

Г

RF Test Report

For

HUNAN FN-LINK TECHNOLOGY LIMITED

Test Standards:	Part 15C Subpart C §15.247			
Product Description:	2.4G Wi-Fi+Bluetooth V5.0 Module			
Tested Model:	<u>6220N-IS</u>			
Brand Name	<u>FN-LINK</u>			
FCC ID:	2AATL-6220N-IS			
IC:	<u>24844-6220NIS</u>			
Classification	(DTS) Digital Transmission System			
Report No.:	EC1909021RF02			
Tested Date:	2019-09-24 to 2019-11-12			
Issued Date:	<u>2019-11-12</u>			
Prepared By:	Victorique, Gao			
	Victorique Gao /Engineer			
Approved By:	Raron Wu			
	Bacon Wu / RF Manager			
Hunan Ecloud Testing Technology Co., Ltd.				
Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and				
Technological Development Zone, Hunan, P.R.C				
Tel.: +86-73	1-89634887 Fax.: +86-731-89634887			
www.hn-ecloud.com				

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of

Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2019.11.12	Valid	Original Report

TABLE OF CONTENTS

1.	TEST	LABORATORY	5
	1.1	Test facility	5
2.	GENI	ERAL DESCRIPTION	6
	2.1	Applicant	
	2.2	Manufacturer	
	2.3	General Description Of EUT	
	2.4	Modification of EUT	
	2.5	Applicable Standards	7
3.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	9
	3.3	Support Equipment	.10
	3.4	Test Setup	
	3.5	Measurement Results Explanation Example	.13
4.	TEST	RESULT	.14
	4.1	6dB and 99% Bandwidth Measurement	.14
	4.2	Peak Output Power Measurement	.21
	4.3	Power Spectral Density Measurement	.25
	4.4	Conducted Band Edges and Spurious Emission Measurement	.29
	4.5	Radiated Band Edges and Spurious Emission Measurement	
	4.6	AC Conducted Emission Measurement	
	4.7	Antenna Requirements	.76
5.	LIST	OF MEASURING EQUIPMENT	.77
6.	UNCI	ERTAINTY OF EVALUATION	.79

APPENDIX A. SETUP PHOTOGRAPHS

Summary of Test Result

FCC Rule	IC Rule	Description	Description Limit Result		Remark
15.247(a)(2)	RSS-247 5.2(1)	6dB Bandwidth	≥ 0.5MHz	Pass	-
-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-
15.247(b)(1)	RSS-247 A5.4(4)	Peak Output Power	≤ 30dBm	Pass	-
15.247(e)	RSS-247 5.2(2)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
15.247(d)	RSS-247 5.5	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
15.247(d)	RSS-247 5.5	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 8.7 dB at 359.8 MHz
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 8.37 dB at 0.529 MHz
15.203 & 15.247(b)	N/A	Antenna Requirement	N/A	Pass	-

1. Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number:CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2. General Description

2.1 Applicant

HUNAN FN-LINK TECHNOLOGY LIMITED

No. 8, Litong Road, Liuyang Economic Development Zone, Liuyang City, Hunan Province, China

2.2 Manufacturer

HUNAN FN-LINK TECHNOLOGY LIMITED

No. 8, Litong Road, Liuyang Economic Development Zone, Liuyang City, Hunan Province, China

2.4G Wi-Fi+Bluetooth V5.0 Module
6220N-IS
FN-LINK
2AATL-6220N-IS
24844-6220NIS
3.3Vdc
BLE
GFSK
2402MHz~2480MHz
40
3.68 dBm (2.33 mW)
PCB Antenna type with 2dBi gain
Refer to user's manual
N/A

2.3 General Description Of EUT

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02
- IC RSS-247 Issue 2
- IC RSS-Gen Issue 5

Remark:

 This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, and ICES-003 recorded in a separate test report.

3. Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Channel	Frequency	Mode	Bluetooth RF Output Power
Ch00	2402MHz	GFSK	3.68
Ch19	2440MHz	GFSK	3.27
Ch39	2480MHz	GFSK	3.3

a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases					
	Data Rate /	Modulation			
Test Item	Bluetooth 5.0 – LE	Bluetooth 5.0 – LE			
	GFSK (1Mbps)	GFSK (2Mbps)			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz			
•••••••	Mode 2: CH19_2440 MHz	Mode 5: CH19_2440 MHz			
Test Cases	Mode 3: CH39_2480 MHz	Mode 6: CH39_2480 MHz			

3.2.2 Radiated Emission Test (Below 1GHz)

Radiated	Bluetooth LE 2Mbps GFSK
Test Cases	Mode 1: CH00_2402 MHz

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3.2.3 Radiated Emission Test (Above 1GHz)

	Bluetooth LE 2Mbps GFSK		
Radiated	Mode 1: CH00_2402 MHz		
Test Cases	Mode 2: CH19_2440 MHz		
	Mode 3: CH39_2480 MHz		

Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

- 2. Following channel(s) was (were) selected for the final test as listed above
- 3. For frequency above 18GHz, the measured value is 20dB lower than the limit, therefore, it is not reflected in the report.

3.2.4 Power Line Conducted Emission Test:

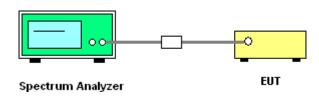
AC	
Conducted	Mode 1 : BLE Idle+ Power supply(From Notebook)
Emission	

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AATL-6220N-IS IC: 24844-6220NIS www.hn-ecloud.com

3.3 Support Equipment

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	E540	FCC DoC	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m
2.	USB Cable	N/A	N/A	N/A	N/A	unshielded 0.8m

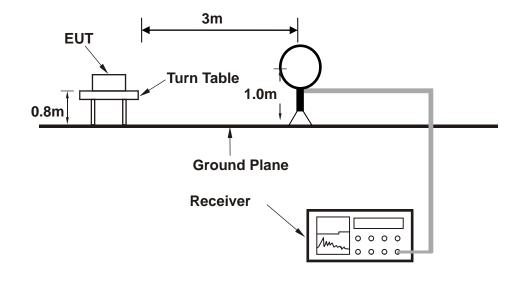
3.4 Test Setup

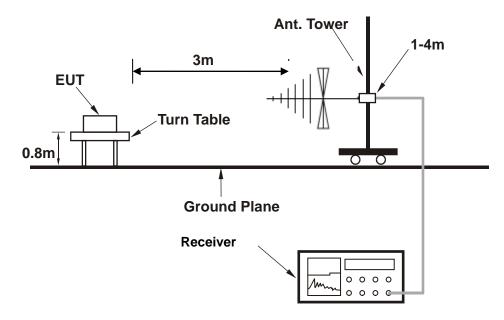

The EUT is continuously communicating to the Bluetooth tester during the tests. EUT was set in the Hidden menu mode to enable BT communications.

The following picture is a screenshot of the test software

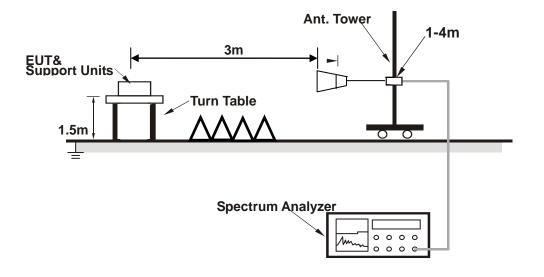
BLE:

Bluetooth RF Test Tool (RtlBluetoothMP.dll Versio Mode About	ni :5.2.2.44 RTLBTAPP Version :5.2.2.28) drate=115200 🔽 Open	- 🗆 X
No KeyWord 🗸 Delay Oms 🗸	Close	Hot Key
Non Link Mode Hopping LE Test		HCI Reset
Channel 0 Packet Type DH1 Payload Type PRBS9 Tx Packet Count 0	Tx (for Cettification) FW Mode Exec Stop Clear Report Item Value Tx bits 000000 Tx Pkt Count 000000	Test Mode
Whitening Enable Hit Target 0x000000c6967e Parameter 1 Parameter 2	TX Report RX Report	
Message >>Load RtIBluetoothMP.dll Success!!		

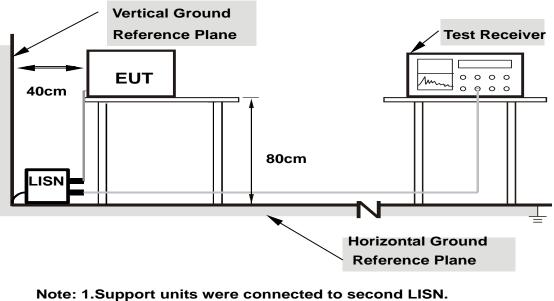

Setup diagram for Conducted Test


Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AATL-6220N-IS IC: 24844-6220NIS www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

Setup diagram for Raidation(9KHz~30MHz) Test



Setup diagram for Raidation(Below 1G) Test



Setup diagram for Raidation(Above1G) Test

Setup diagram for AC Conducted Emission Test

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

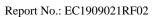
For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.


Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4. Test Result

4.1 6dB and 99% Bandwidth Measurement

4.1.1 Limit of 6dB and 99% Bandwidth

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.

