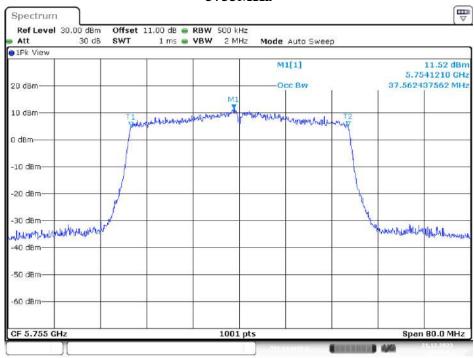

IEEE 802.11ax HE40 Mode / 5725 ~ 5850MHz (Chain 0)

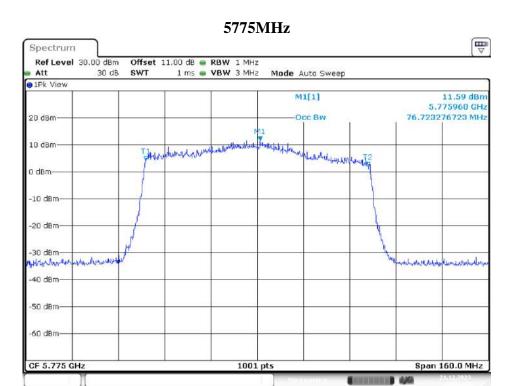
5755MHz

Date: 21.DEC.2023 19:20:10

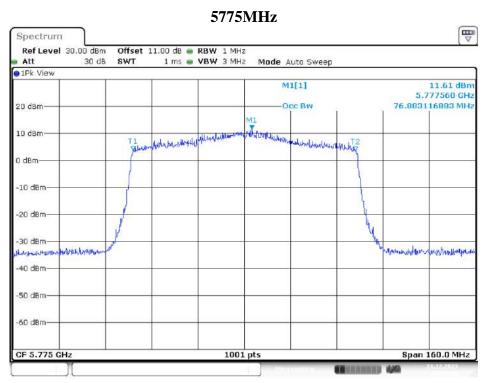

5795MHz

Date: 21.DEC.2023 19:22:15

IEEE 802.11ax HE40 Mode / 5725 ~ 5850MHz (Chain 1)


Date: 21.DEC.2023 20:15:04

5795MHz


Date: 21.DEC.2023 20:17:00

IEEE 802.11ax HE80 Mode / 5725 ~ 5850MHz (Chain 0)

Date: 21.DEC.2023 19:31:50

IEEE 802.11ax HE80 Mode / 5725 ~ 5850MHz (Chain 1)

Date: 21.DEC.2023 20:26:38

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 253 of 337

12 FCC §15.407(a) & RSS-247 §6.2 – Maximum Output Power

No.: RXZ231124120RF04

12.1 Applicable Standard

According to FCC §15.407(a):

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over thefrequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral densityshall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gaingreater than 6 dBi are used, both the maximum conducted output power and the maximum powerspectral density shall be educed by the amount in dB that the directional gain of the antennaexceeds 6 dBi

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to RSS-247 §6.2:

For the 5.15-5.25 GHz band

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 254 of 337

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

For the 5.25-5.35 GHz band

Devices, other than devices installed in vehicles, shall comply with the following:

a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less.

No.: RXZ231124120RF04

The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission

bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

For the 5.47-5.725 GHz bands

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The

power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission

bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

For the 5.725-5.85 GHz bands

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed

30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the

maximum conducted output power and the output power spectral density shall be reduced by the amount in dB

that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this

band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding

reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint

Footnote3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same

information.

12.2 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

The use Power Meter

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a Power

sensor.

