

Global United Technology Services Co., Ltd.

Report No.: GTS201806000179F01

FCC Report (Bluetooth)

Applicant: FN-LINK TECHNOLOGY LIMITED

Address of Applicant: No. 8, Litong Road, Liuyang Economic Development Zone,

Liuyang, China

FN-LINK TECHNOLOGY LIMITED Manufacturer/ Factory:

Address of No. 8, Litong Road, Liuyang Economic Development Zone,

Manufacturer/ Factory: Liuyang, China

Equipment Under Test (EUT)

Product Name: Wi-Fi Dual-band 2X2 11ac +Bluetooth V4.2 Module

Model No.: 6222D-UUB

Trade Mark: FN-LÎNK

FCC ID: 2AATL-6222D-UUB

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: June 19, 2018

Date of Test: June 19, 2018~ July 11, 2018

Date of report issued: July 12, 2018

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson 🕼 Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	July 12, 2018	Original

Prepared By:	Jazan Du	Date:	July 12, 2018
	Project Engineer		
Check By:	Andy W	<i>Date:</i>	July 12, 2018

3 Contents

		Page
COVE	R PAGE	1
VERS	ION	2
CONT	ENTS	3
TEST	SUMMARY	4
GENE	RAL INFORMATION	5
5.3 E	DESCRIPTION OF SUPPORT UNITS	7
5.4 7	EST FACILITY	7
5.6 <i>A</i>	ADDITIONAL INSTRUCTIONS	8
TEST	INSTRUMENTS LIST	9
TEST	RESULTS AND MEASUREMENT DATA	11
7.1 <i>A</i>	ANTENNA REQUIREMENT	11
_		
TEST	SETUP PHOTO	47
EUT (CONSTRUCTIONAL DETAILS	49
	VERS CONT TEST GENE 5.1 5.2 5.3 5.4 5.5 5.6 TEST TEST 7.1 7.2 7.3 7.4 2 7.5 7.6 7.7 7.8 7.9 7.9.1 7.9.2 7.10 7.10.1 7.10.2 TEST	5.2 TEST MODE 5.3 DESCRIPTION OF SUPPORT UNITS 5.4 TEST FACILITY 5.5 TEST LOCATION 5.6 ADDITIONAL INSTRUCTIONS TEST INSTRUMENTS LIST TEST RESULTS AND MEASUREMENT DATA 7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED EMISSIONS 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE. 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Wi-Fi Dual-band 2X2 11ac +Bluetooth V4.2 Module
Model No.:	6222D-UUB
Serial No.:	FN6222DUUB00001
Test sample(s) ID:	GTS201806000179-1
Sample(s) Status	Engineer sample
Hardware version:	1.0
Software version:	1.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PIFA Antenna
Antenna gain:	3.15dBi
Power supply:	DC3.3V

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Manufacturer Description		Serial Number
IBM Thinkpad	Notebook PC	2374	L3-G0686
Fn-link	Auxiliary PCB	N/A	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

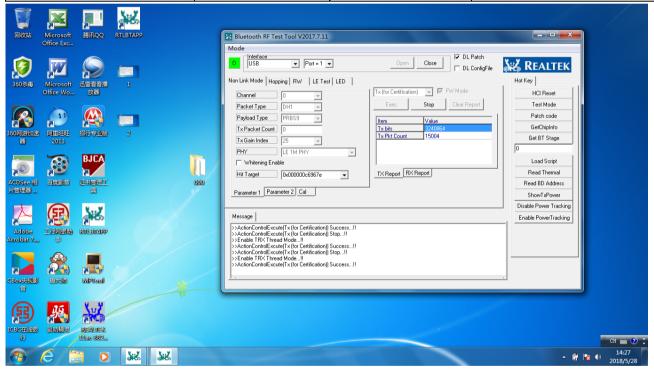
The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102


Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.				
Test Software Name	Bluetooth RF Test Tool V2017.7.11				
Mode	Channel Frequency (MHz) Soft Set				
GFSK, π/4-DQPSK, 8-DPSK	CH01 2402 TX level : default				
	CH40				
	CH79	2480			

6 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019			
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019			
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019			
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019			
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019			
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019			