4.1.3 Test Result of 6dB and 99% Bandwidth

Test Mode :		BLE,			Temperature :		24~26 ℃	
Test Engineer :		Victorique Gao			Relative Humidity	y:	50~53%	
Mode	R	Rate Channel 6dB B		Bandwidth [MHz]	99% C	BW[MHz]	Verdict	
BLE	1M 2M		LCH	0.660		1.0306		PASS
		1M	MCH		0.704	1.0426		PASS
			HCH	H 0.648			1.0418	
			LCH	1.128		2.0835		PASS
		2M	MCH	1.108		2.0818		PASS
			HCH	1.080		2.0842		PASS

6dB Bandwidth Plot

99% Bandwidth Plot

4.2 Peak Output Power Measurement

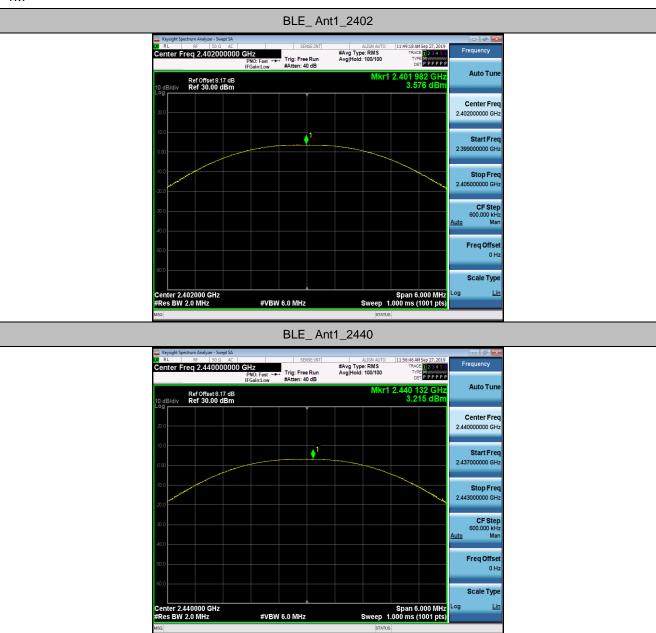
4.2.1 Limit of Peak Output Power

FCC §15.247 (b)(3)

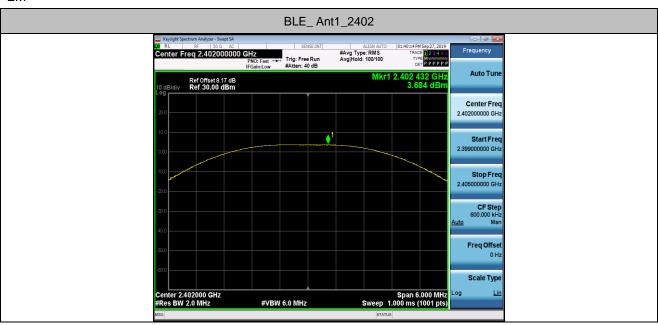
For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

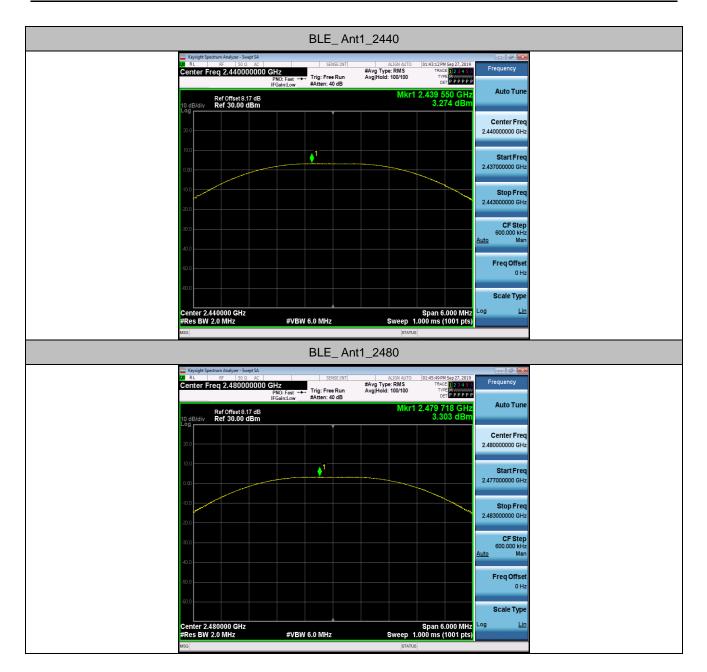
4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to spectrum analyzer.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- 4. Set the RBW=DTS Bandwidth,VBW≥3*RBW,Span≥1.5*DTS Bandwidth,Detector=Peak,Sweep time=auto couple,Trace mode=max holde.
- 5. Allow trace to fully stabilize, Use peak marker function to determine the peak amplitude level.
- 6. Measure the conducted output power


Test Mode :	BLE		Temperature :	24~26° ℃	
Test Engineer :	Victorique Gao)	Relative Humidity :	50~53%	
Mode	Rate Channel		Conduct Peak Power[dBm]	Verdict	
BLE		LCH	3.58	PASS	
	1M 2M	MCH	3.22	PASS	
		НСН	3.25	PASS	
		LCH	3.68	PASS	
		MCH	3.27	PASS	
		HCH	3.3	PASS	

4.2.3 Test Result of Peak Output Power


Peak Output Power Plot



4.3 **Power Spectral Density Measurement**

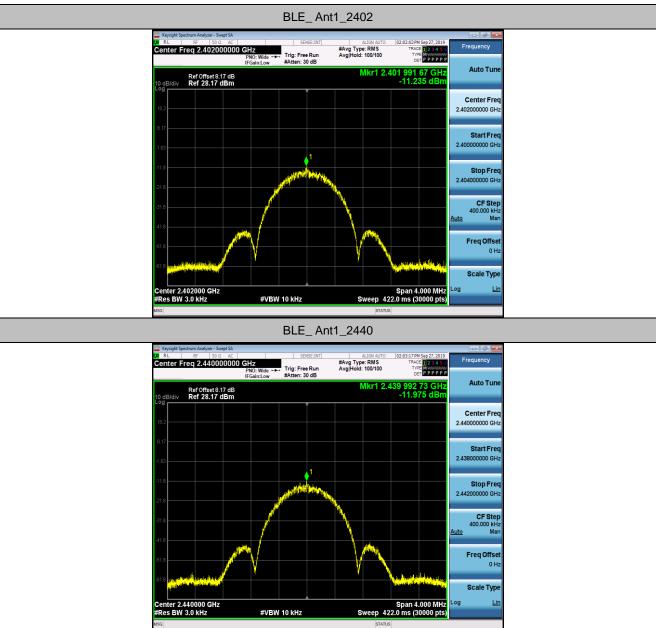
4.3.1 Limits of Power Spectral Density

FCC§15.247(e)

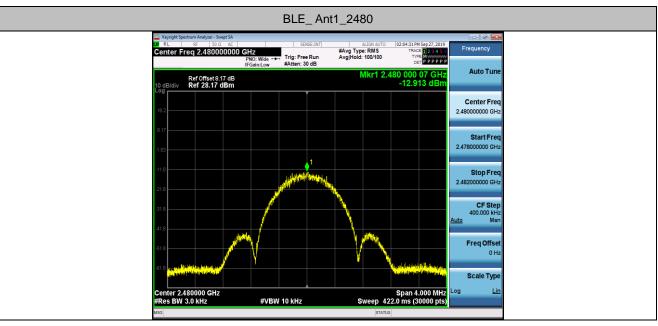
The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

4.3.2 Test Procedure

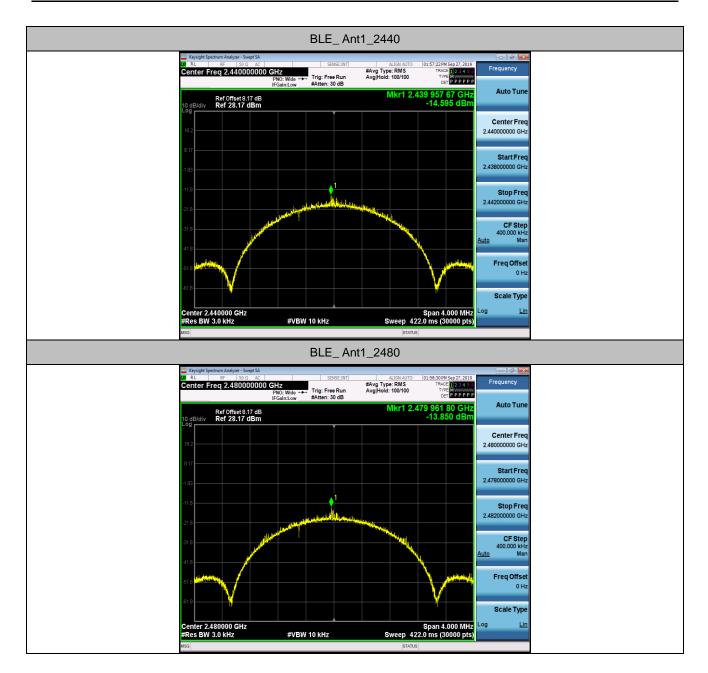
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- 6. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.


