

Page 1 of 61

TEST REPORT

Product Name	:	WIFI/BT module
Brand Mark	:	FN-LINK
Model No.	:	6223C-PUD
FCC ID	:	2AATL-6223C-PUD
Report Number	:	BLA-EMC-202107-A8402
Date of Sample Receipt	:	2021/7/22
Date of Test	:	2021/7/22 to 2021/8/12
Date of Issue	:	2021/8/12
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

HUNAN FN-LINK TECHNOLOGY LIMITED

No. 8, Litong Road, Liuyang Economic Development Zone,

Liuyang China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

meels Review by:

Approved by:

Jozu. Blue Zhong

REPORT REVISE RECORD

Version No.	Version No. Date Description	
00	2021/8/12	Original

TABLE OF CONTENTS

1	ΤE	ST SUMMARY	5
2	GE	NERAL INFORMATION	6
3	GE	NERAL DESCRIPTION OF E.U.T.	6
4	BL	OCK DIAGRAM OF EUT CONNECTION	6
5	ΤE	ST ENVIRONMENT	7
6	ΤЕ	ST MODE	
7		ASUREMENT UNCERTAINTY	
8		SCRIPTION OF SUPPORT UNIT	
-		BORATORY LOCATION	
9		ST INSTRUMENTS LIST	
10			
11	CC	ONDUCTED SPURIOUS EMISSIONS	
1	1.1	LIMITS	13
1	1.2	BLOCK DIAGRAM OF TEST SETUP	
1	1.3	TEST DATA	
12	PO	WER SPECTRUM DENSITY	15
1	2.1	LIMITS	15
1	2.2	BLOCK DIAGRAM OF TEST SETUP	15
1	2.3	TEST DATA	15
13	СС	NDUCTED PEAK OUTPUT POWER	16
1	3.1	LIMITS	16
1	3.2	BLOCK DIAGRAM OF TEST SETUP	16
1	3.3	EST DATA	17
14	MI	NIMUM 6DB BANDWIDTH	18
1	4.1	LIMITS	
1	4.2	BLOCK DIAGRAM OF TEST SETUP	
1	4.3	ТЕЅТ DATA	
15	AN	ITENNA REQUIREMENT	19
1	5.1	CONCLUSION	19

16	.1	LIMITS	0
16	.2	BLOCK DIAGRAM OF TEST SETUP	20
16	.3	PROCEDURE	20
16	.4	TEST DATA	2
17	CON	DUCTED BAND EDGES MEASUREMENT 2	4
17.	.1	LIMITS	24
17.	.2	BLOCK DIAGRAM OF TEST SETUP	24
17.	.3	TEST DATA	25
18	RAD	IATED SPURIOUS EMISSIONS	6
18.	.1	LIMITS	26
18.		BLOCK DIAGRAM OF TEST SETUP	
18.	.3	PROCEDURE	27
18.	.4	TEST Data	29
19		IATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
19.	.1	LIMITS	57
19.	.2	BLOCK DIAGRAM OF TEST SETUP	8
19.		PROCEDURE	
19.	.4	TEST DATA	0
20	APPI	ENDIX 4	4
20.	.1	MAXIMUM CONDUCTED OUTPUT POWER	4
20.	.2	-6DB BANDWIDTH	6
20.	.3	Occupied Channel Bandwidth	8
20.	.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	0
20.	.5	BAND EDGE	52
20.	.6	CONDUCTED RF SPURIOUS EMISSION	5
APPE	ENDI	X A: PHOTOGRAPHS OF TEST SETUP	9
APPE	ENDI	K B: PHOTOGRAPHS OF EUT	1

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 47 CFR Part 15, Subpart C (2013) Section 47 CFR Part 15, Subpart C 7.8.6 & Section 15.247(d) 11.11 11.11		Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass


2 GENERAL INFORMATION

Applicant	HUNAN FN-LINK TECHNOLOGY LIMITED		
Address	No. 8, Litong Road, Liuyang Economic Development Zone,Liuyang China		
Manufacturer	HUNAN FN-LINK TECHNOLOGY LIMITED		
Address	No. 8, Litong Road, Liuyang Economic Development Zone,Liuyang China		
Factory	HUNAN FN-LINK TECHNOLOGY LIMITED		
Address	No. 8, Litong Road, Liuyang Economic Development Zone,Liuyang China		
Product Name	WIFI/BT module		
Test Model No.	6223C-PUD		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.4
Software Version	V1.4
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	FPC Antenna
Antenna Gain:	2dBi(Provided by the applicant)

4 BLOCK DIAGRAM OF EUT CONNECTION

5 TEST ENVIRONMENT

Environment	Temperature	Voltage		
Normal	25°C	DC3.3V		

6 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
Transmitting mode Keep the EUT in continuously transmitting mode with modulation.			
Remark: during the test, GFSK, modulation were all pre-scanned only worse case is reported.			