Conduc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

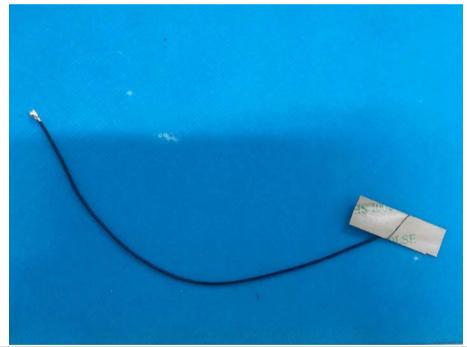
Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

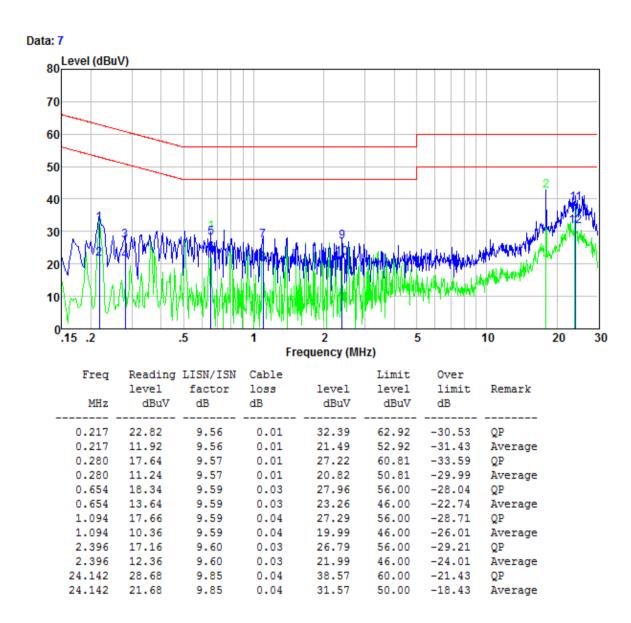

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

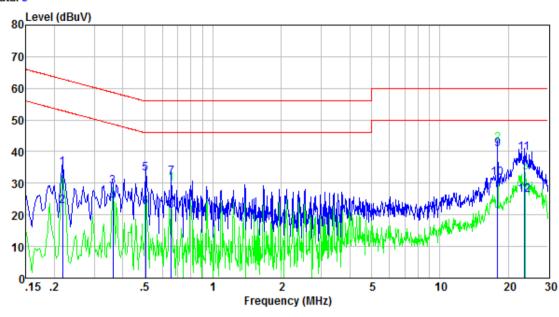
E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 3.15 dBi


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto		
Limit:		 Limit (c	dBuV)	
Emmt.	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test setup:	Reference Plane		_	
	AUX Filter AC power Equipment Under Test LISN LISN LISN Remark EUT Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 			
	according to ANSI C63.10:2013 on conducted measurement.			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement data:


Line:

Neutral:

Freq MHz	Reading level dBuV	LISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.217	25.30	9.58	0.01	34.89	62.92	-28.03	QP
0.217	13.00	9.58	0.01	22.59	52.92	-30.33	Average
0.361	19.29	9.62	0.02	28.93	58.69	-29.76	QP
0.361	14.19	9.62	0.02	23.83	48.69	-24.86	Average
0.505	23.50	9.63	0.02	33.15	56.00	-22.85	QP
0.505	12.90	9.63	0.02	22.55	46.00	-23.45	Average
0.654	22.09	9.64	0.03	31.76	56.00	-24.24	QP
0.654	11.69	9.64	0.03	21.36	46.00	-24.64	Average
17.944	30.80	9.93	0.05	40.78	60.00	-19.22	QP
17.944	21.60	9.93	0.05	31.58	50.00	-18.42	Average
23.511	29.60	9.93	0.04	39.57	60.00	-20.43	QP
23.511	16.30	9.93	0.04	26.27	50.00	-23.73	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	30dBm(for GFSK),20.97dBm(for EDR)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	5.623		
GFSK	Middle	4.460	30.00	Pass
	Highest	3.102		
	Lowest	6.645		
π/4-DQPSK	Middle	5.526	20.97	Pass
	Highest	4.214		
	Lowest	7.307		
8-DPSK	Middle	6.130	20.97	Pass
	Highest	4.861		