Test Mode :	BLE		Temperature :	24~26 ℃	
Test Engineer :	Victorique Gao		Relative Humidity :	50~53%	
Mode	Rate	Channel	PSD [dBm]	Verdict	
BLE		LCH	-11.24	PASS	
	1M	MCH	-11.98	PASS	
		НСН	-12.91	PASS	
		LCH	-14.01	PASS	
	2M	MCH	-14.6	PASS	
		НСН	-13.85	PASS	

4.3.3 Test Result of Power Spectral Density



Power Spectral Density Plot



4.4 Conducted Band Edges and Spurious Emission Measurement

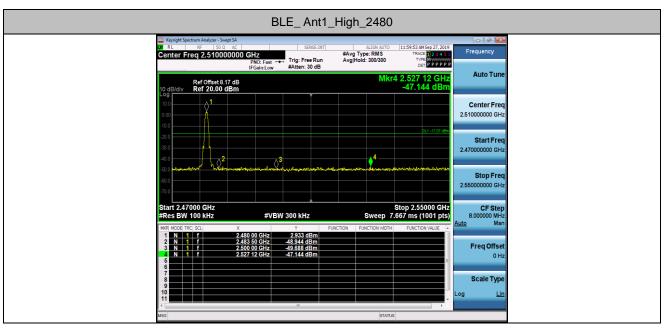
4.4.1 Limit of Conducted Band Edges and Spurious Emission

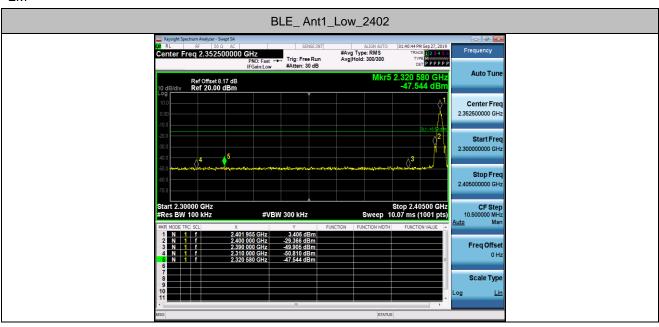
FCC §15.247 (d)

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

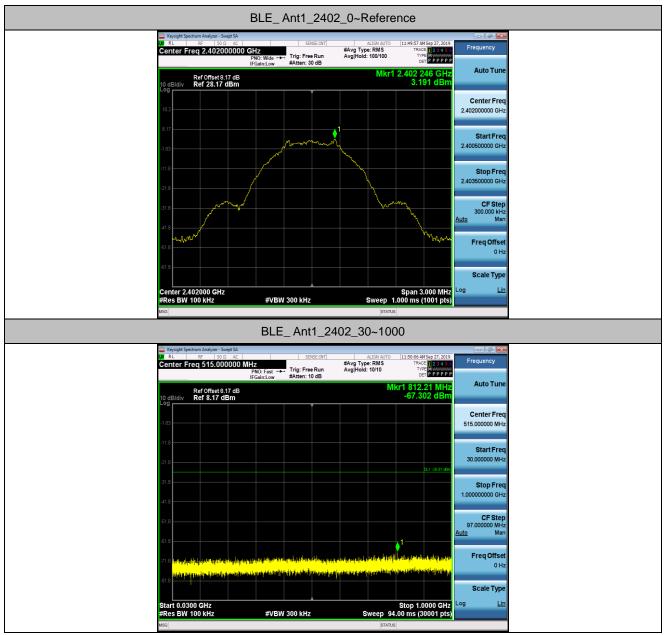

4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


4.4.3 Test Result of Conducted Band Edges

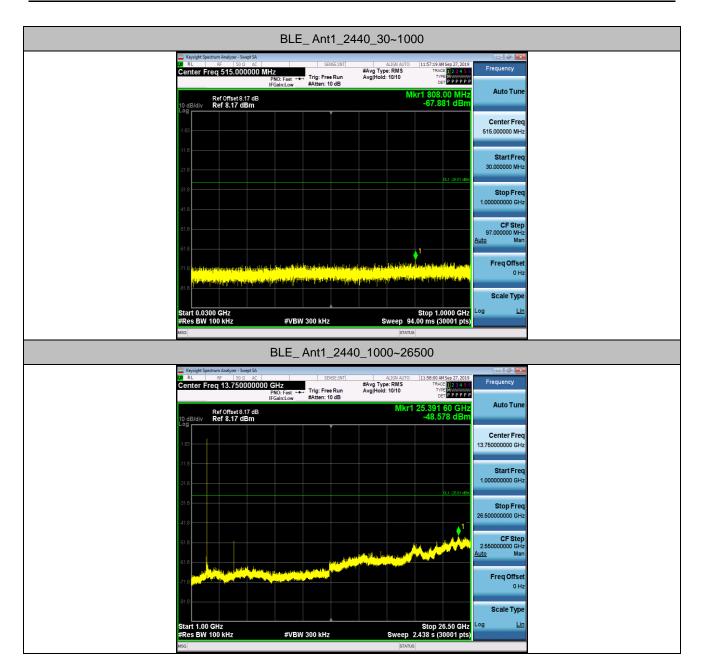

Test Mode : BI		BLE	3LE		Temperature :			24~26 ℃			
Test Engineer :		Victo	Victorique Gao		Relative Humidity :			50~53%			
Mada			Channel	Carrier		Max.Spurious		Limit		Verdict	
Mode	Rate	Channel		Po	wer[dBm]	Level [dBm]		[•	dBm]	verdict	
BLE	1M		LCH		3.27	-4	7.18	<=	-16.73	PASS	
	I IVI		HCH		2.93	-4	7.14	<=	-17.07	PASS	
	2M		LCH		3.41	-4	7.54	<=	-16.59	PASS	
			HCH		2.34	-47.53		<=	-17.66	PASS	

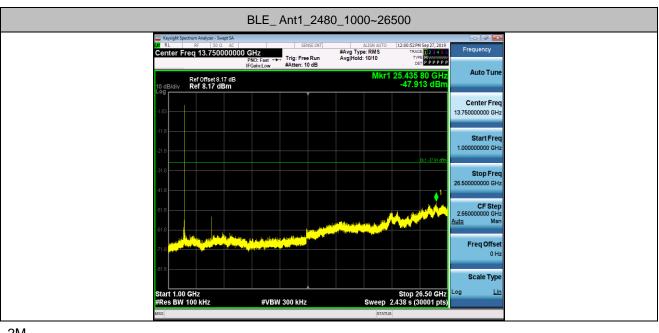
Conducted Band Edges Plot


BLE_ Ant1_Hi	igh_2480	
PNO: Fast + Trig: Free Run A	ALIGN AUTO 01:46:18PM Sep 27, 2019 #Avg Type: RMS TRACE 1 2 3 4 5 Avg[Hold: 300/300 TYPE 4 DET P P P P P P	Frequency
IFGain:Low #Atten: 30 dB 10 dB/div Ref Offset 8 17 dB Ref 20.00 dBm	Mkr4 2.545 44 GHz -47.527 dBm	Auto Tune
		Center Freq 2.510000000 GHz
	CL1.17.56 dBn	Start Freq 2.47000000 GHz
 (50) [] dogt-out ^R (400) (700) 	να, μτβημβρισμό στη Ολημοποιατική βαλαματη στη Μαλαλά, το Πραγολογιατη τη Πραγολογια τη Οληματική που Πραγολογι Για ποι προγολογιατική τη στη στη στη στη στη στη στη στη στη	Stop Freq 2.550000000 GHz
start 2.47000 GHz #VBW 300 kHz #Res BW 100 kHz #VBW 300 kHz INF MODE TRC SCL X Y INF MODE TRC SCL 2.480 00 GHz 2.343 dHm	Stop 2.55000 GHz Sweep 7.667 ms (1001 pts)	CF Step 8.000000 MHz Auto Man
1 N 1 f 2.480 00 GHz 2.343 dBm 2 N 1 f 2.483 05 GHz 4.398 dBm 3 N 1 f 2.500 00 GHz 4.398 dBm 4 N 1 f 2.545 44 GHz -47.527 dBm 5 - - - - -		Freq Offset 0 Hz
		Scale Type Log <u>Lin</u>
MSG	STATUS	

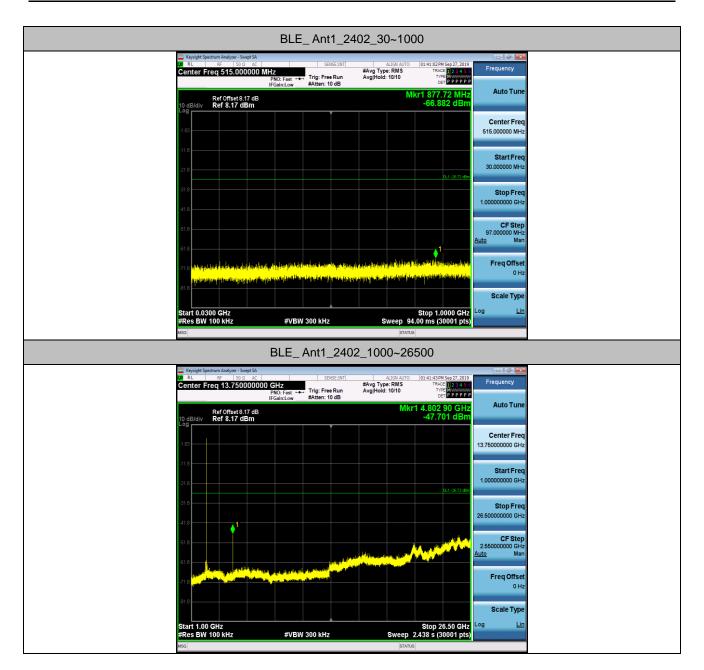
4.4.4 Test Result of Conducted Spurious Emission