7 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)				
Radiated Emission(9kHz-30MHz)	±4.34dB				
Radiated Emission(30Mz-1000MHz)	±4.24dB				
Radiated Emission(1GHz-18GHz)	±4.68dB				
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB				

8 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

10 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of	Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Shield room	SKET	833	N/A	2020/11/25	2023/11/24	
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11	
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11	
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	

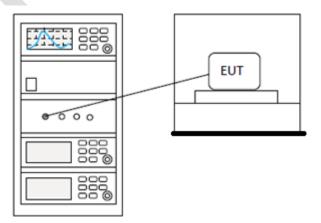
Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11

broadband AntennaSchwarzbeckVULB916800836 P:002272020/9/262022/9/26Horn AntennaSchwarzbeck9120D01892 P:003312020/9/262022/9/26AmplifierSKETPA-000318G-45N/A2020/10/162021/10/16EMI softwareEZEZ-EMCEEMC-3A1N/AN/A						
AntennaSchwarzbeckVULB9168P:002272020/9/262022/9/26Horn AntennaSchwarzbeck9120D01892 P:003312020/9/262022/9/26AmplifierSKETPA-000318G-45N/A2020/10/162021/10/1EMI softwareEZEZ-EMCEEMC-3A1N/AN/ALoop antennaSCHNARZBECKFMZB1519B001022020/9/262022/9/26ControllerSKETN/AN/AN/ACoaxial CableBlueAsiaBLA-XC-02N/AN/AN/A	Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
Horn AntennaSchwarzbeck9120DP:003312020/9/262022/9/26AmplifierSKETPA-000318G-45N/A2020/10/162021/10/1EMI softwareEZEZ-EMCEEMC-3A1N/AN/ALoop antennaSCHNARZBECKFMZB1519B001022020/9/262022/9/26ControllerSKETN/AN/AN/AN/ACoaxial CableBlueAsiaBLA-XC-02N/AN/AN/ACoaxial CableBlueAsiaBLA-XC-03N/AN/AN/A		Schwarzbeck	VULB9168		2020/9/26	2022/9/25
EMI softwareEZEZ-EMCEEMC-3A1N/AN/ALoop antennaSCHNARZBECKFMZB1519B001022020/9/262022/9/26ControllerSKETN/AN/AN/AN/ACoaxial CableBlueAsiaBLA-XC-02N/AN/AN/ACoaxial CableBlueAsiaBLA-XC-03N/AN/AN/A	Horn Antenna	Schwarzbeck	9120D		2020/9/26	2022/9/25
Loop antennaSCHNARZBECKFMZB1519B001022020/9/262022/9/26ControllerSKETN/AN/AN/AN/ACoaxial CableBlueAsiaBLA-XC-02N/AN/AN/ACoaxial CableBlueAsiaBLA-XC-03N/AN/AN/A	Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
ControllerSKETN/AN/AN/ACoaxial CableBlueAsiaBLA-XC-02N/AN/AN/ACoaxial CableBlueAsiaBLA-XC-03N/AN/AN/A	EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Coaxial CableBlueAsiaBLA-XC-02N/AN/AN/ACoaxial CableBlueAsiaBLA-XC-03N/AN/AN/A	Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Coaxial Cable BlueAsia BLA-XC-03 N/A N/A	Controller	SKET	N/A	N/A	N/A	N/A
	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable BlueAsia BLA-XC-01 N/A N/A N/A	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
		•				

Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A

Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A


Test Standard47 CFR Part 15, Subpart C 15.247Test MethodANSI C63.10 (2013) Section 7.8.6 & Section 11.11Test Mode (Pre-Scan)TXTest Mode (Final Test)TXTesterJozuTemperature25 °CHumidity60%

11 CONDUCTED SPURIOUS EMISSIONS

11.1 LIMITS

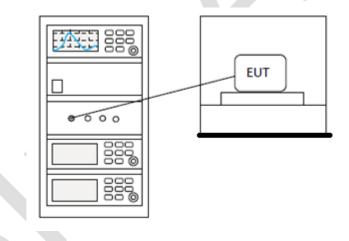
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202107-A8402 Page 14 of61

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


12 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 11.10.2		
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	ТХ		
Tester	Jozu		
Temperature	25 ℃		
Humidity	60%		

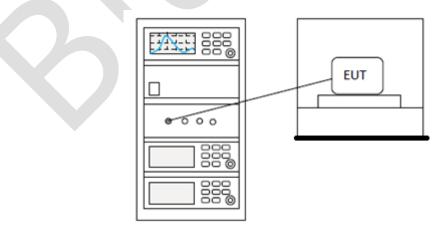
12.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


13 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%
13.1 LIMITS	

13.1 LIMITS

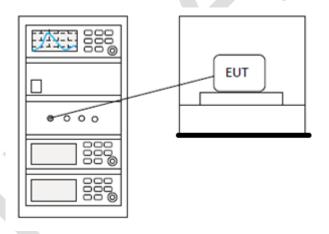
Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for \geq 50 hopping channels				
902-928	0.25 for $25 \le$ hopping channels < 50				
	1 for digital modulation				
	1 for \geq 75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5705 5950	1 for frequency hopping systems and digital				
5725-5850	modulation				

13.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202107-A8402 Page 17 of61

13.3 EST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


14 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

14.1 LIMITS

Limit: \geq 500 kHz

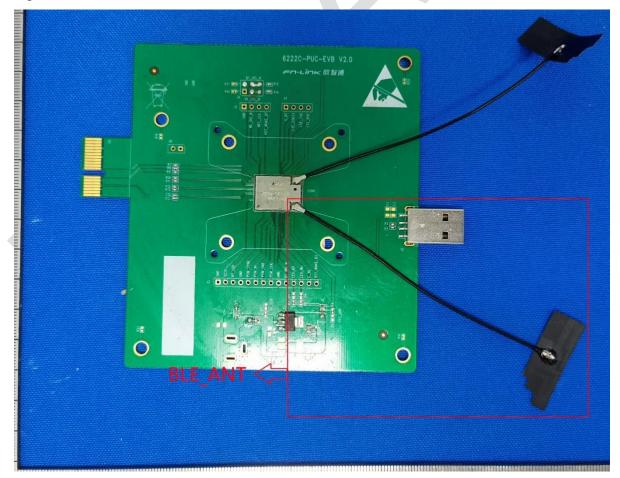
14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	N/A				