12.3 Test Results

Test Mode: Transmitting

5150-5250MHz

Test Modes	Channel	Frequency (MHz)		mum Cond Average Output Powo (dBm)		Duty Factor	Total Maximum Conducted Average Output Power With	FCC Limit	EIRP Power	RSS-247 EIRP Limit
			Chain 0	Chain 1	Total	(dB)	Duty Factor (dBm)	(dBm)	(dBm)	(dBm)
	36	5180	10.25	11.45	13.90	0.32	14.22	30	19.58	22.10
802.11a	40	5200	10.18	11.43	13.86	0.32	14.18	30	19.54	22.11
	48	5240	10.38	10.88	13.65	0.32	13.97	30	19.33	22.11
	36	5180	10.95	11.98	14.51	0.41	14.92	30	20.28	22.42
802.11ac VHT20	40	5200	10.58	11.55	14.10	0.41	14.51	30	19.87	22.42
	48	5240	10.55	11.78	14.22	0.41	14.63	30	19.99	22.42
802.11ac VHT40	38	5190	12.85	13.85	16.39	0.51	16.90	30	22.26	23
802.11ac v H140	46	5230	12.88	13.98	16.48	0.51	16.99	30	22.35	23
802.11ac VHT80	42	5210	13.25	14.35	16.85	0.51	17.36	30	22.72	23
802.11ac VHT160	50	5250	13.25	14.25	16.79	0.51	17.30	30	22.74	23
	36	5180	11.22	12.45	14.89	0.41	15.30	30	20.66	22.75
802.11ax HE20	40	5200	10.95	11.95	14.49	0.41	14.90	30	20.26	22.75
	48	5240	10.72	11.98	14.41	0.41	14.82	30	20.18	22.75
802.11ax HE40	38	5190	12.68	13.95	16.37	0.46	16.83	30	22.19	23
602.11ax nE40	46	5230	12.59	13.78	16.24	0.46	16.70	30	22.06	23
802.11ax HE80	42	5210	13.15	14.25	16.75	0.46	17.21	30	22.57	23
802.11ax HE160	50	5250	13.35	14.35	16.89	0.56	17.45	30	22.89	23

No.: RXZ231124120RF04

Note: The device is a indoor access point device.

The maximum antenna gain is 5.36 dBi.

For Bandwidth 160MHz maximum antenna gain is $5.44~\mathrm{dBi}$.

5250-5350MHz

Test Modes	Channel Frequency (MHz)		Maximum Conducted Average Output Power (dBm)			Duty Factor (dB)	Total Maximum Conducted Average Output Power With	FCC Limit (dBm)	RSS-247 Limit (dBm)	EIRP Power (dBm)	RSS-247 EIRP Limit (dBm)
			Chain 0	Chain 1	Total		Duty Factor (dBm)				(ubiii)
	52	5260	15.21	15.97	18.62	0.32	18.94	23.93	23.11	24.38	29.11
802.11a	60	5300	15.04	15.54	18.31	0.32	18.63	23.92	23.10	24.07	29.10
	64	5320	15.44	15.42	18.44	0.32	18.76	23.80	23.10	24.20	29.10
	52	5260	15.17	16.02	18.63	0.41	19.04	24	23.42	24.48	29.42
802.11ac VHT20	60	5300	15.46	16.12	18.81	0.41	19.22	24	23.42	24.66	29.42
	64	5320	15.41	15.43	18.43	0.41	18.84	24	23.43	24.28	29.43
802.11ac VHT40	54	5270	16.61	17.25	19.95	0.51	20.46	24	24	25.90	30
802.11ac vH140	62	5310	16.31	16.91	19.63	0.51	20.14	24	24	25.58	30
802.11ac VHT80	58	5290	16.07	16.52	19.31	0.51	19.82	24	24	25.26	30
802.11ac VHT160	50	5250	13.25	14.25	16.79	0.51	17.30	24	24	22.74	30
	52	5260	14.53	15.13	17.85	0.41	18.26	24	23.75	23.70	29.75
802.11ax HE20	60	5300	14.21	14.69	17.47	0.41	17.88	24	23.75	23.32	29.75
	64	5320	14.36	14.57	17.48	0.41	17.89	24	23.75	23.33	29.75
902 11c HE40	54	5270	15.39	15.87	18.65	0.46	19.11	24	24	24.55	30
802.11ax HE40	62	5310	15.04	15.41	18.24	0.46	18.70	24	24	24.14	30
802.11ax HE80	58	5290	16.05	16.52	19.30	0.46	19.76	24	24	25.20	30
802.11ax HE160	50	5250	13.35	14.35	16.89	0.56	17.45	24	24	22.89	30

Note: The maximum antenna gain is 5.44 dBi.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 257 of 337

