

FCC Radio Test Report

FCC ID: 2AATB-SMC-1030

Report No.	BTL-FCCP-2-1803T076A
Equipment	Music Streamer
Model Name	SMC-1030
Brand Name	TTI
Applicant	Tatung Technology Inc.
Address	10F, No.288, Sec 6, Civic Blvd, Xinyi Dist, Taipei City 11087,Taiwan
Radio Function	Bluetooth Low Energy
FCC Rule Part(s) Measurement Procedure(s)	FCC Part15, Subpart C (15.247) ANSI C63.4-2014
Date of Receipt	2018/4/25
Date of Test	2018/4/25 ~ 2019/9/20
Issued Date	2019/11/7

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Peter Chen, Engineer C-MRA Testing Laboratory 0659 Approved by Scott Hsu, Vice Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Fax: +886-2-2657-3331 Tel: +886-2-2657-3299 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

REPORT ISSUED HISTORY51SUMMARY OF TEST RESULTS61.1TEST FACILITY71.2MEASUREMENT UNCERTAINTY71.3TEST ENVIRONMENT CONDITIONS81.4TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING81.5DUTY CYCLE82GENERAL INFORMATION92.1DESCRIPTION OF EUT92.2TEST MODES102.3BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED112.4SUPPORT UNITS123.1LIMIT123.2TEST PROCEDURE123.3DEVIATION FROM TEST STANDARD123.4TEST SETUP133.5TEST RESULT133.6TEST RESULT144.1LIMIT144.2TEST PROCEDURE154.4TEST SETUP154.4TEST SETUP154.4TEST RESULT - ADOVE 1 GHZ174.7TEST RESULT - ADOVE 1 GHZ174.7TEST RESULT - ADOVE 1 GHZ185.6EUT OPERATION CONDITIONS185.6EUT OPERATION CONDITIONS185.6EUT OPERATION CONDITIONS185.6EUT OPERATION CONDITIONS185.6TEST RESULT196.1APPLIED PROCEDURES / LIMIT185.6EUT OPERATION CONDITIONS185.6TEST RESULTS196.1APPLIED ROCEDURES / LIMIT18<		CONTENTS				
1 SUMMARY OF TEST RESULTS 6 1.1 TEST FACILITY 7 1.2 MEASUREMENT UNCERTAINTY 7 1.3 TEST ENVIRONMENT CONDITIONS 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 8 2.1 DESCRIPTION OF EUT 9 2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3.1 LIMIT 12 3.2 TEST RESUL 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST RESULT 13 3.5 TEST RESULT 15 4.4 TEST SETUP 15 4.4 LIMIT 14 4.2 TEST RESULT - 30 MH2 TO 1 GHZ 17 <td>REPO</td> <td>RT ISSUED HISTORY</td> <td>5</td>	REPO	RT ISSUED HISTORY	5			
1.1 TEST FACILITY 7 1.2 MEASUREMENT UNCERTAINTY 7 1.3 TEST ENVIRONMENT CONDITIONS 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 8 2 GENERAL INFORMATION 9 2.1 DESCRIPTION OF EUT 9 2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST RESULT 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST RESULT - ABOVE 1 GHZ 17 5.5 BUT OPERATING CONDITIONS 16						
12MEASUREMENT UNCERTAINTY71.3TEST ENVIRONMENT CONDITIONS81.4TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING81.5DUTY CYCLE82GENERAL INFORMATION92.1DESCRIPTION OF EUT92.2TEST MODES102.3BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED112.4SUPPORT UNITS123.1LIMIT123.2TEST PROCEDURE123.3DEVIATION FROM TEST STANDARD123.4TEST SETUP133.5TEST RESULT144.1LIMIT144.2TEST PROCEDURE153.4TEST SETUP133.5TEST RESULT144.1LIMIT144.2TEST PROCEDURE154.3DEVIATION FROM TEST STANDARD154.4TEST SETUP154.5EUT OPERATING CONDITIONS164.6TEST RESULT - 30 MHZ TO 1 GHZ177TEST RESULT - 30 MHZ TO 1 GHZ177.5BANDWIDTH TEST185.4TEST STUP185.5EUT OPERATION CONDITIONS185.6TEST RESULTS196.1APPLIED PROCEDURES / LIMIT196.2TEST RESULTS197POWER SEATIND CONDITIONS196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS <td>1.1</td> <td></td> <td></td>	1.1					
1.3 TEST ENVIRONMENT CONDITIONS 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 8 2 GENERAL INFORMATION 9 2.1 DESCRIPTION OF EUT 9 2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4.4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - ABOVE 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5.3 DEVIATION FROM STANDARD 18 <t< td=""><td>1.2</td><td>MEASUREMENT UNCERTAINTY</td><td></td></t<>	1.2	MEASUREMENT UNCERTAINTY				
1.4TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING81.5DUTY CYCLE82.GENERAL INFORMATION92.1DESCRIPTION OF EUT92.2TEST MODES102.3BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113AC POWER LINE CONDUCTED EMISSIONS TEST123.1LIMIT123.2TEST PROCEDURE123.3DEVIATION FROM TEST STANDARD123.4TEST SETUP133.5TEST RESULT144.1LIMIT144.2TEST PROCEDURE154.4TEST SETUP154.4TEST SETUP154.5EUT OPERATING CONDITIONS164.6TEST RESULT - 30 MHZ TO 1 GHZ175BANDWIDTH TEST185.1APPLIED PROCEDURE / LIMIT185.2TEST PROCEDURE / LIMIT185.3DEVIATION FROM STANDARD185.4TEST RESULT - ABOVE 1 GHZ175BANDWIDTH TEST185.4TEST SETUP185.5EUT OPERATION CONDITIONS185.6TEST RESULTS196.1APPLIED PROCEDURES / LIMIT196.2TEST RESULTS196.3DEVIATION FROM STANDARD196.4TEST RESULTS196.5EUT OPERATION CONDITIONS196.6TEST RESULTS207.1APPLIED PROCEDURES / LIMIT20<	1.3	TEST ENVIRONMENT CONDITIONS	8			
1.5 DUTY CYCLE 8 2 GENERAL INFORMATION 9 2.1 DESCRIPTION OF EUT 9 2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4.7 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST RESULTS 18 5.4 TEST SET	1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING				
2.1 DESCRIPTION OF EUT 9 2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST RESULT S 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 E	1.5	DUTY CYCLE				
2.2 TEST MODES 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 2.4 SUPPORT UNITS 12 3.1 LIMIT 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4.4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST RESULTS 18 5.4 TEST SETUP 18 5.5 EUT OP	2	GENERAL INFORMATION	9			
2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19	2.1	DESCRIPTION OF EUT	9			