Test plot as follows:

Test mode: GFSK mode

Lowest channel



Highest channel

Test mode: π/4-DQPSK mode

Lowest channel

Highest channel

Test mode: 8-DPSK mode

Lowest channel

Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.925	
GFSK	Middle	0.924	Pass
	Highest	0.936	
	Lowest	1.286	
π/4-DQPSK	Middle	1.285	Pass
	Highest	1.284	
	Lowest	1.226	
8-DPSK	Middle	1.226	Pass
	Highest	1.225	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

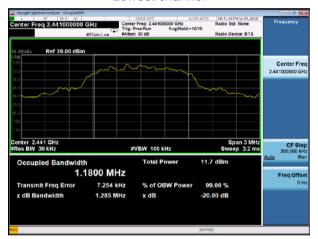
Test plot as follows:

Test mode: GFSK mode

Lowest channel

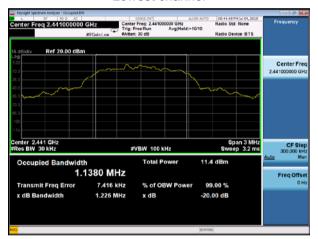
Middle channel

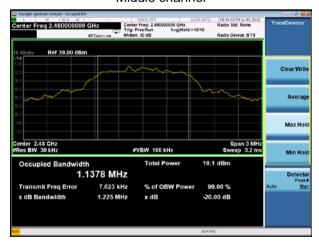
Highest channel


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test mode: π/4-DQPSK mode

Lowest channel


Highest channel



Test mode: 8-DPSK mode

Lowest channel

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK, $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	(whichever is greater) Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1089.75	624.00	Pass
GFSK	Middle	939.50	624.00	Pass
	Highest	1125.75	624.00	Pass
	Lowest	1075.25	857.33	Pass
π/4-DQPSK	Middle	675.75	857.33	Pass
	Highest	919.25	857.33	Pass
	Lowest	1348.00	844.00	Pass
8-DPSK	Middle	1372.50	844.00	Pass
	Highest	1435.00	844.00	Pass

Note: According to section 7.4

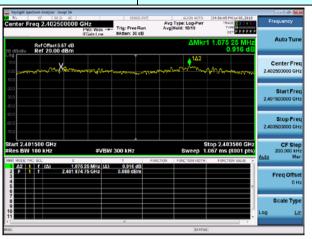
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	936.00	624.00
π/4-DQPSK	1286.00	857.33
8-DPSK	1266.00	844.00

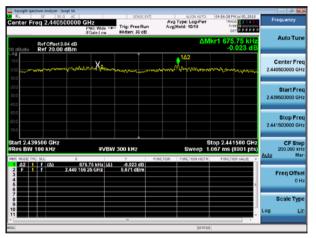
Test plot as follows:

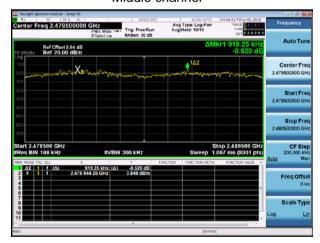
Modulation mode:

GFSK

Lowest channel


Middle channel


Highest channel



Test mode: π/4-DQPSK mode

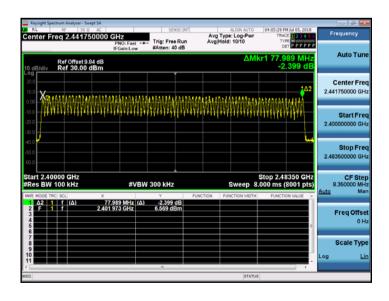
Lowest channel

Highest channel

Test mode: 8-DPSK mode

Lowest channel

Highest channel



7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

7.7 Dwell Time

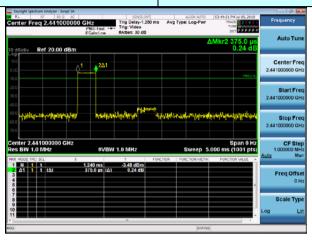
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	120.0	400	Pass
2441MHz	DH3	259.2	400	Pass
2441MHz	DH5	305.6	400	Pass

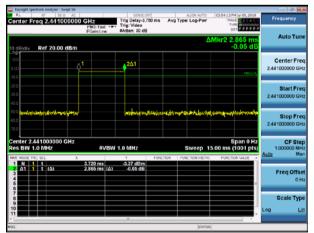
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow


DH1 time slot=0.375(ms)*(1600/(2*79))*31.6=120.0ms DH3 time slot=1.62(ms)*(1600/(4*79))*31.6=259.2ms DH5 time slot=2.865(ms)*(1600/(6*79))*31.6=305.6ms

Test plot as follows:

Pre-test all modulation type, only show the worst case(GFSK mode).