5470-5725MHz

Test Modes	Channel Frequency (MHz)		Maximum Conducted Average Output Power (dBm)			Duty Factor (dB)	Total Maximum Conducted Average Output Power With	FCC Limit (dBm)	RSS-247 Limit (dBm)	EIRP Power (dBm)	RSS-247 EIRP Limit (dBm)
			Chain 0	Chain 1	Total		Duty Factor (dBm)				(uDiii)
	100	5500	15.09	15.84	18.49	0.32	18.81	23.93	23.10	24.34	29.10
802.11a	116	5580	15.03	15.79	18.44	0.32	18.76	23.81	23.10	24.29	29.10
	140	5700	15.22	15.96	18.62	0.32	18.94	23.95	23.10	24.47	29.10
	100	5500	15.07	15.82	18.47	0.41	18.88	24	23.43	24.41	29.43
802.11ac VHT20	116	5580	14.97	15.77	18.40	0.41	18.81	24	23.42	24.34	29.42
	140	5700	15.27	15.97	18.64	0.41	19.05	24	23.42	24.58	29.42
	102	5510	16.32	17.13	19.75	0.51	20.26	24	24	25.79	30
802.11ac VHT40	110	5550	16.80	17.66	20.26	0.51	20.77	24	24	26.30	30
	134	5670	16.93	17.85	20.42	0.51	20.93	24	24	26.46	30
802.11ac VHT80	106	5530	15.93	16.62	19.30	0.51	19.81	24	24	25.34	30
802.11ac VH180	122	5610	16.36	17.32	19.88	0.51	20.39	24	24	25.92	30
802.11ac VHT160	114	5570	16.21	17.13	19.70	0.51	20.21	24	24	25.74	30
	100	5500	14.19	14.92	17.58	0.41	17.99	24	23.76	23.52	29.76
802.11ax HE20	116	5580	14.15	14.96	17.58	0.41	17.99	24	23.76	23.52	29.76
	140	5700	14.54	15.21	17.90	0.41	18.31	24	23.75	23.84	29.75
	102	5510	15.01	15.78	18.42	0.46	18.88	24	24	24.41	30
802.11ax HE40	110	5550	15.63	16.35	19.02	0.46	19.48	24	24	25.01	30
	134	5670	15.79	16.51	19.18	0.46	19.64	24	24	25.17	30
902 11 or HE90	106	5530	15.95	16.59	19.29	0.46	19.75	24	24	25.28	30
802.11ax HE80	122	5610	17.33	16.37	19.89	0.46	20.35	24	24	25.88	30
802.11ax HE160	114	5570	16.36	17.19	19.81	0.56	20.37	24	24	25.90	30

Note: The maximum antenna gain is 5.53 dBi.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 258 of 337

5725-5850MHz

Test Modes	Channel	Frequency (MHz)		mum Cond Average Output Powe (dBm)		Duty Factor (dB)	Total Maximum Conducted Average Output Power With Duty Factor	FCC / RSS-247 Limit (dBm)
			Chain 0	Chain 1	Total	(ив)	(dBm)	(dbiii)
	149	5745	16.13	16.17	19.16	0.32	19.48	30
802.11a	157	5785	16.11	16.18	19.16	0.32	19.48	30
	165	5825	15.94	16.24	19.10	0.32	19.42	30
	149	5745	15.56	15.69	18.64	0.41	19.05	30
802.11ac VHT20	157	5785	15.59	15.64	18.63	0.41	19.04	30
	165	5825	15.42	15.75	18.60	0.41	19.01	30
802.11ac VHT40	151	5755	16.40	16.37	19.40	0.51	19.91	30
802.11ac VH140	159	5795	16.52	16.37	19.46	0.51	19.97	30
802.11ac VHT80	155	5775	15.77	15.67	18.73	0.51	19.24	30
	149	5745	14.88	14.92	17.91	0.41	18.32	30
802.11ax HE20	157	5785	15.06	14.94	18.01	0.41	18.42	30
	165	5825	14.46	14.95	17.72	0.41	18.13	30
902 11 ov UE 40	151	5755	15.16	15.12	18.15	0.46	18.61	30
802.11ax HE40	159	5795	15.22	15.18	18.21	0.46	18.67	30
802.11ax HE80	155	5775	15.88	15.65	18.78	0.46	19.24	30

No.: RXZ231124120RF04

Note:

The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01

Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4

13 FCC §15.407(a) & RSS-247 §6.2 – Power Spectral Density

No.: RXZ231124120RF04

13.1 Applicable Standard

According to FCC §15.407(a):

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to RSS-247 §6.2:

For the 5.15-5.25 GHz band

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 260 of 337

For the 5.25-5.35 GHz band

Devices, other than devices installed in vehicles, shall comply with the following:

a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less.