2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST RESULT 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5.7 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE	2.2	TEST MODES	10			
3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5. BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.	2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11			
3.1 LIMIT 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 </td <td>2.4</td> <td>SUPPORT UNITS</td> <td>11</td>	2.4	SUPPORT UNITS	11			
1 12 3.2 TEST PROCEDURE 12 3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE	3	AC POWER LINE CONDUCTED EMISSIONS TEST	12			
3.3 DEVIATION FROM TEST STANDARD 12 3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EU OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST <td>3.1</td> <td>LIMIT</td> <td>12</td>	3.1	LIMIT	12			
3.4 TEST SETUP 13 3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURES / LIMIT 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST RESULTS 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY	3.2	TEST PROCEDURE	12			
3.5 TEST RESULT 13 4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURES / LIMIT 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPEC	3.3	DEVIATION FROM TEST STANDARD	12			
4 RADIATED EMISSIONS TEST 14 4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 18 6.4 TEST RESULTS 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TES	3.4	TEST SETUP	13			
4.1 LIMIT 14 4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT – 30 MHZ TO 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURE / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LI	3.5	TEST RESULT	13			
4.2 TEST PROCEDURE 15 4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.4 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20	4	RADIATED EMISSIONS TEST	14			
4.3 DEVIATION FROM TEST STANDARD 15 4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURES / LIMIT 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 <t< td=""><td>4.1</td><td>LIMIT</td><td>14</td></t<>	4.1	LIMIT	14			
4.4 TEST SETUP 15 4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7.4	4.2	TEST PROCEDURE	15			
4.5 EUT OPERATING CONDITIONS 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST RESULTS 18 6.4 TEST SETUP 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7	4.3	DEVIATION FROM TEST STANDARD	15			
4.6 TEST RESULT – 30 MHZ TO 1 GHZ 17 4.7 TEST RESULT – ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.4 TEST RESULTS 19 7 POWER STETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7.4	4.4	TEST SETUP	15			
4.7 TEST RESULT - ABOVE 1 GHZ 17 5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURE 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7.4 TEST SETUP 20 7.5 EUT OPERATION CONDITIONS 20 7.6 TEST RESULTS 20	4.5	EUT OPERATING CONDITIONS	16			
5 BANDWIDTH TEST 18 5.1 APPLIED PROCEDURES / LIMIT 18 5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURE 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7.4 TEST SETUP 20 7.5 EUT OPERATION CONDITIONS 20 7.6 TEST RESULTS 20	4.6	TEST RESULT – 30 MHZ TO 1 GHZ	17			
5.1APPLIED PROCEDURES / LIMIT185.2TEST PROCEDURE185.3DEVIATION FROM STANDARD185.4TEST SETUP185.5EUT OPERATION CONDITIONS185.6TEST RESULTS186OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURES / LIMIT196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20	4.7		17			
5.2 TEST PROCEDURE 18 5.3 DEVIATION FROM STANDARD 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 5.6 TEST RESULTS 18 6 OUTPUT POWER TEST 19 6.1 APPLIED PROCEDURES / LIMIT 19 6.2 TEST PROCEDURES / LIMIT 19 6.3 DEVIATION FROM STANDARD 19 6.4 TEST SETUP 19 6.5 EUT OPERATION CONDITIONS 19 6.6 TEST RESULTS 19 7 POWER SPECTRAL DENSITY TEST 20 7.1 APPLIED PROCEDURES / LIMIT 20 7.2 TEST PROCEDURE 20 7.3 DEVIATION FROM STANDARD 20 7.4 TEST SETUP 20 7.5 EUT OPERATION CONDITIONS 20 7.4 TEST SETUP 20 7.5 EUT OPERATION CONDITIONS 20 7.6 TEST RESULTS 20	5	-	18			
5.3DEVIATION FROM STANDARD185.4TEST SETUP185.5EUT OPERATION CONDITIONS185.6TEST RESULTS186OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURE207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
5.4TEST SETUP185.5EUT OPERATION CONDITIONS185.6TEST RESULTS186OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20	-					
5.5EUT OPERATION CONDITIONS185.6TEST RESULTS186OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
5.6TEST RESULTS186OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6OUTPUT POWER TEST196.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.1APPLIED PROCEDURES / LIMIT196.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.2TEST PROCEDURE196.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.3DEVIATION FROM STANDARD196.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.4TEST SETUP196.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.5EUT OPERATION CONDITIONS196.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
6.6TEST RESULTS197POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
7POWER SPECTRAL DENSITY TEST207.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
7.1APPLIED PROCEDURES / LIMIT207.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
7.2TEST PROCEDURE207.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20	-					
7.3DEVIATION FROM STANDARD207.4TEST SETUP207.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
7.4 TEST SETUP 20 7.5 EUT OPERATION CONDITIONS 20 7.6 TEST RESULTS 20						
7.5EUT OPERATION CONDITIONS207.6TEST RESULTS20						
7.6 TEST RESULTS 20						