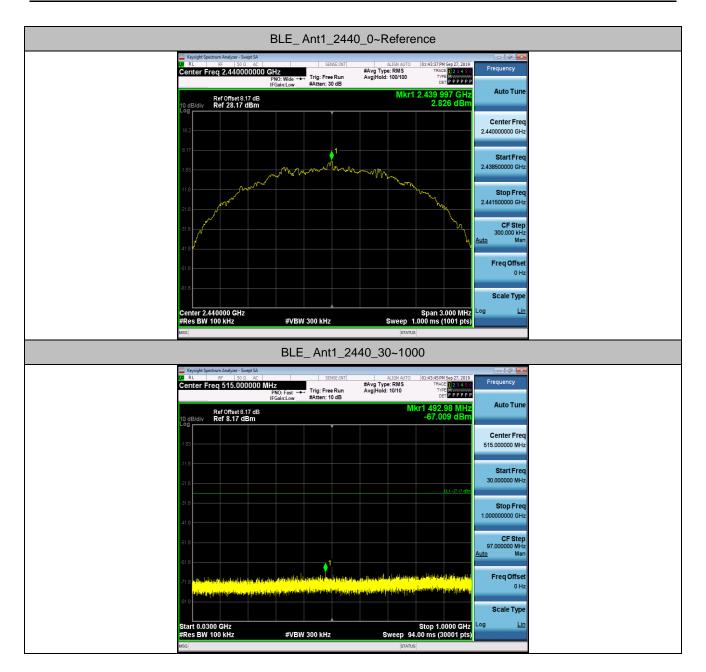

Test Mode :	BLE		Temperature	:	24~26 ℃			
Test Engineer :	Victoriqu	ie Gao	Relative Hun	nidity :	50~53%			
TestMode		Channel	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict	
			Reference	3.19	3.19		PASS	
		LCH	30~1000	30~1000	-67.302	<=-26.809	PASS	
			1000~26500	1000~26500	-47.056	<=-26.809	PASS	
		МСН	Reference	1.99	1.99		PASS	
BLE	1M		30~1000	30~1000	-67.881	<=-28.009	PASS	
			1000~26500	1000~26500	-48.578	<=-28.009	PASS	
		нсн	Reference	2.09	2.09		PASS	
			30~1000	30~1000	-68.17	<=-27.913	PASS	
			1000~26500	1000~26500	-47.913	<=-27.913	PASS	
BLE	2M	LCH	Reference	3.28	3.28		PASS	
			30~1000	30~1000	-66.882	<=-26.724	PASS	
			1000~26500	1000~26500	-47.701	<=-26.724	PASS	
		МСН	Reference	2.83	2.83		PASS	
			30~1000	30~1000	-67.009	<=-27.174	PASS	
			1000~26500	1000~26500	-48.407	<=-27.174	PASS	
		НСН	Reference	2.87	2.87		PASS	
			30~1000	30~1000	-67.379	<=-27.132	PASS	
			1000~26500	1000~26500	-48.819	<=-27.132	PASS	

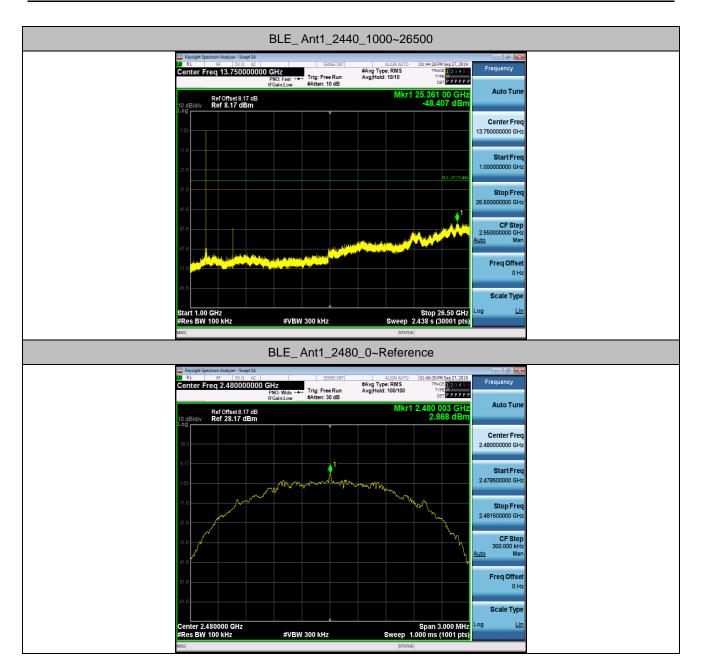

Conducted Spurious Emission Plot








2M



4.5 Radiated Band Edges and Spurious Emission Measurement

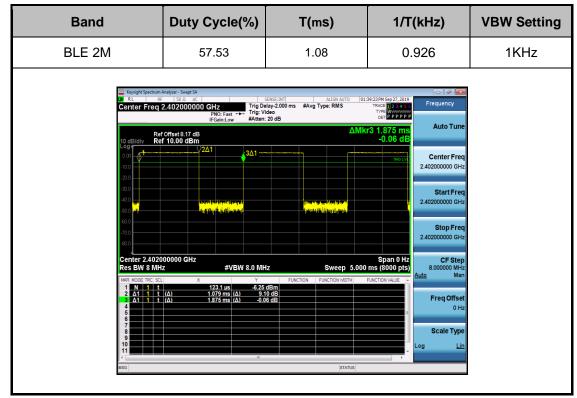
4.5.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

IC RSS-247 5.5

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

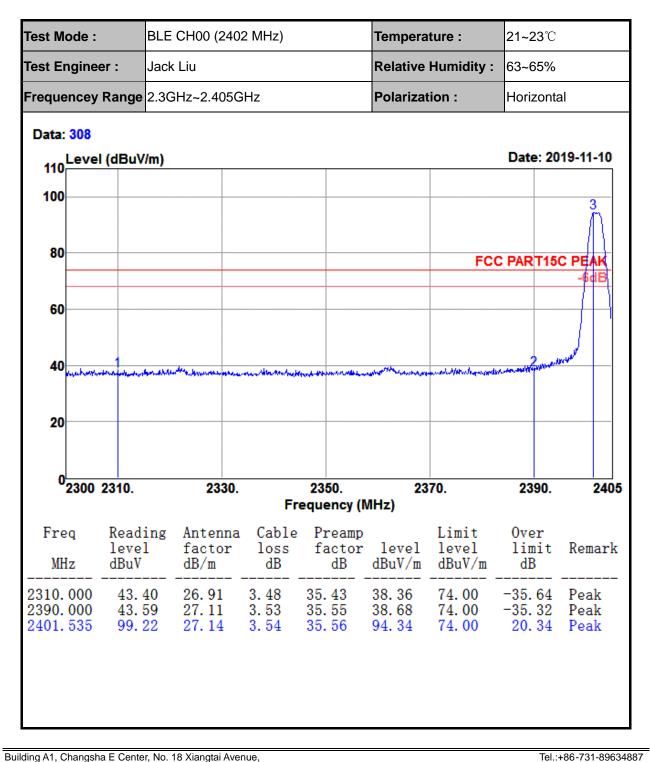


4.5.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

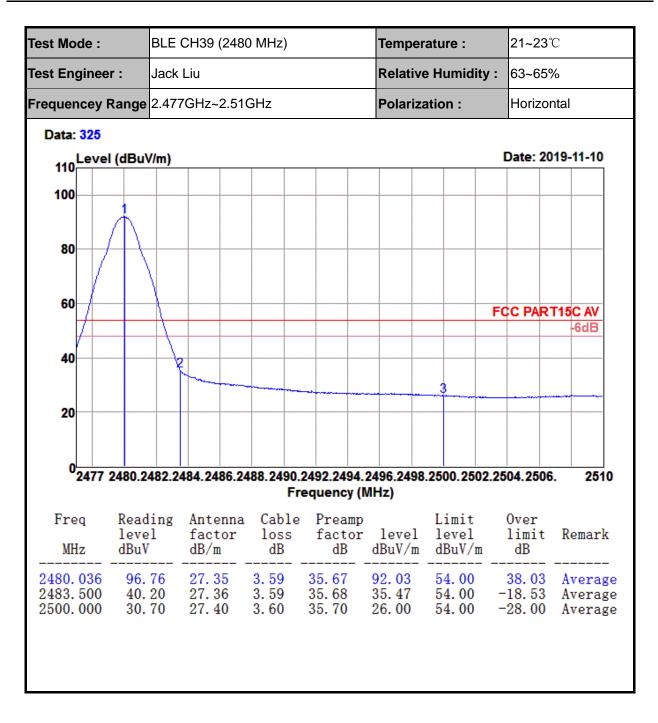
4.5.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