No.: RXZ231124120RF04

The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission

bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

For the 5.47-5.725 GHz bands

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The

power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission

bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

For the 5.725-5.85 GHz bands

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed

30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the

maximum conducted output power and the output power spectral density shall be reduced by the amount in dB

that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this

band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding

reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint

Footnote3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same

information.

13.2 Test Procedure

The measurements are base on FCC KDB 789033 D02 General UNII Test Procedyres New Rules v02r01:

Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices

section F: Maximum power spectral density.

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

Method SA-2 was used.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 261 of 337

13.3 Test Results

Test Mode: Transmitting

5150-5250MHz

Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)			Duty Factor (dB)	Power Spectral Density with duty factor	Limit (dBm/MHz)	EIRP Power Spectral Density (dBm/MHz)	
			Chain 0	Chain 1	Total		(dBm/MHz)		Result	Limit
	36	5180	0.10	1.15	3.67	0.32	3.99	14.78	9.35	10
802.11a	40	5200	0.11	1.16	3.68	0.32	4.00	14.78	9.36	10
	48	5240	0.18	0.72	3.47	0.32	3.79	14.78	9.15	10
	36	5180	0.38	1.58	4.03	0.41	4.44	14.78	9.80	10
802.11ac 20	40	5200	0.32	1.27	3.83	0.41	4.24	14.78	9.60	10
	48	5240	0.17	1.35	3.81	0.41	4.22	14.78	9.58	10
902 11 40	38	5190	-0.63	0.28	2.86	0.51	3.37	14.78	8.73	10
802.11ac 40	46	5230	-0.69	0.31	2.85	0.51	3.36	14.78	8.72	10
802.11ac 80	42	5210	-2.66	-1.73	0.84	0.51	1.35	14.78	6.71	10
802.11ac 160	50	5250	-5.37	-4.15	-1.71	0.51	-1.20	14.78	4.16	10
	36	5180	0.34	1.43	3.93	0.41	4.34	14.78	9.70	10
802.11ax 20	40	5200	0.26	1.24	3.79	0.41	4.20	14.78	9.56	10
	48	5240	0.11	1.26	3.73	0.41	4.14	14.78	9.50	10
902 11 ov 40	38	5190	-0.97	0.03	2.57	0.46	3.03	14.78	8.39	10
802.11ax 40	46	5230	-1.51	0.18	2.43	0.46	2.89	14.78	8.25	10
802.11ax 80	42	5210	-2.76	-1.76	0.78	0.46	1.24	14.78	6.60	10
802.11ax 160	50	5250	-5.36	-4.17	-1.71	0.56	-1.15	14.78	4.21	10

No.: RXZ231124120RF04

Note: The device is a indoor access point device.

The maximum antenna gain is 5.36 dBi.

Mode	Channel	Frequency (MHz)		Spectral D (dBm/MHz)	•	Duty Factor	Power Spectral Density with duty factor	Limit (dBm/MHz)	
		(141112)	Chain 0	Chain 1	Total	(dB)	(dBm/MHz)	(GDIII IIIIZ)	
	52	5260	4.78	5.51	8.17	0.32	8.49	8.63	
802.11a	60	5300	4.61	5.04	7.84	0.32	8.16	8.63	
	64	5320	4.79	4.86	7.84	0.32	8.16	8.63	
	52	5260	4.12	5.15	7.68	0.41	8.09	8.63	
802.11ac 20	60	5300	4.52	5.40	7.99	0.41	8.40	8.63	
	64	5320	4.60	4.98	7.80	0.41	8.21	8.63	
802.11ac 40	54	5270	2.98	3.73	6.38	0.51	6.89	8.63	
802.11ac 40	62	5310	2.84	3.40	6.14	0.51	6.65	8.63	
802.11ac 80	58	5290	0.17	0.63	3.42	0.51	3.93	8.63	
802.11ac 160	50	5250	-5.37	-4.15	-1.71	0.51	-1.2	8.63	
	52	5260	4.46	5.42	7.98	0.41	8.39	8.63	
802.11ax 20	60	5300	4.83	5.54	8.21	0.41	8.62	8.63	
	64	5320	4.93	5.35	8.16	0.41	8.57	8.63	
802.11ax 40	54	5270	2.40	3.49	5.99	0.46	6.45	8.63	
602.11ax 40	62	5310	1.61	3.41	5.61	0.46	6.07	8.63	
802.11ax 80	58	5290	0.39	1.05	3.74	0.46	4.20	8.63	
802.11ax 160	50	5250	-5.36	-4.17	-1.71	0.56	-1.15	8.63	