8.1	APPL	LIED PROCEDURES / LIMIT	21
8.2	TEST	F PROCEDURE	21
8.3	DEVI	ATION FROM STANDARD	21
8.4	TEST	I SETUP	21
8.5	EUT	OPERATION CONDITIONS	21
8.6	TEST	T RESULTS	21
9	LIST OF	F MEASURING EQUIPMENTS	22
10	EUT TE	ST PHOTO	24
11	EUT PH	IOTOS	24
APPEN	DIX A	AC POWER LINE CONDUCTED EMISSIONS	25
APPEN	DIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	28
APPEN	DIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	31
APPEN	DIX D	BANDWIDTH	40
APPEN	DIX E	OUTPUT POWER	42
APPEN	DIX F	POWER SPECTRAL DENSITY TEST	44
APPEN	DIX G	ANTENNA CONDUCTED SPURIOUS EMISSION	46

REPORT ISSUED HISTORY

Report Version Issued Date R00 Original Issue. 2019/11/7		REPORT ISSUED HISTORY	
R0 [Original Issue. 2019/11/7	Report Version	Description	Issued Date
	R00	Original Issue.	2019/11/7

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section Description Test Result Judgement						
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass			
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass			
15.247(a)(2)	Bandwidth	APPENDIX D	Pass			
15.247(b)(3)	Output Power	APPENDIX E	Pass			
15.247(e)	Power Spectral Density	APPENDIX F	Pass			
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass			
15.203	Antenna Requirement		Pass			

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68	No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan								
The te	est sites and facili	ties a	re covered und	ler FCC	CRN: 355421 an	d DN	: TW1099.		
\boxtimes	C05		CB08		CB11	\boxtimes	CB15		CB16
\boxtimes	SR06								

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions below 1 GHz test :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.20
CB15	CISPR	30MHz ~ 200MHz	Н	3.64
(3m)	CISER	200MHz ~ 1,000MHz	V	4.56
		200MHz ~ 1,000MHz	Н	3.90

C. Radiated emissions above 1 GHz test :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		1GHz ~ 6GHz	V	4.46
CB15	CISPR	1GHz ~ 6GHz	Н	4.40
(3m)	CISER	6GHz ~ 18GHz	V	3.88
		6GHz ~ 18GHz	Н	4.00

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	18 ~ 26.5 GHz	4.62
(1m)	CISER	26.5 ~ 40 GHz	5.12

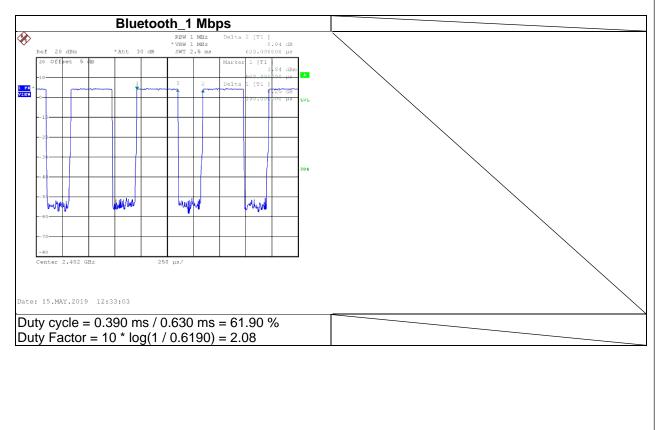
D. Conducted test :

Test Item	U,(dB)
Bandwidth	1.13
Output power	1.06
Power Spectral Density	1.20
Conducted Spurious emissions	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Tested by
AC Power Line Conducted Emissions	25 °C, 45 %	Jerry Chuang
Radiated emissions below 1 GHz	22 °C, 60 %	Leo Liu
Radiated emissions above 1 GHz	22 °C, 60 %	Jerry Chuang
Bandwidth	24.2 °C, 51.8 %	Tim Lee
Output Power	24.2 °C, 51.8 %	Tim Lee
Power Spectral Density	24.2 °C, 51.8 %	Tim Lee
Antenna conducted Spurious Emission	24.2 °C, 51.8 %	Tim Lee

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	PuTTY					
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate		
GFSK	DEF	DEF	DEF	1 Mbps		

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Music Streamer	
Model Name	SMC-1030	
Brand Name		
Model Difference	N/A	
Power Source	DC voltage supplied from External Power Supply.	
Power Rating	I/P: 100-240V~ 50-60 Hz 0.5A Max.	
i owor rearing	O/P: 12.0V1.0A	
Products Covered	1 * Adapter: APD / WA-12M12FU	
	1 * remote control	
Frequency Range	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
Modulation Technology	GFSK	
Transfer Rate	1Mbps	
Output Power Max.	5.45 dBm (0.0035 W)	
Test Model	SMC-1030	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