4.5.4 Test Result of Radiated Spurious at Band Edges

Test Mode :		BLE C	CH00 (240	02 MHz)		Tempe	erature :	2	21~23 ℃		
lest Engineer	:	Jack I	_iu			Relativ	e Humidit	y : 6	3~65	5%	
Frequencey R	ange	2.3GH	lz~2.4050	GHz		Polariz	zation :	H	Horizontal		
Data: 309	l (dBu\	//m)						Date	e: 201	9-11-10	
		,									
100 80										4	
60								FCC P	PART	15C AV	
40						2				Ħ	
20											
0 <mark></mark>	2310.		2330		2350. equency (l		70.	23	90.	2405	
Freq MHz	Read leve dBuV	1	Antenna factor dB/m	a Cable loss dB	Preamp factor dB		Limit level dBuV/m	Ove lim dB	it	Remark	
2310.000 2361.845 2390.000 2402.060	29. 33. 32. 96.	86 18	26. 91 27. 04 27. 11 27. 15	3. 48 3. 51 3. 53 3. 54	35. 43 35. 51 35. 55 35. 56	24.76 28.90 27.27 91.85	54.00 54.00 54.00 54.00	-29. -25. -26. 37.	10 73	Average Average Average Average	

Test Mode :		BLE C	H00 (240	02 MHz)		Tempera	ture :	21~23 ℃	
Test Enginee	r :	Jack L	iu			Relative	Humidity :	63~65%	
Frequencey F	Range	2.3GH	z~2.4050	GHz		Polarizat	ion :	Vertical	
Data: 305								D-4 00	
110 Leve	l (dBu	V/m)						Date: 20	19-11-10
100									3
80							FCC	PAR T15	<u>С РЕАК</u> -6dB
60									
40	r-stelleronen	eren alleren de	tura da comentada da comencia da comenc	and a product of a strange of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and the second	anganan deter tanan saar kuntu	and Charles Rouge Nor	mad .
20									
0 <mark></mark> 2300	2310.		2330		2350. equency (N		70.	2390.	2405
Freq MHz	Read leve dBuV	21		a Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over limit dB	Remark
2310.000 2390.000 2401.535	44.	20	27.11	3. 48 3. 53 3. 54	35.55	39.29	74.00	-36. 62 -34. 71 21. 64	Peak

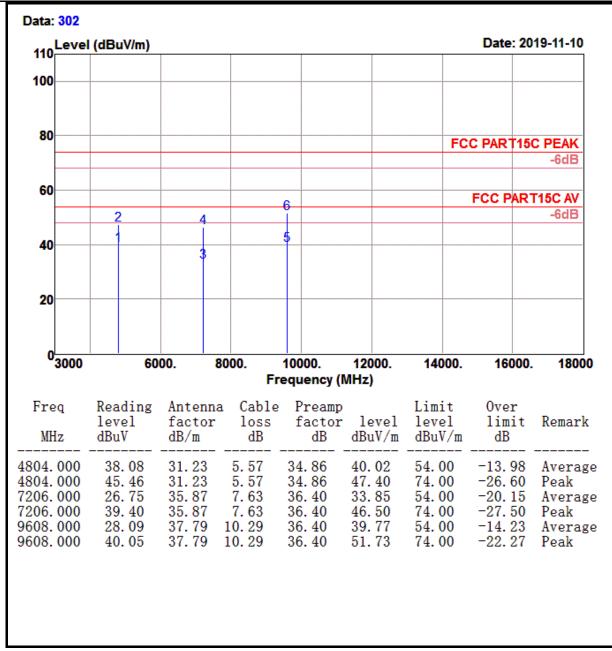


Test Mode :	BLE	CH00 (240	2 MHz)		Tempe	rature :	21~23	21~23 ℃		
Test Engineer	: Jack	Liu			Relativ	e Humidity	: 63~65	5%		
Frequencey R	ange 2.3G	Hz~2.4050	GHz		Polarization :			al		
Data: 306							Dete: 00	40.44.40		
110	(dBuV/m)						Date: 20	19-11-10		
100								4		
80										
60						F		-6dB		
40					2		3	开		
20										
0 <mark></mark> 2300 ;	2310.	2330.		2350. equency (N		70.	2390.	2405		
Freq MHz	Reading level dBuV	Antenna factor dB/m	a Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark		
2310.000 2362.055 2390.000 2402.060	30. 04 33. 62 32. 36 98. 33	$27.04 \\ 27.11$	3. 48 3. 51 3. 53 3. 54	35. 43 35. 51 35. 55 35. 56	25.00 28.66 27.45 93.46	54.00	-29.00 -25.34 -26.55 39.46	Average Average Average Average		

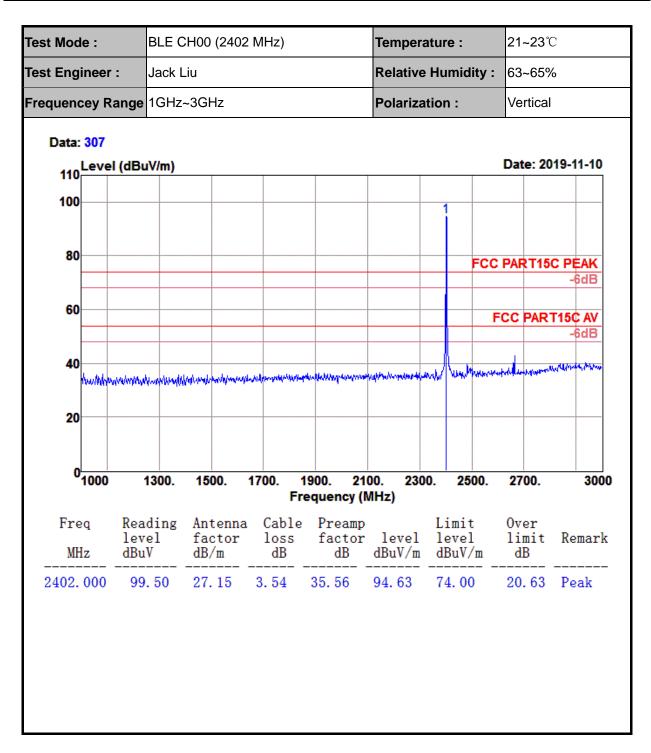
Test Mode :		BLE C	H39 (2480	MHz)		Tempera	ture :	21~23 ℃	
Test Engineer	r:	Jack L	iu			Relative	Humidity :	63~65%	
Frequencey R	Range	2.477	GHz~2.51G	iHz		Polarizat	ion :	Horizonta	al
Data: 324 110	(dBu)	//m)						Date: 20	19-11-10
100	\uparrow								
80		$\forall -$					FC	PART15	C PEAK
									-6dB
60		2							
40			manufan of the same	weltermetricher	-	and a second second second	3	and the should be	and the second
20									
0 <mark></mark> 2477 2	2480.2	482.24	184.2486.24	188.2490.1 Fr	2492.2494. equency (I	2496.2498 MHz)	.2500.2502.	2504.2506	. 2510
Freq MHz	Read leve dBuV	1	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over limit dB	Remark
2479. 475 2483. 500 2500. 000		56		3.59 3.59 3.60	35. 67 35. 68 35. 70	93. 74 46. 83 38. 91	74. 00 74. 00 74. 00	19.74 -27.17 -35.09	

Test Mode :		BLE (CH39 (248	80 MHz)		Tempera	ature :	21~23 ℃				
Test Enginee	r :	Jack I	_iu			Relative	Humidity :	63~65%				
Frequencey F	Range	2.477	GHz~2.5′	1GHz		Polariza	tion :	Vertical				
Data: 321	l (dBu\	//m)						Date: 20	19-11-10			
110												
100	\uparrow											
80		\setminus					FC	C PART15	C PEAK			
									-6dB			
60												
			- and a stand of the stand of t	10 marchener mark	Hard rates in the second		2					
40					and the state of the	anipal rates have been a	adapter in which with the	and white the set	and the second			
20												
°2477	2480.2	482.24	484.2486.		.2492.2494. requency (l		8.2500.2502.	2504.2506	i. 2510			
Freq	Read		Antenn	a Cable	e Preamp		Limit	0ver				
MHz	leve dBuV		factor	loss dB	factor		level	limit dB	Remark			
			dB/m		dB	dBuV/m		<u>مە</u>				
2479.970 2483.500	101. 54.		27.35 27.36	3. 59 3. 59	35.67 35.68	96.65 50.12	74.00 74.00	22.65 -23.88	Peak Peak			
2485.500	54. 43.		27.30	3. 59 3. 60	35. 68	39.23	74.00	-23.88	Peak Peak			