15.1 CONCLUSION

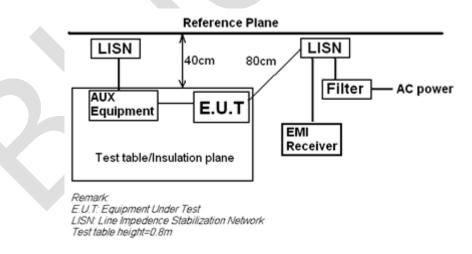
Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

16 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	Transmitting mode
Test Mode (Final Test)	Transmitting mode
Tester	Jozu
Temperature	25°C
Humidity	60%

16.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

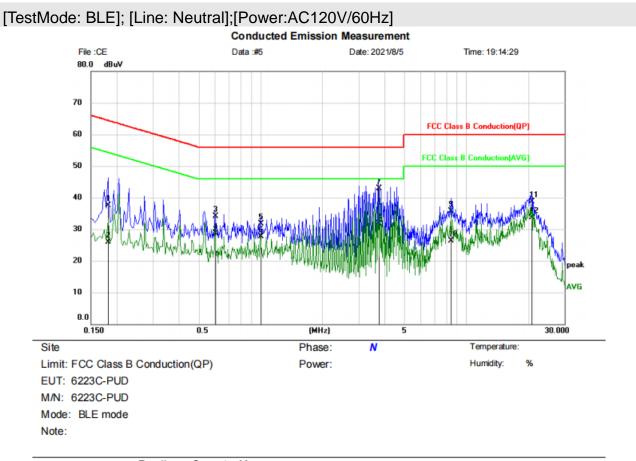
16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

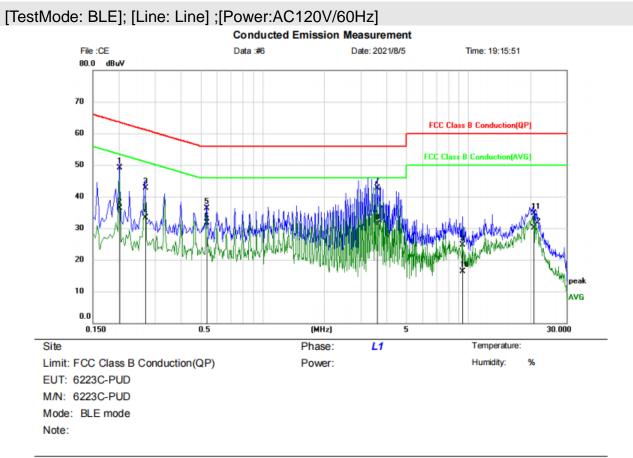
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

16.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1819	27.72	9.88	37.60	64.40	-26.80	QP	
2		0.1819	15.96	9.88	25.84	54.40	-28.56	AVG	
3		0.6020	24.33	9.74	34.07	56.00	-21.93	QP	
4		0.6020	18.98	9.74	28.72	46.00	-17.28	AVG	
5		1.0020	21.83	9.78	31.61	56.00	-24.39	QP	
6		1.0020	17.99	9.78	27.77	46.00	-18.23	AVG	
7	*	3.7420	33.11	9.85	42.96	56.00	-13.04	QP	
8		3.7420	21.81	9.85	31.66	46.00	-14.34	AVG	
9		8.4180	25.72	9.89	35.61	60.00	-24.39	QP	
10		8.4180	16.41	9.89	26.30	50.00	-23.70	AVG	
11		20.7820	28.67	10.06	38.73	60.00	-21.27	QP	
12		20.7820	23.67	10.06	33.73	50.00	-16.27	AVG	

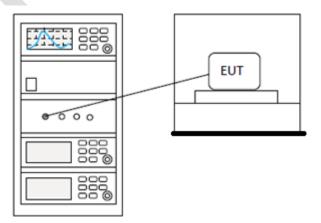
*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2020	39.28	9.87	49.15	63.53	-14.38	QP	
2		0.2020	26.48	9.87	36.35	53.53	-17.18	AVG	
3		0.2700	32.86	9.88	42.74	61.12	-18.38	QP	
4		0.2700	23.33	9.88	33.21	51.12	-17.91	AVG	
5		0.5340	26.56	9.73	36.29	56.00	-19.71	QP	
6		0.5340	21.95	9.73	31.68	46.00	-14.32	AVG	
7	*	3.6060	32.80	9.85	42.65	56.00	-13.35	QP	
8		3.6060	21.38	9.85	31.23	46.00	-14.77	AVG	
9		9.3540	14.76	9.92	24.68	60.00	-35.32	QP	
10		9.3540	6.34	9.92	16.26	50.00	-33.74	AVG	
11		20.7860	24.74	10.02	34.76	60.00	-25.24	QP	
12		20.7860	20.11	10.02	30.13	50.00	-19.87	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only


Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 °C				
Humidity	60%				

17 CONDUCTED BAND EDGES MEASUREMENT

17.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

17.2 BLOCK DIAGRAM OF TEST SETUP

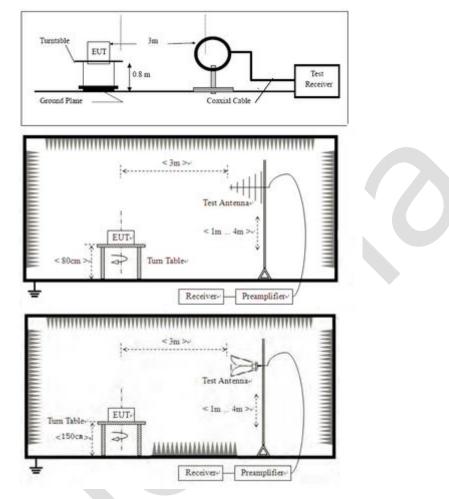
Report No.: BLA-EMC-202107-A8402 Page 25 of61