	Ant.	Brand	Test Model	Antenna Type	Connector	Gain (dBi)
ſ	1	Ethertronics	TTI_SMC-1030	PCB	N/A	-2.03

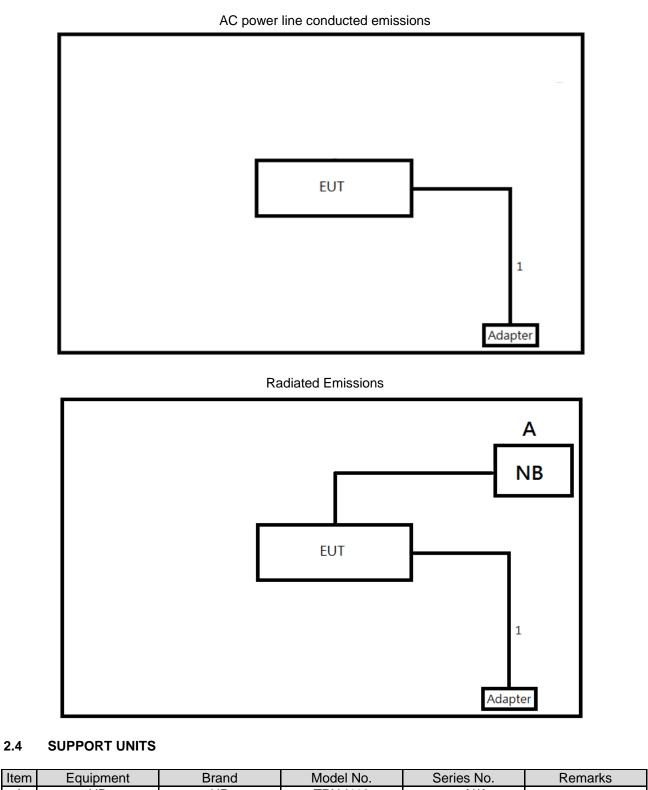
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	1 Mbps	19	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	19	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Bandwidth	1 Mbps	00/19/39	-
Output Power	1 Mbps	00/19/39	-
Power Spectral Density	1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1 Mbps	00/19/39	-

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.

(2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.


(3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

(4) There were no emissions found below 30 MHz within 20 dB of the limit.

2.3 **BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED**

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Item	Equipment	Brand	Model No.	Series No.	Remarks
A	NB	HP	TPN-I119	N/A	-
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	NO	NO	1m	Power Cable	-
		_			

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ι	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

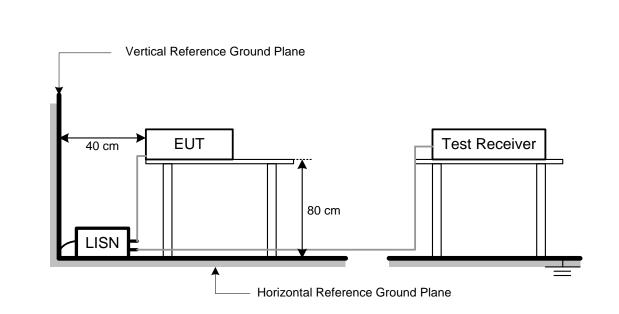
a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).

All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated I (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

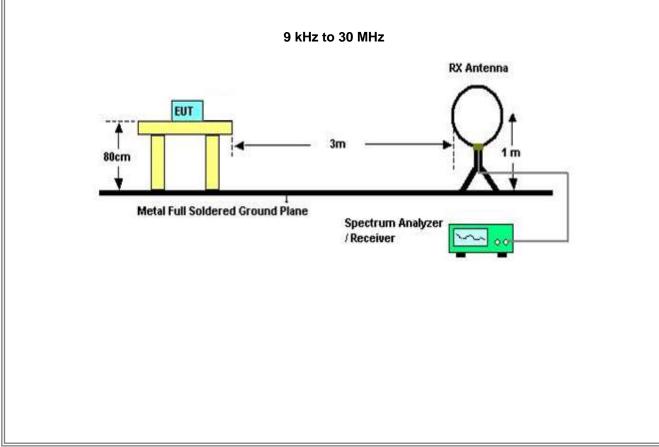
Calculation example:

19.11 + 2.11 = 21.22	Reading Level		Correct Factor		Measurement Value
	19.11	+	2.11	П	21.22

