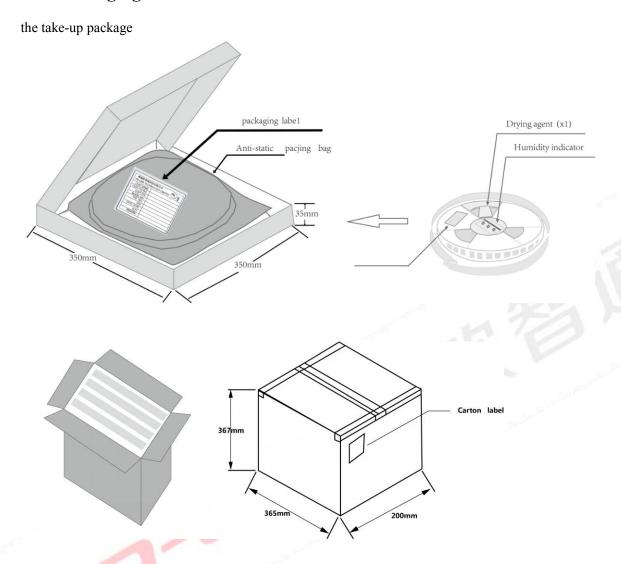
Peak Temperature: <260°C

Time within 5° C of peak temperature: ≥10s


Number of Times : ≤2 times


12. Package

12.1 Reel


A roll of 1500pcs

12.2 Carrier Tape Detail

12.3 Packaging Detail

13. Moisture sensitivity

The Modules is a Moisture Sensitive Device level 3, in according with standard IPC/JEDEC J-STD-020, take care

all the relatives requirements for using this kind of components.

Moreover, the customer has to take care of the following conditions:

- a) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).
- b) Environmental condition during the production: 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5.
- c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition
- b) "IPC/JEDEC J-STD-033A paragraph 5.2" is respected

- d) Baking is required if conditions b) or c) are not respected
- e) Baking is required if the humidity indicator inside the bag indicates 10% RH or more

14.Label

WIFI+BT Module

Model No: 6252B-SR

FCC ID: 2AATL-6252B-SR

Rating: DC3.3V ____ 600mA

Fn-Link

FCC Statements:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- --- Reorient or relocate the receiving antenna.
- --- Increase the separation between the equipment and receiver.
- ---Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- --- Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications to this unit not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment.

LABELING AND USER INFORMATION REQUIREMENTS OF THE END PRODUCT:

The final end product must be labelled in a visible area with the following "Contains TX FCC ID: 2AATL-6252B-SR" or "Contains Transmitter Module FCC ID: 2AATL-6252B-SR. If the size of the end product is smaller than 8x10cm, then additional FCC part 15.19 statement is required to be available in the users' manual: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

A user's manual for the finished product should include one of the following statements:-For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

- For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- --- Reorient or relocate the receiving antenna.
- --- Increase the separation between the equipment and receiver.
- ---Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- --- Consult the dealer or an experienced radio/TV technician for help.

The User's Manual for The finished product should include the following statements:

Any changes or modifications to this equipment not expressly approved by the OEM/Integrator may cause harmful interference and void the user's authority to operate this equipment.

RF Exposure

This device has been evaluated and shown compliant with the FCC RF Exposure limits under fixed exposure conditions (antennas are greater than 20cm from a person's body) when installed in certain specific OEM configurations.

General Statements

The module is limited to OEM installation only.

The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.

This module should be installed and operated with a minimum distance 20cm between the radiator and your body. OEM integrator shall equipped the antenna to compliance with antenna requirement part 15.203& 15.204 and must not be co-located or operating in conjunction with any other antenna or transmitters. And OEM host shall implement a Class II Permissive Change (C2PC) or a new FCC ID to demonstrate complied with FCC standard.

This module is for use with external antennas only, and the antenna is recommended as below:

Antenna Information

Ant. (Chain)	Brand	Model name	Antenna Type	Connector	Gain (dBi)	Application range
					2.98	2400-2500MHz
1,2 F		K212-10037-A	Diople	RP-SMA(M)	3.59	5150-5250MHz
	FN-LINK				3.79	5250-5350MHz
					4.56	5470-5725MHz
					3.85	5725-5850MHz

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the module.

The OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

This module support Bluetooth 2402-2480MHz & 2.4G WLAN 2412-2462MHz which compliance with part 15.247. And support 5150-5850MHz which compliance with part 15.407.

The product is typically use in industrial, household and general office / ITE and audio & video end-products.