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G					
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					


18.1 LIMITS

18.1 LIMITS								
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

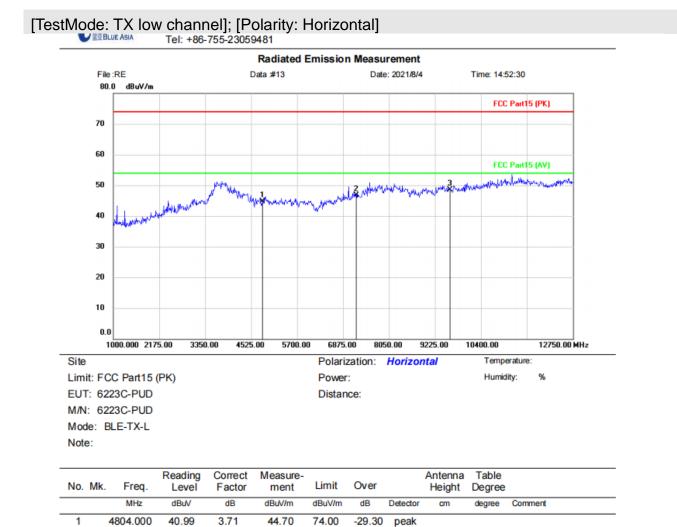
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

18.4 TEST DATA

-27.20

-25.48

peak

peak

74.00

74.00

*:Maximum data x:Over limit !:over margin

40.84

39.23

5.96

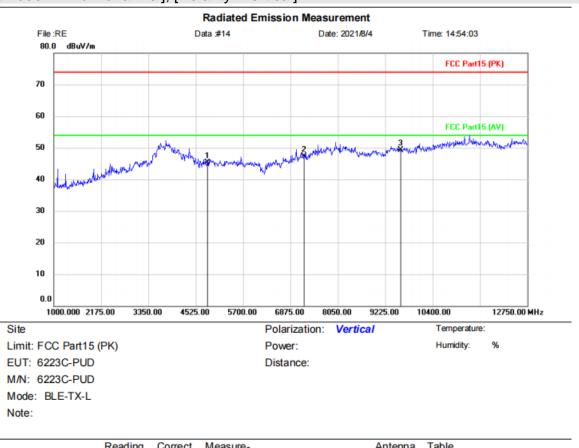
9.29

46.80

48.52

(Reference Only

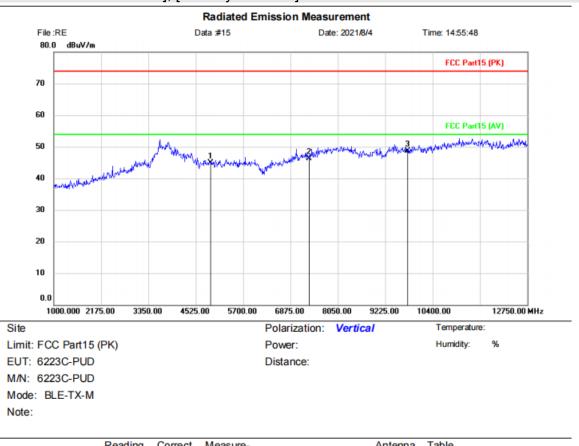
Test Result: Pass


2

3

7206.000

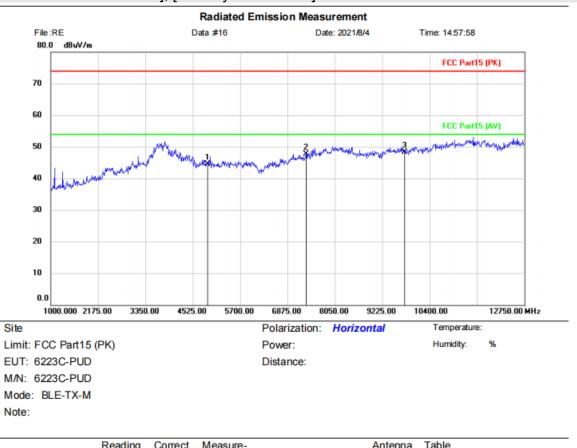
9608.000


[TestMode: TX low channel]; [Polarity: Vertical]

No	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	41.50	3.71	45.21	74.00	-28.79	peak			
2		7206.000	41.37	5.96	47.33	74.00	-26.67	peak			
3	*	9608.000	39.94	9.29	49.23	74.00	-24.77	peak			

*:Maximum data x:Over limit !:over margin

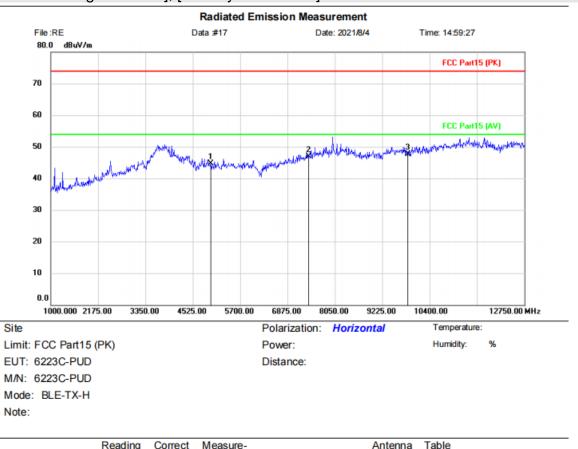
(Reference Only


[TestMode: TX mid channel]; [Polarity: Vertical]