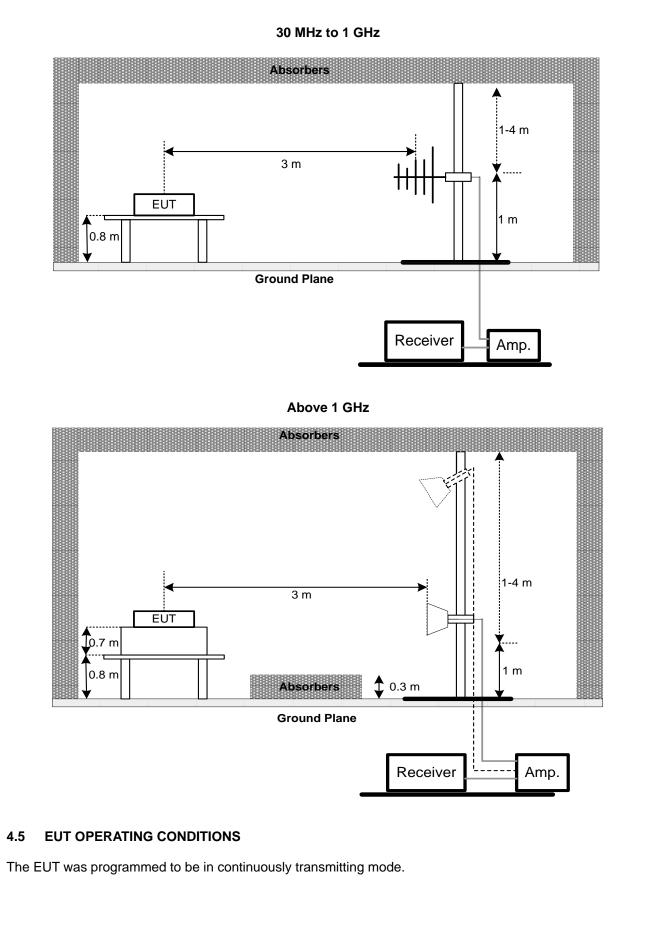
Measurement Value		Limit Value		Margin Level
21.22	-	54	Π	-32.78

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1MHz / 3MHz for Peak,	
(Emission in restricted band)	1MHz / 1/T for Average	

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item		Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247), Subpart C						
Section Test Item		Limit	Frequency Range (MHz)	Result			
15.247(b)(3) Maximum Output Power 1 watt or 30dBm		1 watt or 30dBm	2400-2483.5	PASS			

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	Power Meter

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Section Test Item		Frequency Range (MHz)	Result			
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.
- c. Offset=antenna gain+cable loss

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2019/3/18	2020/3/16	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-6000	170715	2019/8/9	2020/8/7	
3	EMI Test Receiver	R&S	ESR7	101433	2018/12/5	2019/12/4	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A	N/A	

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325	980217	2019/4/15	2020/4/13			
2	Preamplifier	EMCI	EMC2654045	980030	2019/2/2	2020/2/1			
3	Test Cable	EMCI	EMC104-SM-SM- 8000	8m	2019/4/15	2020/4/13			
4	Test Cable	EMCI	EMC104-SM-SM- 800	150207	2019/4/15	2020/4/13			
5	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	2019/4/15	2020/4/13			
6	MXE EMI Receiver	Agilent	N9038A	MY55420127	2019/3/26	2020/3/24			
7	Signal Analyzer	Agilent	N9010A	MY52220990	2019/4/17	2020/4/15			
8	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2019/5/3	2020/5/1			
9	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	2019/3/22	2020/3/20			
10	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	2019/3/22	2020/3/20			

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22
2	Power Meter	Anritsu	ML2495A	1128008	2018/12/6	2019/12/5
3	Power Sensor	Anritsu	MA2411B	1126001	2018/12/6	2019/12/5

	Power Spectral Density												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22							

	Antenna conducted Spurious Emission												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22							

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-1803T076A-1 (APPENDIX-TEST PHOTOS).

11 EUT PHOTOS

Please refer to document Appendix No.: EP-1803T076A-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

st Mode	TX M	lode 2	440MH	z _CH19_1	Mbps		Tested Date	2019/5/7	
st Voltage	AC 1	AC 120V/60Hz Phase							
80.0 dBu\	,								
80.0 aBuy									
70									
<u> </u>									
60									
50									
40									
		1 X	з Х						
30		2 X	4 ×		7		11		
20					5 X X 8 X	9 X	*		
					6 Â	10 ×	12 X		
10									
0.0).5		(MHz)	5		30.000	

No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4560	25.55	9.58	35.13	56.77	-21.64	QP	
2	0.4560	16.82	9.58	26.40	46.77	-20.37	AVG	
3	0.6180	24.92	9.59	34.51	56.00	-21.49	QP	
4 *	0.6180	18.21	9.59	27.80	46.00	-18.20	AVG	
5	1.6013	10.90	9.65	20.55	56.00	-35.45	QP	
6	1.6013	3.35	9.65	13.00	46.00	-33.00	AVG	
7	2.3865	13.79	9.69	23.48	56.00	-32.52	QP	
8	2.3865	8.22	9.69	17.91	46.00	-28.09	AVG	
9	4.4363	10.55	9.74	20.29	56.00	-35.71	QP	
10	4.4363	1.78	9.74	11.52	46.00	-34.48	AVG	
11	7.9890	13.42	9.81	23.23	60.00	-36.77	QP	
12	7.9890	4.65	9.81	14.46	50.00	-35.54	AVG	

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

st Mode	TX Mode 2	440MHz	_CH19_1	Mbps			Tested D	Date	2019/5/7	
est Voltage	AC 120V/6	0Hz					Phase		Neutral	
80.0 dBu\	/									
70										
60										
50										
40		1 X								
30		2 X		3			7			
20				3 X 4 X		5 X	8	9 X 0		
10						6 X	×	XU X	11 ¥2 X	
0.0).5		(MHz)		5			30.000	
0.150						5			30.000	
	Reading req. Level	Correct Factor	Measure- ment	Limit	Over					
	MHz dBuV	dB	dBuV	dBuV	dB	Detecto	Comment			
1 0.6	6180 25.41	9.64	35.05	56.00	-20.95	QP				
2 * 0.6	6180 18.58	9.64	28.22	46.00	-17.78	AVG				