Test channel: 2441MHz

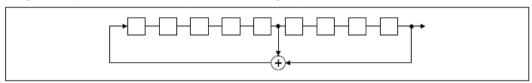
DH1

DH3

DH5

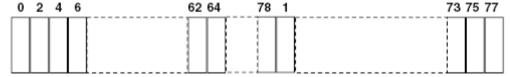
7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

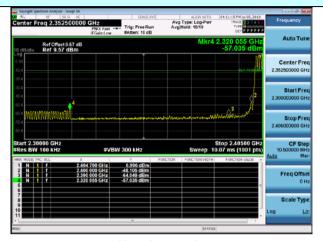
The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

7.9 Band Edge

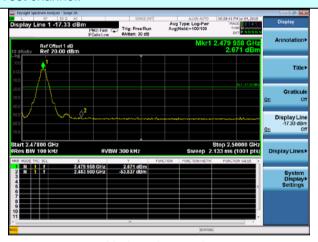
7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:


GFSK Mode:

Test channel:


No-hopping mode

Lowest channel

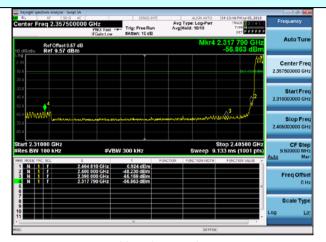
Hopping mode

Test channel:

No-hopping mode

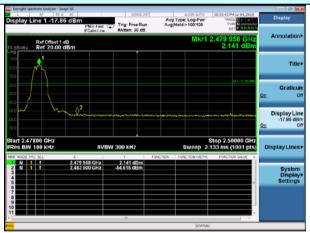
Highest channel

Hopping mode


π/4-DQPSK Mode:

Test channel:

| Control | Cont


No-hopping mode

Lowest channel

Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

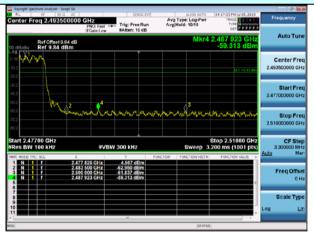

8-DPSK Mode:

Test channel:

| Control | Cont

No-hopping mode

Lowest channel


Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case						
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz Peak Peak		1MHz	3MHz	Peak Value		
	Above Toriz	1MHz	10Hz	Average Value			
Limit:	Frequency Limit (dBuV/m @3m)				Remark		
	Above 1GHz 54.00 74.00				Average Value Peak Value		
Test setup:	Tum Table < 150cm > 4	< 3m	Test Antenna	?			
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to dere horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable 5. The test-rece Specified Bare 6. If the emission limit specified EUT would be 10dB margin.	a meter camber e position of the set 3 meters a ch was mounted the mand vertical polar at. Spected emission antenna was to table was turned ading. Serior system was now in the mand with mand the mand with	The table was highest race way from the don the top of from one maximum value izations of the control of the co	was rotated diation. The interference of a variable of the field of the antennatives arranged that from 1 in grees to 36 lak Detect Field Mode. In mode was apped and the missions the one using	ole-height antenna r meters above the distrength. Both are set to make the led to its worst case meter to 4 meters to degrees to find the lunction and lodb lower than the ne peak values of the hat did not have peak, quasi-peak or		
Test Instruments:	Refer to section	6.0 for details					
Test mode:	Refer to section	5.2 for details					
Test results:	Pass						

Remark:

1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.

|--|

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	47.70	26.91	3.56	35.87	42.30	74.00	-31.70	Horizontal
2390.00	48.17	27.11	3.64	36.08	42.84	74.00	-31.16	Horizontal
2310.00	48.65	26.91	3.56	35.87	43.25	74.00	-30.75	Vertical
2390.00	47.48	27.11	3.64	36.08	42.15	74.00	-31.85	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.22	26.91	3.56	35.87	28.82	54.00	-25.18	Horizontal
2390.00	34.28	27.11	3.64	36.08	28.95	54.00	-25.05	Horizontal
2310.00	34.04	26.91	3.56	35.87	28.64	54.00	-25.36	Vertical
2390.00	33.92	27.11	3.64	36.08	28.59	54.00	-25.41	Vertical

Test channel:	Highest
rest chamer.	riignesi

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	48.56	27.36	3.68	36.33	43.27	74.00	-30.73	Horizontal
2500.00	46.84	27.40	3.68	36.37	41.55	74.00	-32.45	Horizontal
2483.50	47.89	27.36	3.68	36.33	42.60	74.00	-31.40	Vertical
2500.00	47.89	27.40	3.68	36.37	42.60	74.00	-31.40	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.37	27.36	3.68	36.33	30.08	54.00	-23.92	Horizontal
2500.00	34.67	27.40	3.68	36.37	29.38	54.00	-24.62	Horizontal
2483.50	34.71	27.36	3.68	36.33	39.42	54.00	-24.58	Vertical
2500.00	34.55	27.40	3.68	36.37	29.26	54.00	-24.74	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Remark:

During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:

Lowest channel

30MHz~25GHz

Test channel:

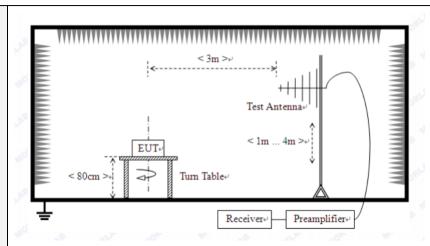
Middle channel

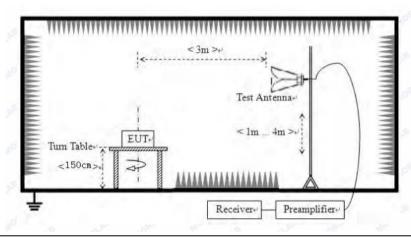
30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: (3m					
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	Value	
	9KHz-150KHz	Qι	ıasi-peak	200l	Ηz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9KF	lz	30KHz	z Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	100K	Ήz	300KH	z Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	Peak	
	7,5000 13112		Peak	1MF	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	V	alue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	lHz	24000/F(24000/F(KHz)		QP	300m	
	1.705MHz-30MH	30		QP		30m		
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u> </u>	150			QP		
	216MHz-960MH		200		QP		3m	
	960MHz-1GHz		500		QP		5	
	Above 1GHz		500		Average			
			5000		P	Peak		
Test setup:	Below 30MHz Turntable Feak Turntable Feak Torntable Feak							
	Below 1GHz							

Above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

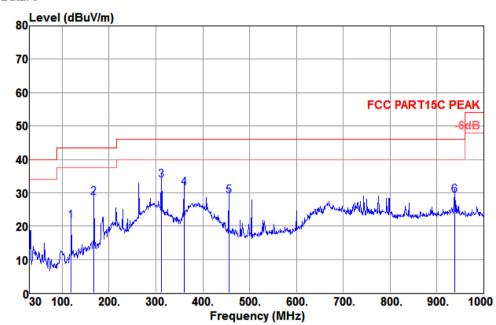
	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark:

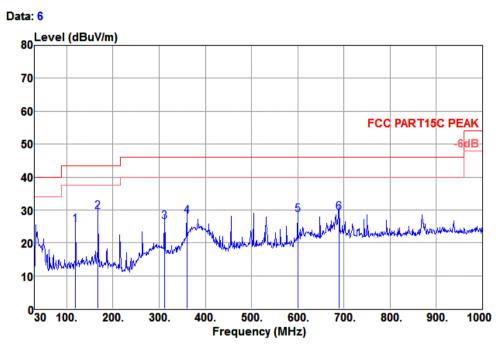
- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Horizontal:



Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	1eve1 dBuV	Limit 1evel dBuV/m	Over limit dB	Remark
119. 240	39. 73	12. 12	2. 11	32. 47	21. 49	43. 50	-22. 01	QP
167. 740	45. 03	13. 43	2. 53	32. 52	28. 47	43. 50	-15. 03	QP
312. 270	49. 53	13. 13	3. 52	32. 51	33. 67	46. 00	-12. 33	QP
359. 800	45. 90	14. 04	3. 86	32. 49	31. 31	46. 00	-14. 69	QP
455. 830	41. 43	15. 75	4. 34	32. 52	29. 00	46. 00	-17. 00	QP
937. 920	32. 95	21. 93	6. 43	32. 06	29. 25	46. 00	-16. 75	QP

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Vertical:

Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	1eve1 dBuV	Limit level dBuV/m	Over limit dB	Remark
119. 240	43. 69	12. 12	2. 11	32. 47	25. 45	43. 50	-18. 05	QP
167. 740	45. 96	13. 43	2. 53	32. 52	29. 40	43. 50	-14. 10	QP
312. 270	42. 34	13. 13	3. 52	32. 51	26. 48	46. 00	-19. 52	QP
359. 800	42. 76	14. 04	3. 86	32. 49	28. 17	46. 00	-17. 83	QP
600. 360	37. 73	18. 40	5. 02	32. 69	28. 46	46. 00	-17. 54	QP
688. 630	37. 01	19. 55	5. 49	32. 77	29. 28	46. 00	-16. 72	QP

■ Above 1GHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	49.64	31.23	5.45	36.27	50.05	74.00	-23.95	Vertical
7206.00	47.78	35.87	6.94	34.25	56.34	74.00	-17.66	Vertical
9608.00	48.81	37.79	7.77	34.13	60.24	74.00	-13.76	Vertical
12010.00	*					74.00	*	Vertical
14412.00	*					74.00	*	Vertical
4804.00	48.77	31.23	5.45	36.27	49.18	74.00	-24.82	Horizontal
7206.00	46.98	35.87	6.94	34.25	55.54	74.00	-18.46	Horizontal
9608.00	47.67	37.79	7.77	34.13	59.10	74.00	-14.90	Horizontal
12010.00	*					74.00	*	Horizontal
14412.00	*					74.00	*	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.08	31.23	5.45	36.27	36.49	54.00	-17.51	Vertical
7206.00	34.37	35.87	6.94	34.25	42.93	54.00	-11.07	Vertical
9608.00	34.79	37.79	7.77	34.13	46.22	54.00	-7.78	Vertical
12010.00	*					54.00	*	Vertical
14412.00	*					54.00	*	Vertical
4804.00	36.01	31.23	5.45	36.27	36.42	54.00	-17.58	Horizontal
7206.00	34.35	35.87	6.94	34.25	42.91	54.00	-11.09	Horizontal
9608.00	34.75	37.79	7.77	34.13	46.18	54.00	-7.82	Horizontal
12010.00	*					54.00	*	Horizontal
14412.00	*					54.00	*	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	49.06	31.42	5.40	36.24	49.64	74.00	-24.36	Vertical
7323.00	48.63	36.14	7.28	34.36	57.69	74.00	-16.31	Vertical
9764.00	47.72	38.08	7.98	34.20	59.58	74.00	-14.42	Vertical
12205.00	*					74.00	*	Vertical
14646.00	*					74.00	*	Vertical
4882.00	48.11	31.42	5.40	36.24	48.69	74.00	-25.31	Horizontal
7323.00	48.15	36.14	7.28	34.36	57.21	74.00	-16.79	Horizontal
9764.00	47.81	38.08	7.98	34.20	59.67	74.00	-14.33	Horizontal
12205.00	*					74.00	*	Horizontal
14646.00	*					74.00	*	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.04	31.42	5.40	36.24	36.62	54.00	-17.38	Vertical
7323.00	35.23	36.14	7.28	34.36	44.29	54.00	-9.71	Vertical
9764.00	35.30	38.08	7.98	34.20	47.16	54.00	-6.84	Vertical
12205.00	*					54.00	*	Vertical
14646.00	*					54.00	*	Vertical
4882.00	36.03	31.42	5.40	36.24	36.61	54.00	-17.39	Horizontal
7323.00	35.23	36.14	7.28	34.36	44.29	54.00	-9.71	Horizontal
9764.00	35.27	38.08	7.98	34.20	47.13	54.00	-6.87	Horizontal
12205.00	*					54.00	*	Horizontal
14646.00	*					54.00	*	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.76	31.60	5.36	36.21	50.51	74.00	-23.49	Vertical
7440.00	48.55	36.41	7.44	34.47	57.93	74.00	-16.07	Vertical
9920.00	48.22	38.36	8.05	34.26	60.37	74.00	-13.63	Vertical
12400.00	*					74.00	*	Vertical
14880.00	*					74.00	*	Vertical
4960.00	48.34	31.60	5.36	36.21	49.09	74.00	-24.91	Horizontal
7440.00	48.98	36.41	7.44	34.47	58.36	74.00	-15.64	Horizontal
9920.00	48.38	38.36	8.05	34.26	60.53	74.00	-13.47	Horizontal
12400.00	*					74.00	*	Horizontal
14880.00	*					74.00	*	Horizontal

Average value:

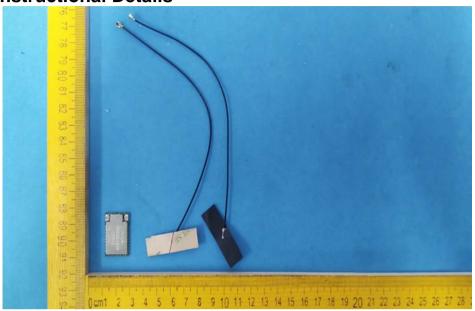
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.49	31.60	5.36	36.21	37.24	54.00	-16.76	Vertical
7440.00	35.64	36.41	7.44	34.47	45.02	54.00	-8.98	Vertical
9920.00	36.35	38.36	8.05	34.26	48.50	54.00	-5.50	Vertical
12400.00	*					54.00	*	Vertical
14880.00	*					54.00	*	Vertical
4960.00	36.48	31.60	5.36	36.21	37.23	54.00	-16.77	Horizontal
7440.00	35.64	36.41	7.44	34.47	45.02	54.00	-8.98	Horizontal
9920.00	36.33	38.36	8.05	34.26	48.48	54.00	-5.52	Horizontal
12400.00	*					54.00	*	Horizontal
14880.00	*					54.00	*	Horizontal

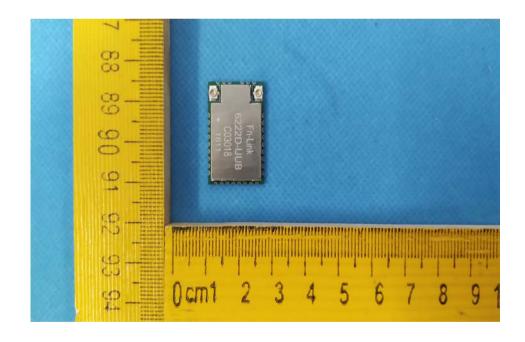
Remark:

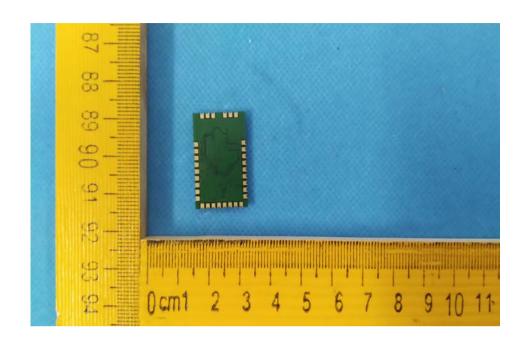
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

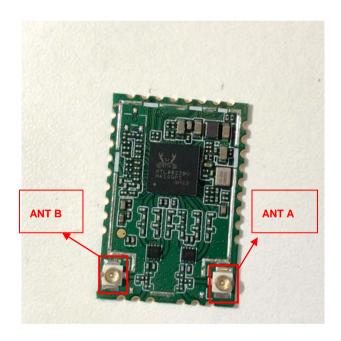
8 Test Setup Photo

Radiated Emission




Conducted Emission




9 EUT Constructional Details

-----End-----