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		4884.000	41.63	3.34	44.97	74.00	-29.03	peak			
	2		7326.000	39.77	6.44	46.21	74.00	-27.79	peak			
-	3	*	9768.000	39.00	9.63	48.63	74.00	-25.37	peak			

*:Maximum data x:Over limit !:over margin

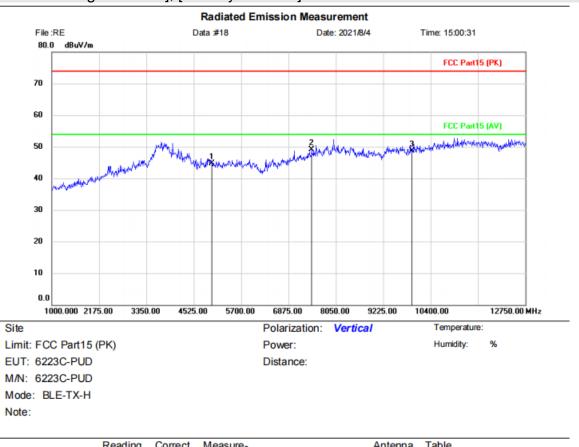
(Reference Only


[TestMode: TX mid channel]; [Polarity: Horizontal]

No	. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4884.000	41.25	3.34	44.59	74.00	-29.41	peak			
2		7326.000	41.31	6.44	47.75	74.00	-26.25	peak			
3	*	9768.000	38.62	9.63	48.25	74.00	-25.75	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only


[TestMode: TX high channel]; [Polarity: Horizontal]

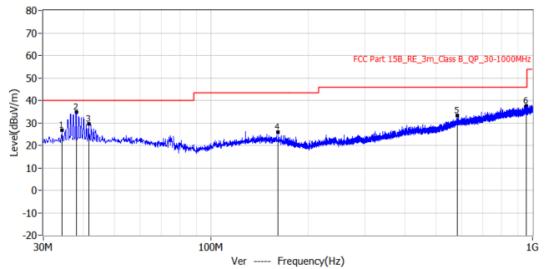
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.000	41.02	3.75	44.77	74.00	-29.23	peak			
2		7386.000	40.23	6.68	46.91	74.00	-27.09	peak			
3	*	9848.000	37.87	9.88	47.75	74.00	-26.25	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

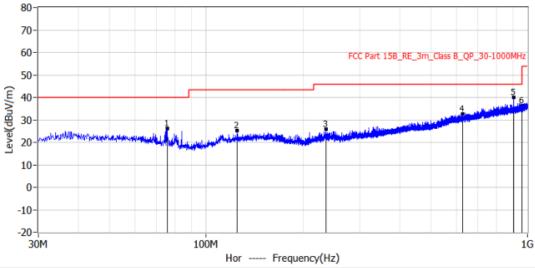
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
_	1		4960.000	40.90	3.75	44.65	74.00	-29.35	peak			
	2	*	7440.000	42.29	6.86	49.15	74.00	-24.85	peak			
_	3		9920.000	38.62	10.16	48.78	74.00	-25.22	peak			


*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202107-A84
EUT: 6223C-PUD	Test Engineer: Charlie
M/N: 6223C-PUD	Temperature: 25℃
S/N:	Humidity: 52%RH
Test Mode: BLE mode	Test Voltage:
Note:	Test Data: 2021-08-05 14:10:05



No.	Frequency	Limit	Level	Delta	Reading	Factor	Detector	Polar	Height	Angle
	riequency	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector	FUIdi	cm	deg
1*	34.365MHz	40.0	26.9	-13.1	3.5	23.4	QP	Ver	100.0	307.0
2*	38.003MHz	40.0	34.9	-5.1	11.0	23.9	QP	Ver	100.0	288.0
3*	41.519MHz	40.0	29.6	-10.4	5.6	24.0	QP	Ver	100.0	29.0
4*	161.435MHz	43.5	25.7	-17.8	2.5	23.2	QP	Ver	100.0	256.0
5*	584.719MHz	46.0	33.1	-12.9	2.3	30.8	QP	Ver	100.0	25.0
6*	958.775MHz	46.0	37.5	-8.5	1.8	35.7	QP	Ver	100.0	220.0

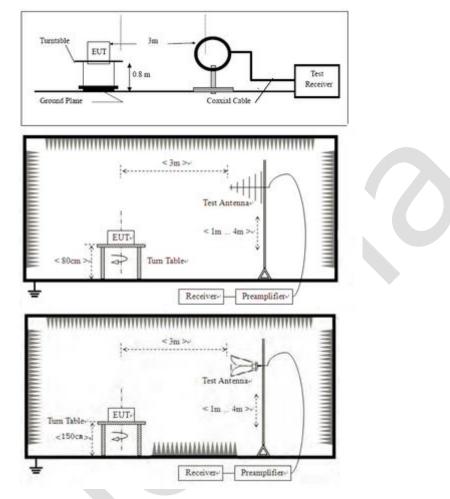
[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202107-A84
EUT: 6223C-PUD	Test Engineer: Charlie
M/N: 6223C-PUD	Temperature: 25℃
S/N:	Humidity: 52%RH
Test Mode: BLE mode	Test Voltage:
Note:	Test Data: 2021-08-05 14:11:58