1	0.6180	25.41	9.64	35.05	56.00	-20.95	QP
2 *	0.6180	18.58	9.64	28.22	46.00	-17.78	AVG
3	2.4360	12.79	9.73	22.52	56.00	-33.48	QP
4	2.4360	8.05	9.73	17.78	46.00	-28.22	AVG
5	4.4543	8.01	9.79	17.80	56.00	-38.20	QP
6	4.4543	0.96	9.79	10.75	46.00	-35.25	AVG
7	7.8788	12.64	9.87	22.51	60.00	-37.49	QP
8	7.8788	2.12	9.87	11.99	50.00	-38.01	AVG
9	19.2233	3.85	10.00	13.85	60.00	-46.15	QP
10	19.2233	1.26	10.00	11.26	50.00	-38.74	AVG
11	24.8325	1.25	10.02	11.27	60.00	-48.73	QP
12	24.8325	-1.82	10.02	8.20	50.00	-41.80	AVG

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test N	Лос	le		ТΧ	Mode	e 24	440MI	Ηz _	_CH19	9_1N	Лbps					Te	ested	Date	Э	2	018/	5/7
Test V	/olt	age		AC	; 120\	//60	OHz									Polarization		V	ertic	al		
80	0.0 Г	dBu	√/m																			
70	0 -																					
60	0 -																					
50	0																					
40	D -																					
30	0	1 \$	2	3							5	Š			é X							
20		X	K	ЗX			* ×															
10																						
0.		000	107.0	10	224.0		221	00	410.0	10	E1E (612 (700		000	00		10	0.00	
	30.	000	127.0		224.0		321.		418.0		515.0	JU	612.0	UU	709.0	00	806	.00		100	00.00	MHZ
No.	Mk		req.		Readin Level	g	Corre Facto		Meası men	t	Limi		Over									
			MHz		dBuV		dB		dBuV/		dBuV/ı		dB		Detector		Comme	ent				
1			3700		28.77		-8.07		20.70		40.00		-19.30		peak							
2			2000		36.15		-13.5		22.59		43.50		-20.91		peak							
3		155.1			30.96		-8.58		22.38		43.50		-21.12		peak							
4		276.3			29.58		-7.88		21.70		46.00		-24.30		peak							
5		523.7	7300		29.52		-2.49)	27.03	3	46.00)	-18.97	7	peak							

46.00 -16.46

peak

REMARKS:

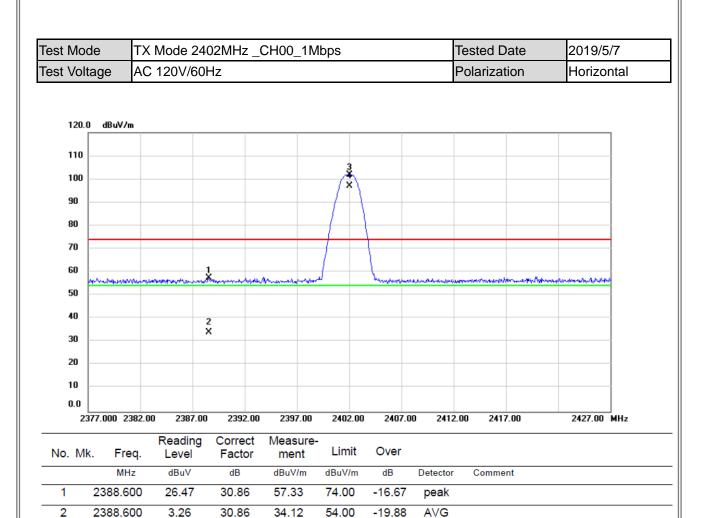
6 * 675.0500 28.81

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

0.73

29.54

Test Mo	de	ТΧ	(Mode	e 2440MI	Hz _CH1	9_1Mb	ps			Tested	Date	2018/	5/7
Test Vo	ltage	AC	2120V	′/60Hz						Polariz	ation	Horizo	ontal
80.0	dBuV/m												1
70													
60							_						
50													
40							+	-	e E				
30	¥						-	5 X	×				
20	×	ЗX	*				+						
10													
0.0 31	0.000 127.	00	224.0	0 321.	00 418	.00 5	15.00	612.00) 709.	00 806	.00	1000.00	 MHz
No. M	k. Freq		Reading Level	g Corre Facto			imit.	Over					
	MHz		dBuV	dB	dBu∨		uV/m	dB	Detector	Comm	ent		
1 *	33.8800		38.40	-9.02			.00	-10.62	peak				
2	87.2300		32.67	-13.4			.00	-20.77	peak				
3	144.4600		29.92	-8.73			.50	-22.31	peak				
4	210.4200		31.24	-10.6			.50	-22.95	peak				
5	558.6500		33.49	-1.73			6.00	-14.24	peak				
6	701.2400)	31.80	1.30	33.1	0 46	00.	-12.90	peak				


REMARKS:

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

101.78

96.90

74.00

54.00

27.78

42.90

peak

AVG

No Limit

No Limit

REMARKS:

3 X 2402.000

2402.000

4 *

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

70.87

65.99

30.91

30.91

est Mode	TX Mo	ode 24	80MHz _	CH39_1N	lbps			Tested Date	2019/5/7	
est Voltage	AC 12	0V/60	Hz					Polarization	Horizontal	
120.0 dBuV	/m									
110										
110										
100					4					
90					/*\					
80					-/+					
70										
60					\downarrow			3		
50	the sector of th	mandherd	istheration and the second second	earl last and a second s	~	Madding and Service	and fall water a fall of the	an dhaada tar ahaadaa dhadha dhaadaa dhaa	harmon and the state of the sta	
40										
30								4 ×		
20										
10 0.0										
2455.000	2460.00	2465.00	2470.00	2475.00	2480.00	2485.0	10 2490	0.00 2495.00	2505.00 MHz	
		eading	Correct	Measure-						
		.evel	Factor	ment	Limit	Over				
		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1 X 2480.		6.24	31.17	97.41	74.00	23.41	peak	No Limit		
2 * 2480.		51.71	31.17	92.88	54.00	38.88	AVG	No Limit		
3 2495.	900 2	28.00	31.22	59.22	74.00	-14.78	peak			

54.00 -19.19

AVG

REMARKS:

4

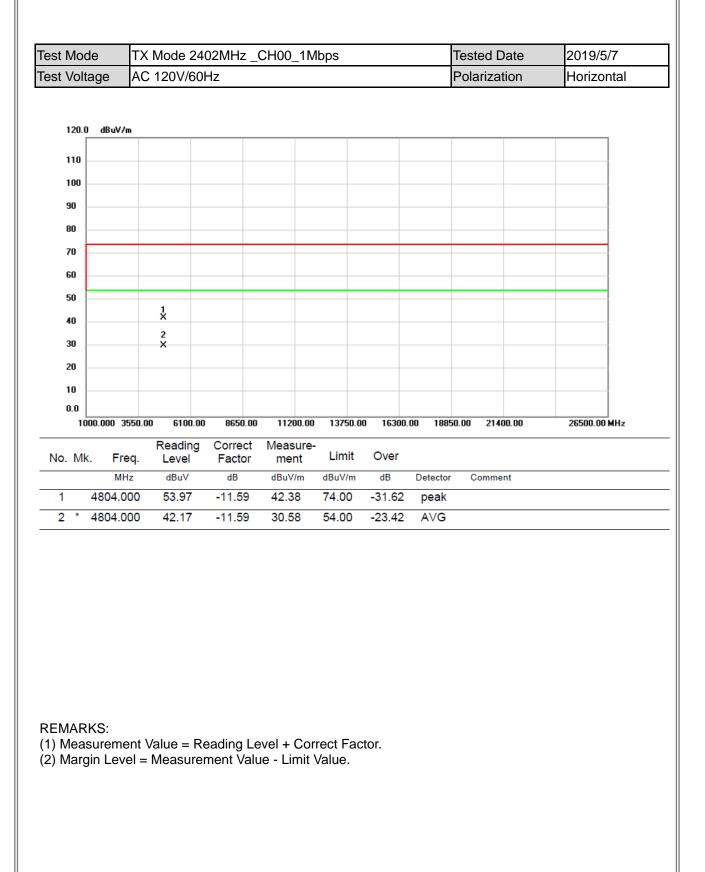
2495.900

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

3.59

31.22

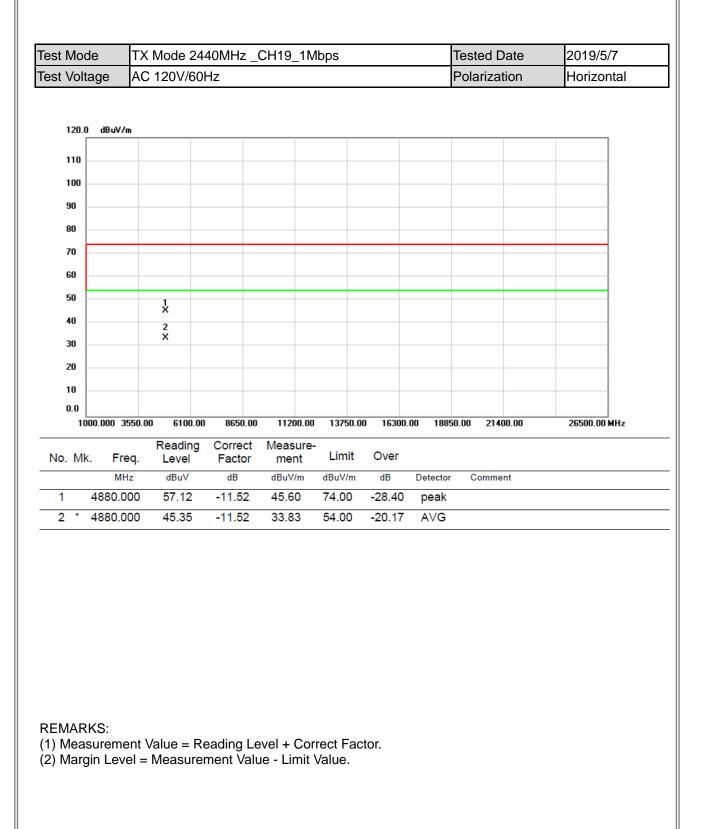
34.81