Mode	Channel	Frequency (MHz)		· Spectral D (dBm/MHz)	•	Duty Factor	Power Spectral Density with duty factor	Limit (dBm/MHz)	
		(MITIZ)	Chain 0	Chain 1	Total	(dB)	(dBm/MHz)		
	100	5500	4.71	5.28	8.01	0.32	8.33	8.59	
802.11a	116	5580	4.93	5.41	8.19	0.32	8.51	8.59	
	140	5700	5.07	5.44	8.27	0.32	8.59	8.59	
	100	5500	4.74	5.23	8.00	0.41	8.41	8.59	
802.11ac 20	116	5580	4.68	5.16	7.94	0.41	8.35	8.59	
	140	5700	4.92	5.30	8.12	0.41	8.53	8.59	
	102	5510	3.06	3.62	6.36	0.51	6.87	8.59	
802.11ac 40	110	5550	3.61	3.89	6.76	0.51	7.27	8.59	
	134	5670	4.09	4.43	7.27	0.51	7.78	8.59	
002.11 00	106	5530	0.47	0.87	3.68	0.51	4.19	8.59	
802.11ac 80	122	5610	0.68	0.96	3.83	0.51	4.34	8.59	
802.11ac 160	114	5570	-2.81	-1.04	1.17	0.51	1.68	8.59	
	100	5500	4.81	5.48	8.17	0.41	8.58	8.59	
802.11ax 20	116	5580	4.83	5.31	8.09	0.41	8.50	8.59	
	140	5700	4.90	5.39	8.16	0.41	8.57	8.59	
	102	5510	2.03	3.48	5.83	0.46	6.29	8.59	
802.11ax 40	110	5550	3.22	3.63	6.44	0.46	6.90	8.59	
	134	5670	3.18	4.25	6.76	0.46	7.22	8.59	
002.11 00	106	5530	0.67	1.00	3.85	0.46	4.31	8.59	
802.11ax 80	122	5610	1.00	1.80	4.43	0.46	4.89	8.59	
802.11ax 160	114	5570	-2.97	-1.05	1.11	0.56	1.67	8.59	

5725-5850MHz

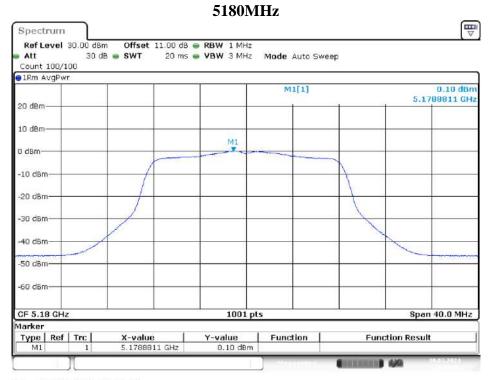
Mode	Channel	Frequency (MHz)		· Spectral D IBm/500kH	•	Duty Factor	Power Spectral Density with duty factor	Limit (dBm/500kHz)	
		(IVIIIZ)	Chain 0	Chain 1	Total	(dB)	(dBm/500kHz)	(ubiii/300kiiz)	
	149	5745	2.90	-0.95	4.40	0.32	4.72	27.66	
802.11a	157	5785	2.62	-0.30	4.41	0.32	4.73	27.66	
	165	5825	2.27	-0.30	4.18	0.32	4.50	27.66	
	149	5745	1.99	2.55	5.29	0.41	5.70	27.66	
802.11ac 20	157	5785	1.87	2.37	5.14	0.41	5.55	27.66	
	165	5825	1.17	2.25	4.75	0.41	5.16	27.66	
902.1140	151	5755	0.05	0.32	3.20	0.51	3.71	27.66	
802.11ac 40	159	5795	-0.24	0.28	3.04	0.51	3.55	27.66	
802.11ac 80	155	5775	-3.20	-2.70	0.07	0.51	0.58	27.66	
	149	5745	1.92	2.48	5.22	0.41	5.63	27.66	
802.11ax 20	157	5785	1.68	2.27	5.00	0.41	5.41	27.66	
	165	5825	1.08	2.13	4.65	0.41	5.06	27.66	
902 11 40	151	5755	-0.47	0.00	2.78	0.46	3.24	27.66	
802.11ax 40	159	5795	-0.69	-0.03	2.66	0.46	3.12	27.66	
802.11ax 80	155	5775	-3.30	-2.71	0.02	0.46	0.48	27.66	

No.: RXZ231124120RF04

The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01

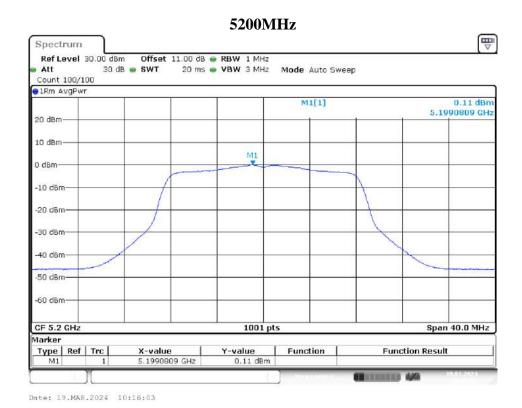
Multiple Transmitter Output v02r01, for Power spectral density (PSD) measurements on the devices:

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi$.

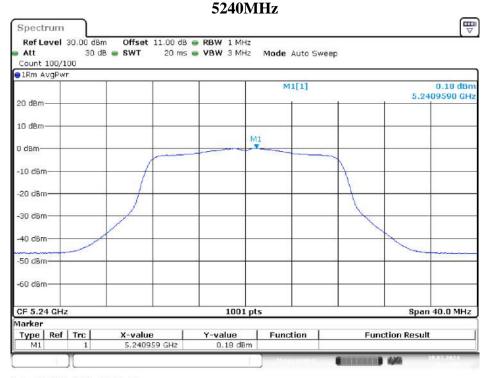

 $Directional\ gain = Band\ 1:\ 8.22\ dBi\ ,\ Band\ 2:\ 8.37\ dBi\ ,\ Band\ 3:\ 8.41\ dBi\ ,\ Band\ 4:\ 8.34\ dBi$

The Power density Limits was reduce Band 1: 2.22 dBi , Band 2: 2.37 dBi , Band 3: 2.41 dBi , Band 4: 2.34 dBi

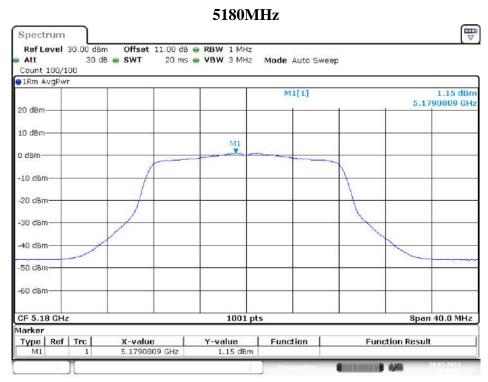
Please refer to the following plots


UNII-1 Band I / PSD

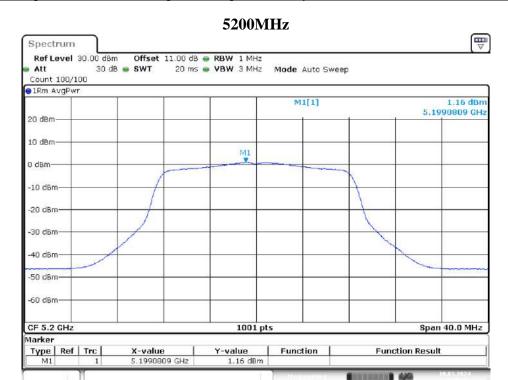
IEEE 802.11a Mode / 5150 ~ 5250MHz (Chain 0)