No.	Frequency	Limit	Level	Delta	Reading	Factor	Detector	Polar	Height	Angle
	riequency	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector		cm	deg
1*	75.469MHz	40.0	26.1	-13.9	5.6	20.5	QP	Hor	100.0	185.0
2*	124.939MHz	43.5	25.2	-18.3	2.2	23.0	QP	Hor	100.0	257.0
3*	236.125MHz	46.0	26.0	-20.0	3.4	22.6	QP	Hor	100.0	109.0
4*	629.218MHz	46.0	32.5	-13.5	1.0	31.5	QP	Hor	100.0	292.0
5*	903.849MHz	46.0	39.9	-6.1	4.9	35.0	QP	Hor	100.0	253.0
6*	959.503MHz	46.0	36.3	-9.7	0.6	35.7	QP	Hor	100.0	334.0

19 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%
19.1 LIMITS	


19.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

19.2 BLOCK DIAGRAM OF TEST SETUP

19.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

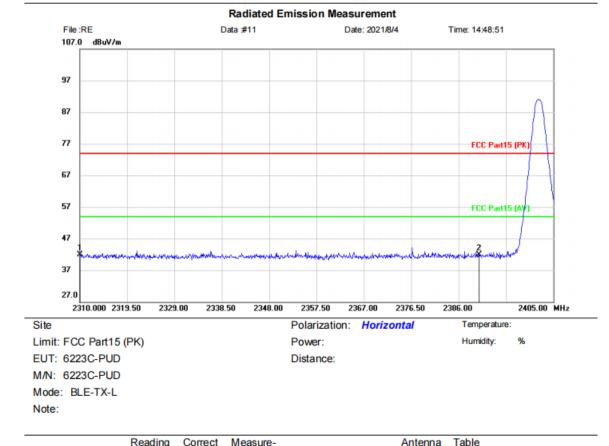
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

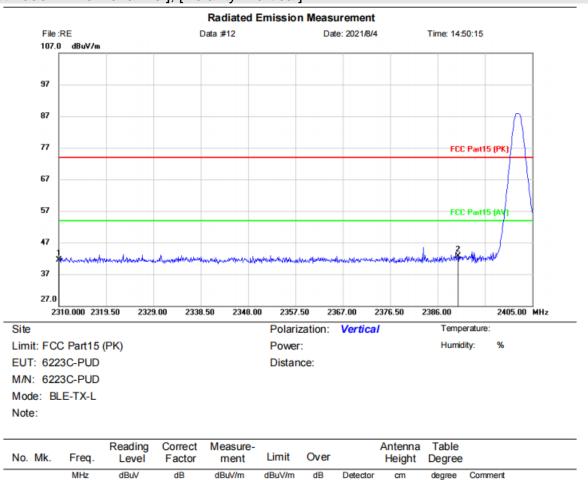

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

19.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]


Ν	0.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		2310.000	46.45	-4.61	41.84	74.00	-32.16	peak			
	2	*	2390.000	46.25	-4.27	41.98	74.00	-32.02	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

[TestMode: TX low channel]; [Polarity: Vertical]

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

1

2 *

2310.000

2390.000

46.09

46.96

-4.61

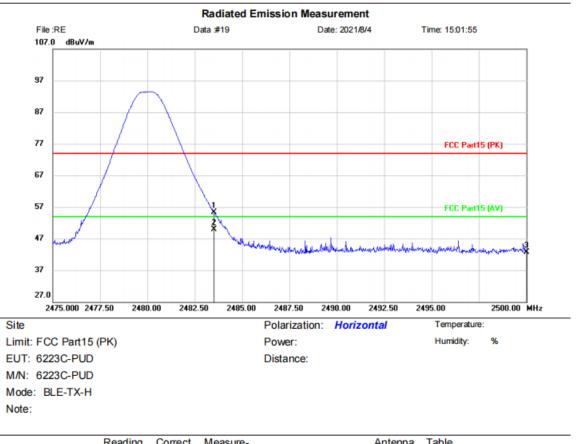
-4.27

41.48

42.69

74.00

74.00

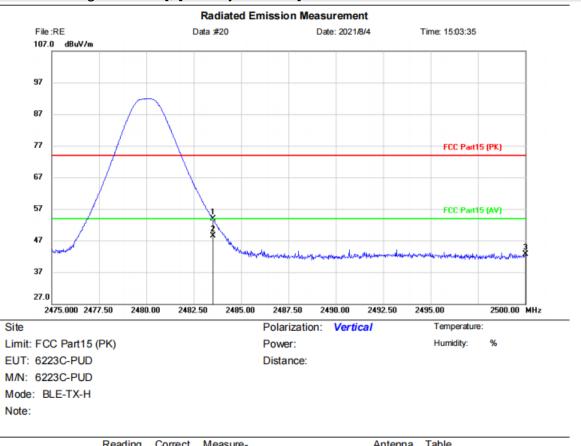

-32.52

-31.31

peak

peak

[TestMode: TX high channel]; [Polarity: Horizontal]


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	59.09	-3.84	55.25	74.00	-18.75	peak			
2	*	2483.500	53.71	-3.84	49.87	54.00	-4.13	AVG			
3		2500.000	46.46	-3.78	42.68	74.00	-31.32	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