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

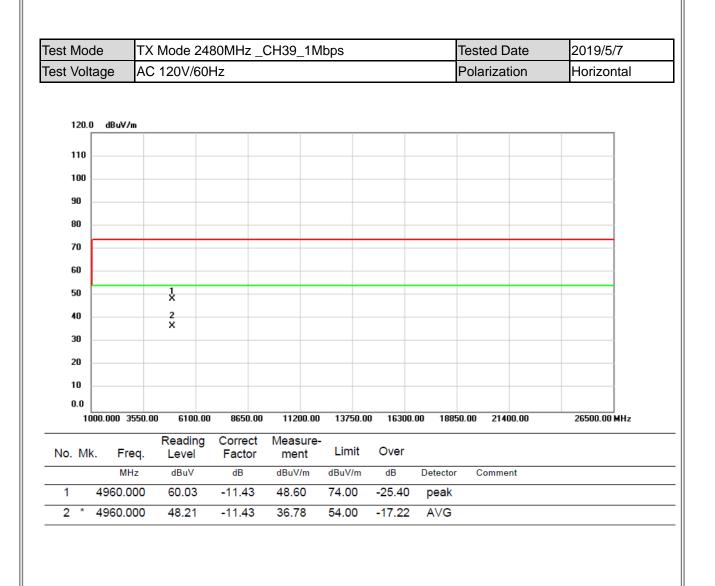
(2) Margin Level = Measurement Value - Limit Value.



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

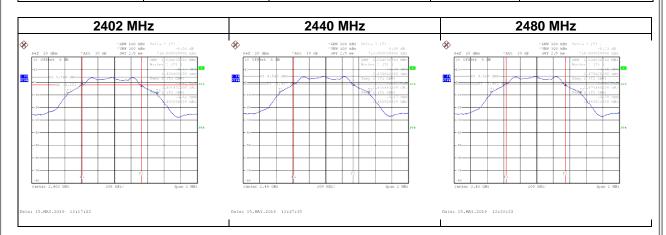


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.

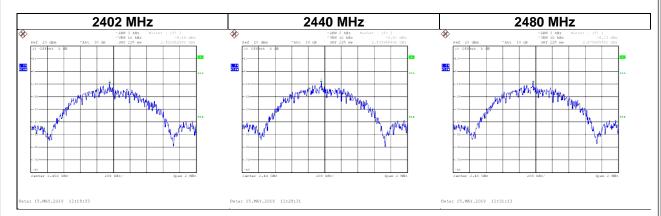
APPENDIX D BANDWIDTH

BIL

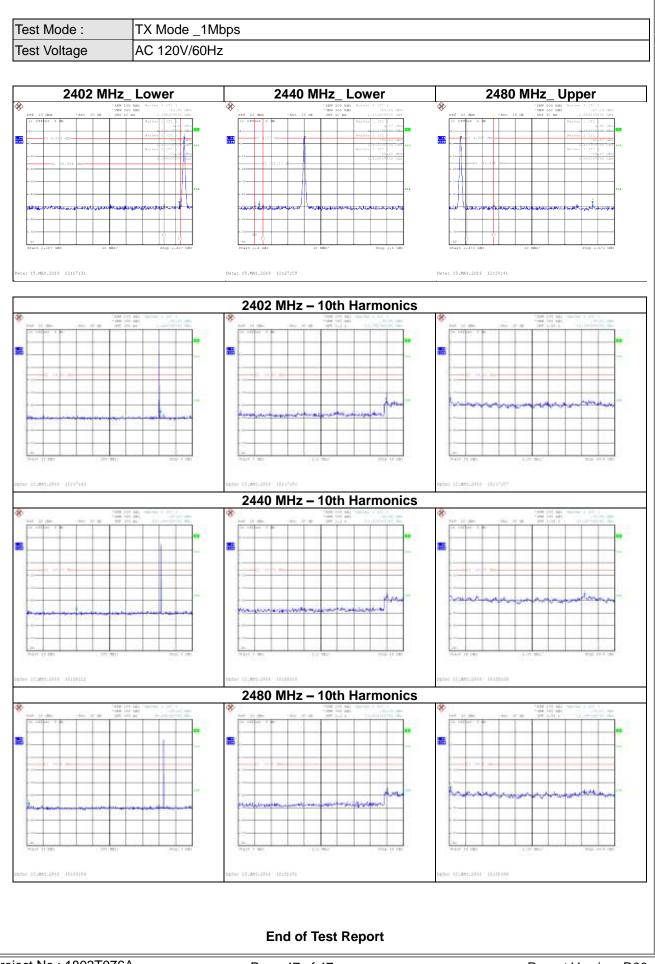
Test Mode:	TX Mode _1Mbps													
Test Voltage	AC 120V/60Hz	C 120V/60Hz												
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result										
2402	0.72	1.08	500	Pass										
2440	0.72	1.08	500	Pass										
2480	0.72	1.08	500	Pass										

APPENDIX E OUTPUT POWER

BIL


Test Mode :	TX Mode _1M	bps	Т	ested Date 2	2019/5/16					
Test Voltage AC 120V/60Hz										
Frequency (MHz)	Conducted Power (dBm)			Max. Limit (W)	Test Result					
2402	4.59	0.0029	21.00	0.1259	Pass					
2440	5.45	0.0035	21.00	0.1259	Pass					
2480	5.34	0.0034	21.00	0.1259	Pass					

APPENDIX F POWER SPECTRAL DENSITY TEST


Test Mode: TX Mode _1Mbps Test Voltage AC 120V/60Hz			
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-9.89	8.00	Pass
2440	-8.93	8.00	Pass
2480	-9.15	8.00	Pass

APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSION