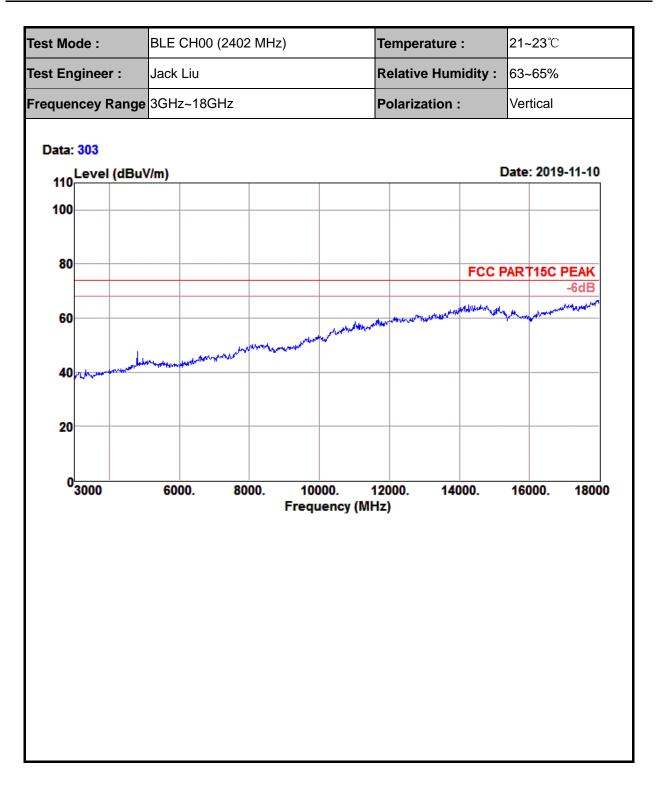
Test Mode :		BLE	CH39 (248)	0 MHz)		Tempera	ature :	21~23 ℃			
Test Engine	er:	Jack	Liu			Relative	Humidity :	63~65%)		
Frequencey	Range	2.477	'GHz~2.51	GHz		Polariza	tion :	Vertical			
Data: 322											
110	l (dBuV	//m)						Date: 20	19-11-10		
100	1										
80	\square										
60								FCC PAR	Г 15С AV -6dВ		
40		2					3				
20											
0 <mark></mark> 2477	2480.24	182.24	84.2486.24	188.2490.1 Fre	2492.2494.: equency (N	2496.2498 ЛНz)	.2500.2502.	2504.2506	. 2510		
Freq MHz	Read leve dBuV	1	Antenna factor dB/m			level dBuV/m	Limit level dBuV/m	Over limit dB	Remark		
2480. 003 2483. 500 2500. 000		34						40. 15 -16. 39 -27. 39			

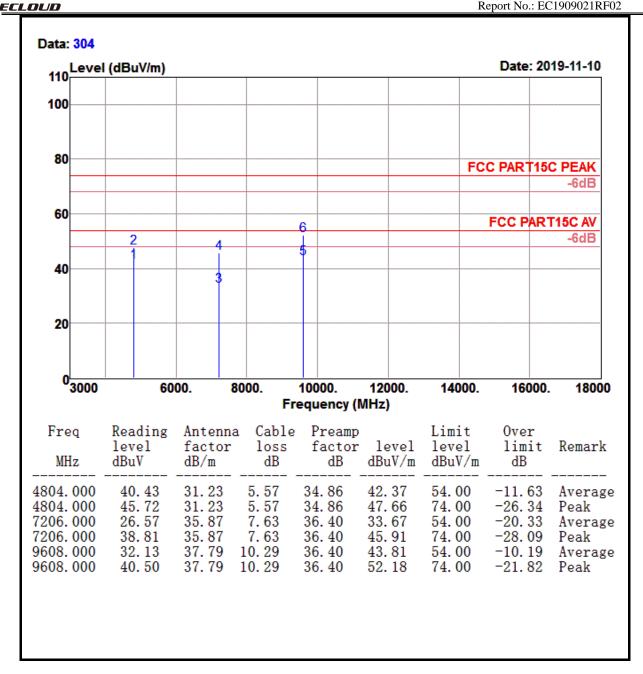

4.5.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

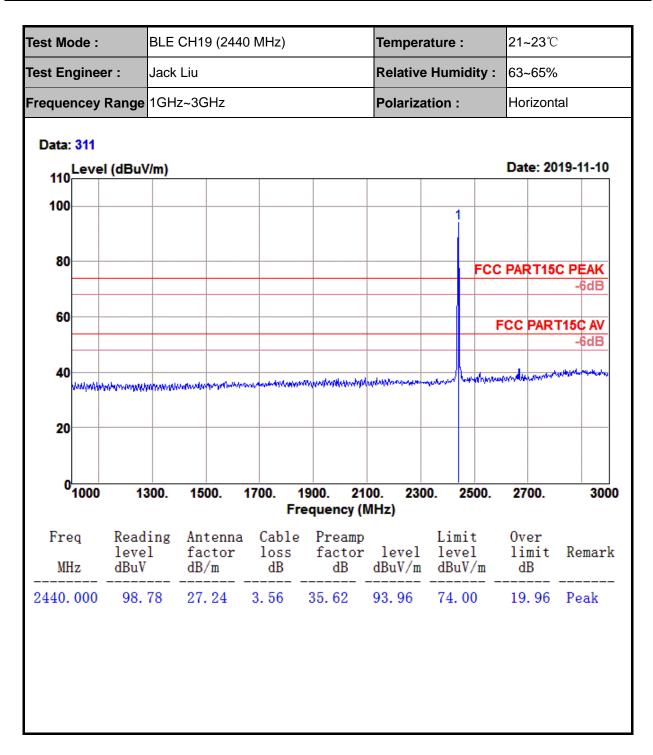
Fest Mo	ode :		BLE	CH00 (240	2 MHz)		Tempe	rature :	21~23℃			
Test En	nginee	r :	Jack	Liu			Relativ	e Humidity :	63~65%			
Freque	ncey F	Range	1GHz	z~3GHz			Polariz	ation :	Horizonta	al		
Data		(dBu\	//m)						Date: 20	19-11-10		
110		(,									
100								1				
80								FC	C PART15	C PEAK -6dB		
60										T15C AV -6dB		
40) Maraniyaa	nengiyata	hoyaukyaun	valutarionalistica	yan yakatan bakata		get Menney	Martin Martines	wet between the start of the	an fill the start of the start		
20												
0	1000	1;	300.	1500.		1900. 21 equency (N		300. 2500.	2700.	3000		
Fre MH	eq Hz	leve	1	Antenna factor dB/m			leve	Limit l level m dBuV/m		Remark		
2402.	000	98.	35	27.15	3. 54	35. 56	93. 48	74.00	19. 48	Peak		



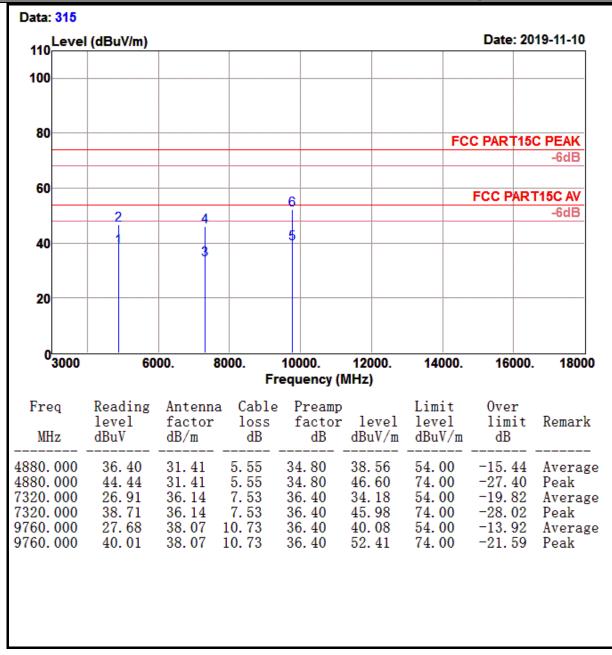
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