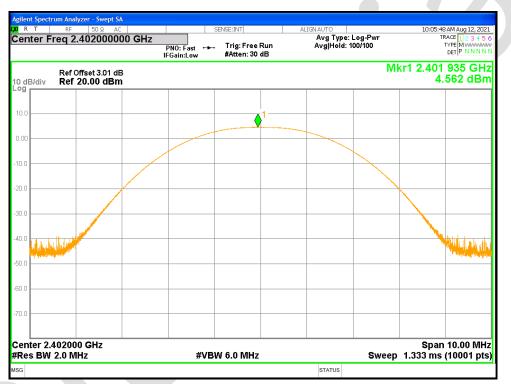
[TestMode: TX high channel]; [Polarity: Vertical]

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		2483.500	57.74	-3.84	53.90	74.00	-20.10	peak			
-	2	*	2483.500	52.39	-3.84	48.55	54.00	-5.45	AVG			
-	3		2500.000	46.40	-3.78	42.62	74.00	-31.38	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass



20 APPENDIX

20.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Total Power	Limit	Verdict
		(MHz)		Power (dBm)	(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	4.562	4.562	30	Pass
NVNT	BLE	2442	Ant1	4.439	4.439	30	Pass
NVNT	BLE	2480	Ant1	4.954	4.954	30	Pass

Power NVNT BLE 2402MHz Ant1



Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1



20.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.725	0.5	Pass
NVNT	BLE	2442	Ant1	0.721	0.5	Pass
NVNT	BLE	2480	Ant1	0.681	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

	Analyzer - Occupied BV	V				
	rf 50Ω ac q 2.442000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.4420004 → Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000 GHz Avg Hold: 100/100	Radio	10:07:17 AM Aug 12, 2021 Std: None Device: BTS
10 dB/div	Ref Offset 3.03 dE Ref 23.03 dBm				Mkr3 2	2.442378 GHz -3.3290 dBm
13.0						
3.03		2 2	Land Land			
-6.97				and the second second	~~~	
-17.0	- more				- man	
-27.0						A how we have
-37.0						
-47.0						
-57.0						
-67.0						
Center 2.44 #Res BW 10			#VBW 300 k	Hz	S	Span 2 MHz Sweep 1.333 ms
Occupie	ed Bandwidtl	า	Total Power	9.88 dBm		
	1.0	0557 MHz				
Transmit	Freq Error	17.800 kHz	OBW Power	99.00 %		
x dB Ban	ndwidth	720.7 kHz	x dB	-6.00 dB		
ISG				STATUS		

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.042549763
NVNT	BLE	2442	Ant1	1.044496971
NVNT	BLE	2480	Ant1	1.053315584

20.3 OCCUPIED CHANNEL BANDWIDTH

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

OBW NVNT BLE 2480MHz Ant1

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-4.108	8	Pass
NVNT	BLE	2442	Ant1	-4.201	8	Pass
NVNT	BLE	2480	Ant1	-3.828	8	Pass

20.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

20.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-58.03	-30	Pass
NVNT	BLE	2480	Ant1	-58.82	-30	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

RT	RF 50 Ω AC	SENSE:INT	ALIGN AUTO	10:06:12 AM Aug 12, 2021
	req 2.402000000 G		Avg Type: Log-Pwr Run Avg Hold: 100/100 IB	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
dB/div	Ref Offset 3.01 dB Ref 20.00 dBm			Mkr1 2.402 016 GHz 3.479 dBm
0.0			1	
.00		m		
5.0				
0.0				
0.0		m	ha	
0.0	www.	~~~~~	hand	mm mm mmm
0.0				
	402000 GHz 100 kHz	#VBW 300 kHz	Sw	Span 8.000 MHz eep 1.000 ms (1001 pts)
G		#1811 000 KHZ	STATUS	

Band Edge NVNT BLE 2402MHz Ant1 Emission

		ctrun		lyzer - Swept SA									
Cen	ter	Fre	RF eq 2	50 Q AC	0 GHz		SENSE:IN	T Free Run	AL	IGN AUTO Avg Type: Avg Hold: 1	Log-Pwr		15 AM Aug 12, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWWW
						NO: Fast ↔ Gain:Low		en: 30 dB		inghioid.			DET P N N N N N
10 d	D/alia			Offset 3.01 dB 20.00 dBm									102 0 GHz .188 dBm
Log		ŕ	Rei	20.00 0611									
10.0	⊢												 1
0.00	⊢												<u>À</u>
-10.0	⊢												
-20.0	L												-26.52 dBm
-30.0													-20.52 00m
-40.0													
-50.0												<u>3</u>	2
-60.0	ernere	m	-ma	mylleytmeter	Montephan	-unprophing	mouth	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	npressourcept	wowwww.ump	montherman	maline	where the
-70.0													
Staı #Re						#VB	W 300	kHz			Swee		2.40600 GHz s (1001 pts)
MKR	MODE	TRC	SCL	×		Y		FUNCTION	FUNC	TION WIDTH	F	UNCTION VALUE	<u> </u>
1	N	1	f		2.402 0 GHz	3.188							
2 3	N N		f f		2.400 0 GHz 2.390 0 GHz	-54.707 -58.951	dBm						
4	Ν		f		2.383 3 GHz	-54.551	dBm						
4 5 6 7 8 9													
8													
9 10													
11													×
<													>
MSG										STATUS			

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

RT RF 5 nter Freq 2.526	F		int ig: Free Run itten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 100/100	10:08:52 TF	2 AM Aug 12, 202 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
Ref Offset dB/div Ref 20.0					Mkr1 2.4 3.	80 1 GH: 050 dBn
9 .0 1						
.0						
1.0						-26.47 dBr
.0						
	× ⁴ ⟨> ³					
1.0 Mr Marburgh	Munnonter	and the approximation of the second	warran	render and himle name handlen war	almonan and a second	walnadormaly
1.0						
art 2.47600 GHz les BW 100 kHz		#VBW 30	00 kHz	Swe	.2 Stop ep 9.600 ms	57600 GH: s (1001 pts
R MODE TRC SCL N 1 f N 1 f N 1 f N 1 f N 1 f	× 2.480 1 GHz 2.483 5 GHz 2.500 0 GHz 2.489 6 GHz	3.050 dBm -55.760 dBm -55.396 dBm -55.296 dBm			FUNCTION VALUE	
2 N 1 f 3 N 1 f 4 N 1 f 5						
1						
				STATUS		

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-46.86	-30	Pass
NVNT	BLE	2442	Ant1	-47.85	-30	Pass
NVNT	BLE	2480	Ant1	-48.24	-30	Pass

20.6 CONDUCTED RF SPURIOUS EMISSION

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

Agiler	it Spe	ctru	n Ana	lyzer - Swept SA									
X/ R Cen	ter	Fre	RF ≥q 1	50 Ω AC 3.2650000		PNO: Fast ++-	SENSE:INT Trig: Fi #Atten:	ree Run : 30 dB	AL:	IGN AUTO Avg Type: Avg Hold:		т	DAM Aug 12, 2021 RACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
10 d Log	B/div			Offset 3.01 dE 20.00 dB m									.412 GHz 568 dBm
10.0	\vdash		-	1									
0.00	\vdash		Ť										
-10.0	\vdash												
-20.0													-26.57 dBm
-30.0													2
-40.0 -50.0					3 ∆4	5						and the market	muniperson
-50.0		,	and a	www.ande	mandam	manha	and the second states	mengan	مراسعهان	Marther Martin Martin Ve			
-70.0	Ĺ												
Stai #Re				(Hz		#VB	W 300 k	ïHz			Sw	Stop eep 2.530 s	26.50 GHz 6 (1001 pts)
MKR		TRC		×		Y		FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	<u>^</u>
1 2 3	N N		f f		2.412 GHz 24.806 GHz 4.953 GHz	-43.420	dBm						
4	N		f		7.018 GHz 9.533 GHz	-53.836	dBm						
4 5 7 8 9	IN		Т		9.533 GHZ	-00.741	авт						
8													
9 10													
3 4 5 6 7 8 9 10 11													×
MSG										STATUS			

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

Agile	nt Spe	ectrur	n Ana	lyzer - Swept SA			SENSE:IN	-		IGN AUTO		10:00:0	6 AM Aug 12, 2021
Cer	iter	Fre	eq 1	50 Ω AC 3.2650000		PNO: Fast 🔸	. Trig:	Free Run en: 30 dB	AL	Avg Type Avg Hold:	: Log-Pwr 10/10	10:08:0 T	RACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
10 d	B/div			Offset 3.03 dE 20.00 dBm									.439 GHz .322 dBm
Log 10.0				1									
0.00			-										
-10.0	⊢												
-20.0	\vdash												-26.65 dBm
-30.0													^2
-40.0					3 \4	5						where we have	montherman
-50.0 -60.0		وسرر	and the second	have have	mandren	herewan	when the	maanthale	interma	Mar and a shirt of the states	and the second second second		
-70.0													
Sta #Re				<hz< th=""><th></th><th>#VB</th><th>W 300</th><th>kHz</th><th></th><th></th><th>Sw</th><th></th><th>) 26.50 GHz s (1001 pts)</th></hz<>		#VB	W 300	kHz			Sw) 26.50 GHz s (1001 pts)
MKR	MODE	TRC	SCL	>	K	Y		FUNCTION	FUNCT	TION WIDTH		FUNCTION VALUE	
1 2 3	N N N		f f f		2.439 GHz 25.547 GHz 5.059 GHz	-44.501 -55.828	dBm dBm						
4 5 6	N N		f f		7.309 GHz 9.903 GHz								
4 5 7 8 9													
3 4 5 6 7 8 9 10 11													~
MSG										STATUS			

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

	50 Ω AC	SEN:	ISE:INT	ALIGN AUTO		10:09:26 AM Aug 12
ter Freq 13.26	PN	IO: Fast ↔→ iain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Avg Hold: 1	Log-Pwr 0/10	TRACE 1 2 3 TYPE MWW DET P N 1
Ref Offset B/div Ref 20.0	t 3.08 dB 10 dBm					Mkr1 2.492 C 3.209 d
.1						
├ ───� ¹ ──						
						-26.
						↓
	<mark>34</mark>	5	1	as books and have been and have a series	«مىرياتىر مەر يەما دىلومور	a rear and have been an
and a market	ween all many well was	son manufundary	and a second and a			
t 30 MHz s BW 100 kHz		#VBW	300 kHz		Swe	Stop 26.50 ep 2.530 s (1001
MODE TRC SCL	×	Ŷ	FUNCTION	FUNCTION WIDTH		UNCTION VALUE
N 1 f	2.492 GHz	3.209 dB	3m			
N 1 f N 1 f	23.800 GHz 5.112 GHz	-44.408 dB -54.900 dB				
N 1 f N 1 f	7.256 GHz 10.009 GHz	-53.364 dB -55.370 dB	Sm			
	10.009 GHZ	-55.570 dB				
				STATUS		
				STATUS		

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202107-A8402 Page 60 of61

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202107-A8401

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.