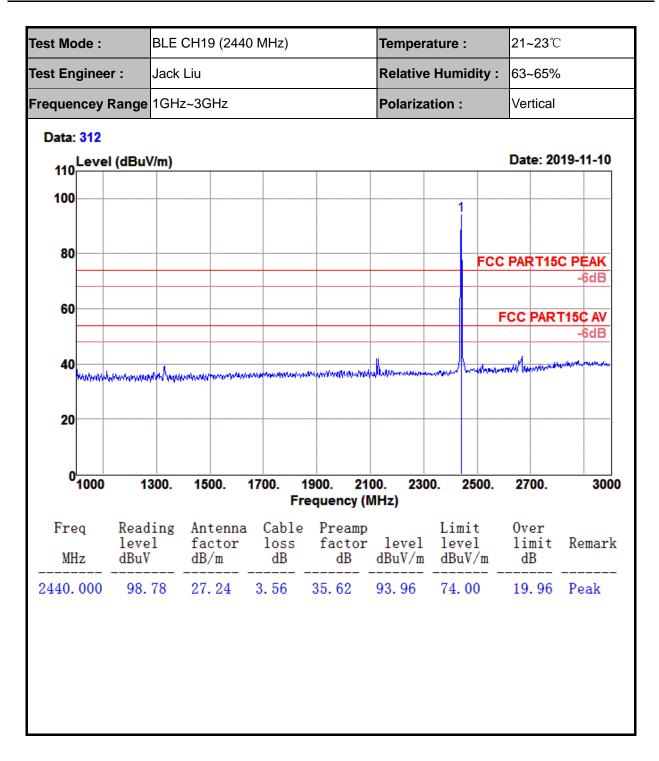

ECLOUD



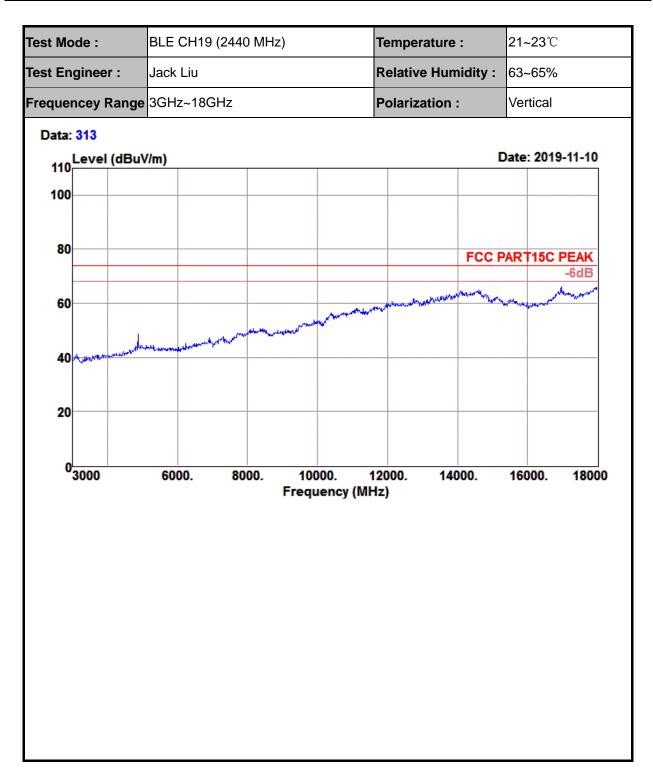

Report No.: EC1909021RF02

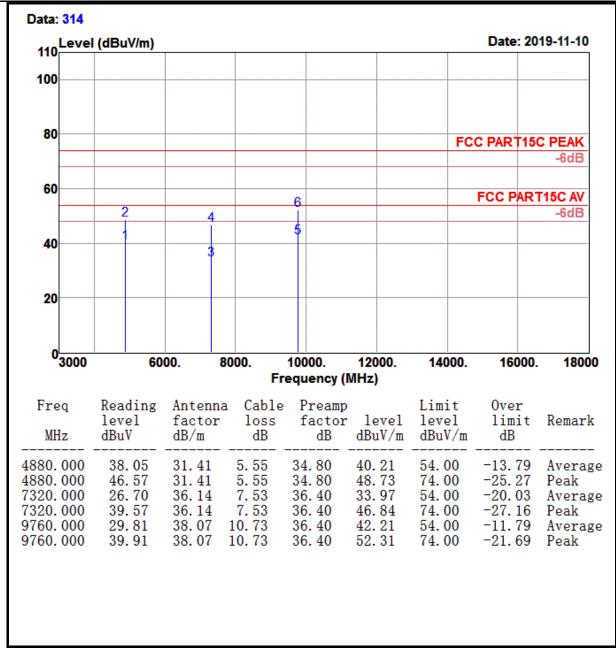
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.




Report No.: EC1909021RF02

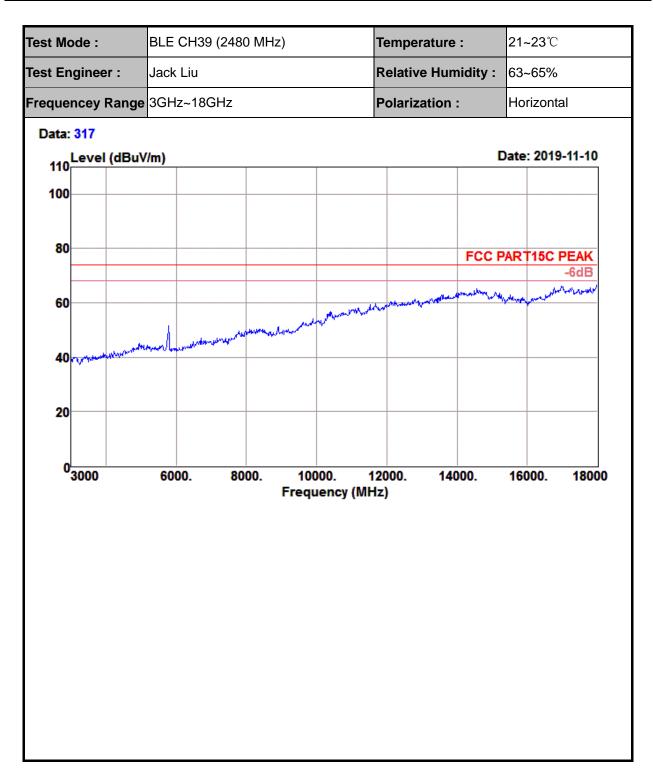
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

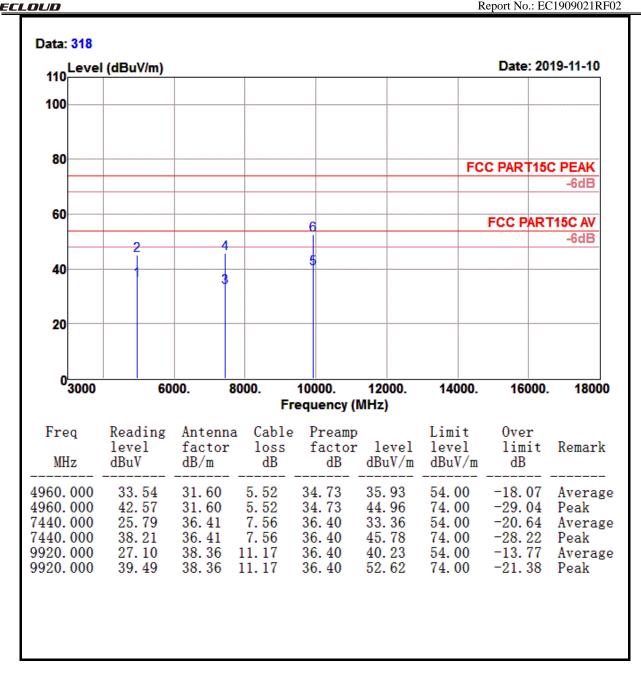

OLD



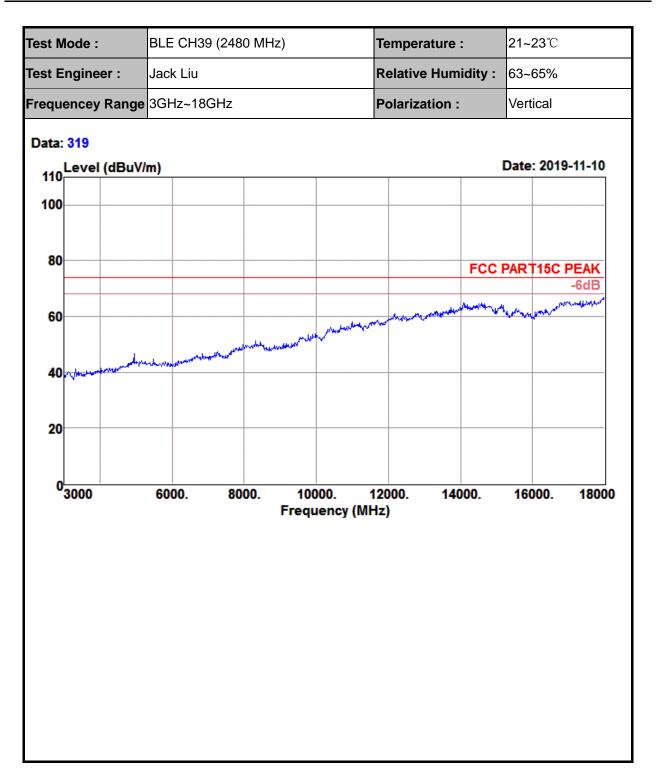
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

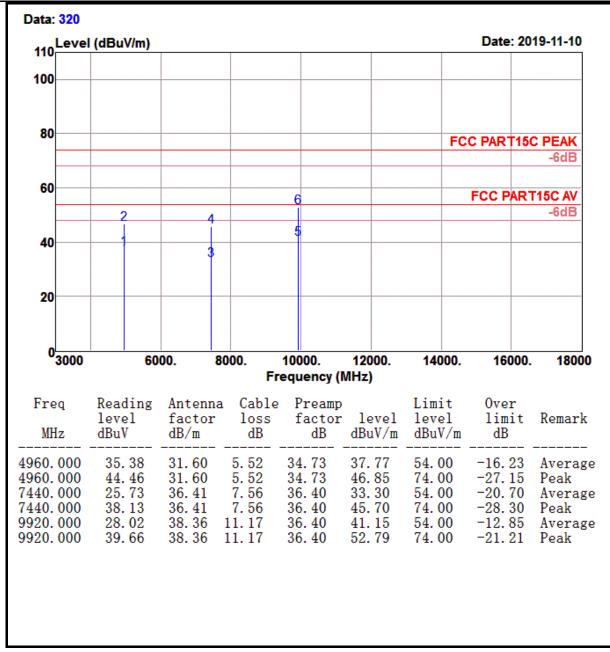
LOUD




	BLI	E CH39 (248	0 MHz)		Tempera	ature :	21~23 ປ	2
est Enginee	e r: Jac	k Liu			Relative	e Humidity	': 63~65%	/ 0
requencey	Range 1G	Hz~3GHz			Polariza	ition :	Horizon	ital
Data: 326								
110 Leve	l (dBuV/m)						Date: 20	19-11-10
100						1		
80						FC	C PART15	C PEAK
								-6dB
60							FCC PAR	T15C AV -6dB
40							have a second and the second second	4114,4***
water and	dermaly entrologit	ndretlinen narhann ar h	water and the state	in an	philippine and a second	ALANAMAN PARA	Provide and Association of	
20								
0 <mark></mark>	1300	1500.		1900. 210 equency (N		0. 2500.	2700.	3000
0 <mark>1000</mark> Freq MHz	1300 Reading level dBuV	g Antenna	Fr Cable	equency(N Preamp	IHz) level	0. 2500. Limit level dBuV/m	Over limit dB	3000 Remark

Report No.: EC1909021RF02


Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.



est Engineer		01100 (2400) MHz)		Tempera	ature :	21~23 ℃			
J	: Jack	Liu			Relative	Humidity :	63~65%)		
Frequencey R	ange 1GHz	z~3GHz			Polariza	ation :	Vertical			
Data: 323	·									
110 Level	(dBuV/m)			1			Date: 20	19-11-10		
100						1				
80						FCC	PART15			
								-6dB		
60						F		Г15С АУ -6dВ		
40 University	llannandalanana	Nethelinitestation	n ala ala ana an	mallententententen	hjadoodaa maddadaa	moust all chalter	arteellestrywistert	ultudrighe ^{te} nsetifissifies		
20										
0 <mark>1000</mark>	1300.	1500.		1900. 210 equency (N		0. 2500.	2700.	3000		
_	level	Antenna factor dB/m	loss		level	Limit level dBuV/m		Remark		
2480.000	100. 63	27.35	3. 59	35.67	95.90	74.00	21.90	Peak		

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

OUD

4.5.6 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

Test Mo	ode :		BLE	CH00	(2402	2 MHz)			Tempera	ature :	21~23 ℃			
Test En	ginee	r :	Jack	Liu					Relative	Humidity :	63~65%			
Freque	ncey l	Range	30MI	Hz~1G	iHz				Polariza	tion :	Horizonta	al		
Data: 4														
110	.evel	(dBuV/	m)								Date: 20)19-11-12		
100														
80														
60										FC	PART15	C PEAK -6dB		
40	1	2		3	4		ha h	Marcha	hi waa	and a chatman	in a state	de la marca		
20-	When	phylound	hala hara		Υψγ Ι		<u></u>	<u>. takkina</u>	MANNE					
0 <mark>3</mark>	0 10	0.	200.	3	00.	400. F	50 reque)0. ncy (N	600. IHz)	700. 8	00. 90	0. 1000		
Free MH2	-	Readi level dBuV		Ante fact dB/m	or	Cabl loss dB	fa	eamp ctor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark		
50.3 119.2 263.3 312.2 359.8 408.3	240 770 270 800	41.8 45.6 51.0 52.1 51.9 49.6	1 4 9 7	12.6 10.9 13.4 14.3 15.0 16.0	2 0 5 0	1.66 2.04 2.62 2.82 3.09 3.26	32. 32. 32. 32. 32. 32. 32. 32.	61 68 71 76	23.65 25.96 34.38 36.65 37.30 36.17	$\begin{array}{c} 40.\ 00\\ 43.\ 50\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	-16. 35 -17. 54 -11. 62 -9. 35 -8. 70 -9. 83	Peak Peak Peak Peak Peak Peak		

Test Mode :		BLE C	CH00 (2	2402	MHz)				Ter	npera	ture	:	21~	23 ℃		
Test Enginee	er:	Jack I	_iu						Re	lative	Hum	idity :	63~	65%		
Frequencey	Range	30MH	z~1G⊦	lz					Pol	larizat	tion :		Vert	tical		
Data: 433 110	al (dBu)	V/m)											Dat	e: 20	19-1	1-12
110		•/														
100																
80																
60												FCC	: PAR	115		AK dB
40	2			1.	Lunch	ka d t	e L.M.	, 4		and and the state	ulland	5 M d Ladaradh	(aliegert, black		6	1 ~~~~~
20	inder the state of	Numana	Lawler and	AND NACIN	ulada i		ru-ar full bl	\$Y1\$64	MU44, 47							
0 <mark></mark> 30_1	100.	200.	30	0.	400		50 equei		600 (MHz		700.	80	0.	90	0.	1000
Freq MHz	Read leve dBu\	el -	Ante fact dB/m		Cab los dB	s	fa	eamp ctor dB	10	evel 1V/m	lev	nit vel 1V/m	Ove lin dl	nit	Re	mark
50. 370 119. 240 504. 330 551. 860 736. 160 937. 920	45. 48. 40. 40. 41. 35.	91 99 98 47	12. 6 10. 9 18. 0 19. 1 21. 9 24. 1	2 0 3 2	1.66 2.04 3.65 3.79 4.45 5.11		32. 32. 32. 32. 32. 32. 31.	61 89 74 19	27. 29. 29. 31. 35. 33.	26 75 16 65	43. 46. 46. 46.	00 50 00 00 00 00	-12. -14. -16. -14. -10. -12.	24 25 84 35	Pe Pe Pe Pe Pe Pe	ak ak ak ak

4.6 AC Conducted Emission Measurement

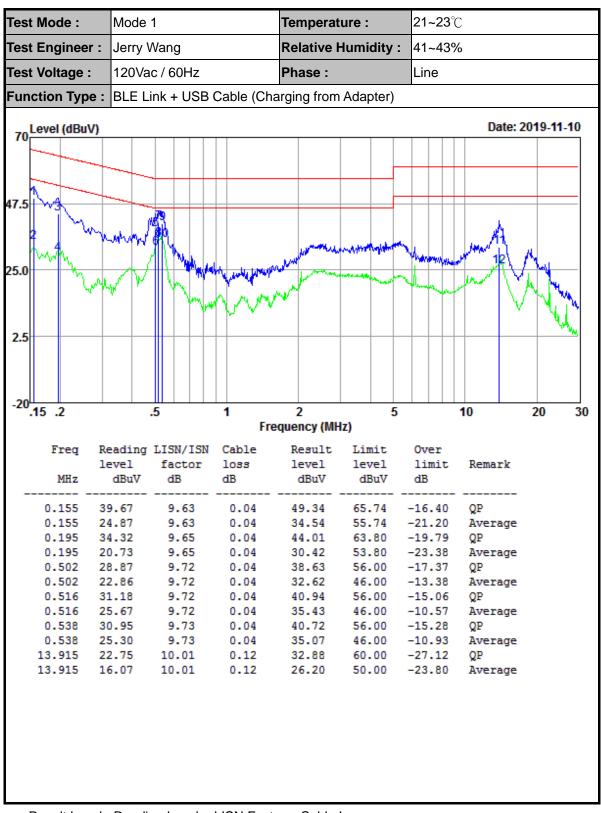
4.6.1 Limit of AC Conducted Emission

FCC §15.207

IC RSS-GEN 8.8

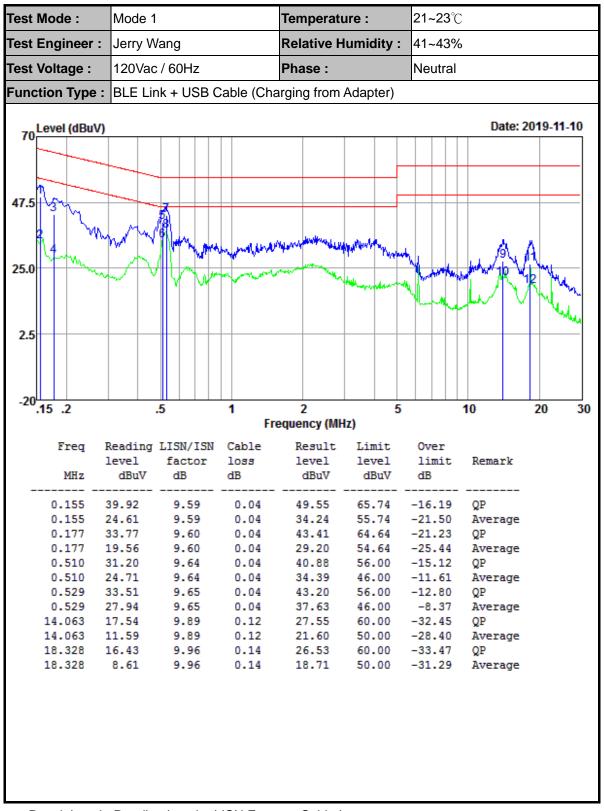
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)		
Frequency of emission (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	


*Decreases with the logarithm of the frequency.

4.6.2 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



Result Level= Reading Level + LISN Factor + Cable Loss

Over Limit (margin) = Result Level – Limit Level

Result Level= Reading Level + LISN Factor + Cable Loss

Over Limit (margin) = Result Level - Limit Level

4.7 Antenna Requirements

4.7.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 Antenna Connected Construction

An embedded-in antenna design is used.

4.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2019-01-23	2020-01-22	Conducted
Thermal Chamber	Sanmtest	SMC-408-CD	2435	2019-05-09	2020-05-08	Conducted
Base Station	R&S	CMW 270	101231	2019-01-23	2020-01-22	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2019-04-10	2020-04-09	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2019-01-23	2020-01-22	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2019-02-18	2020-02-17	Radiation
Amplifier	Sonoma	310	363917	2019-01-22	2020-01-21	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2019-01-22	2020-01-21	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2019-07-18	2020-07-17	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2017-03-03	2020-03-02	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2017-03-03	2020-03-02	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2017-03-03	2020-03-02	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021-06-19	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2019-01-22	2020-01-21	LISN
LISN	R&S	ENV432	101327	2019-01-22	2020-01-21	LISN
EMI Test Receiver	R&S	ESR3	102143	2019-01-23	2020-01-22	EMI Test Receiver
EMI Test Software	Audix	E3	N/A	N/A	N/A	EMI Test Software

N/A: No Calibration Required

6. Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.60dB	
Radiated emission	30MHz ~ 1GMHz	5.05dB	
	1GHz ~ 18GHz	5.06 dB	
	18GHz ~ 40GHz	3.65dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.