No.: RXZ231124120RF04

Date: 19.MAR.2024 10:04:42

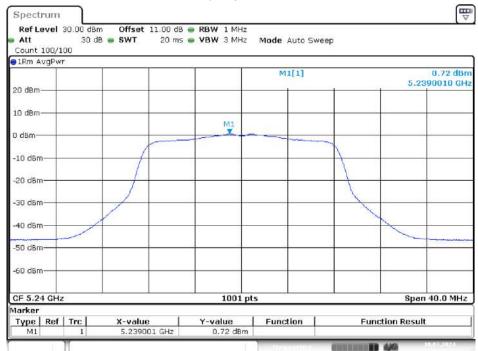

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 266 of 337

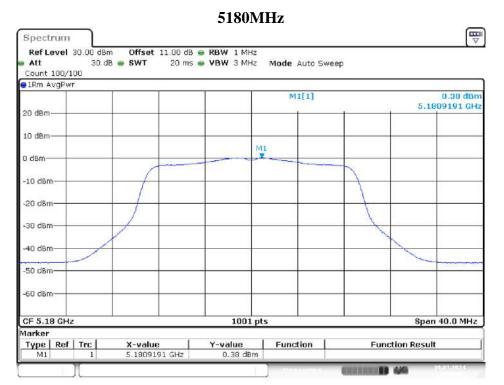


Date: 19.MAR.2024 10:11:29

IEEE 802.11a Mode / 5150 ~ 5250MHz (Chain 1)



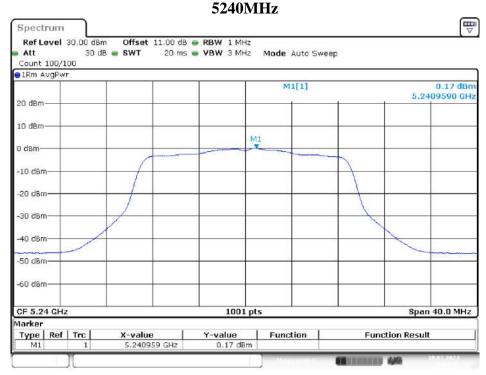
Date: 19.MAR.2024 09:47:52


Date: 19.MAR.2024 10:06:52

5240MHz

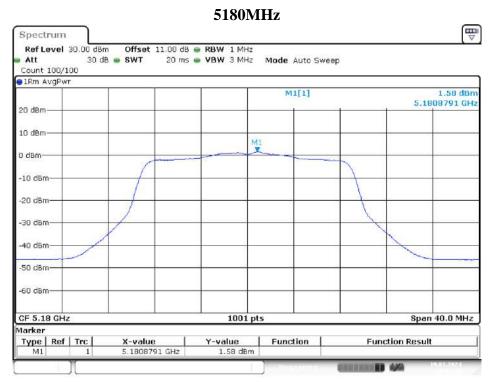
Date: 19.MAR.2024 10:13:51

IEEE 802.11ac VHT20 Mode / 5150 ~ 5250MHz (Chain 0)



No.: RXZ231124120RF04

Date: 19.MAR.2024 10:36:07


5200MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 30 dB - SWT 20 ms . VBW 3 MHz Att Mode Auto Sweep Count 100/100 1Rm AvgPwr M1[1] 0.32 dBm 5.1990410 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm Span 40.0 MHz CF 5.2 GHz 1001 pts Marker Type | Ref | Trc X-value Y-value Function **Function Result** 5.199041 GHz 0.32 dBm M1

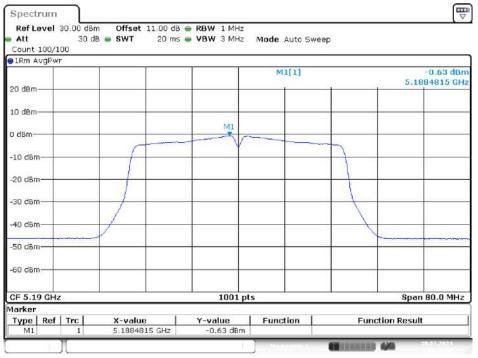
Date: 19.MAR.2024 10:30:26

Date: 19.MAR.2024 10:23:42

IEEE 802.11ac VHT20 Mode / 5150 ~ 5250MHz (Chain 1)

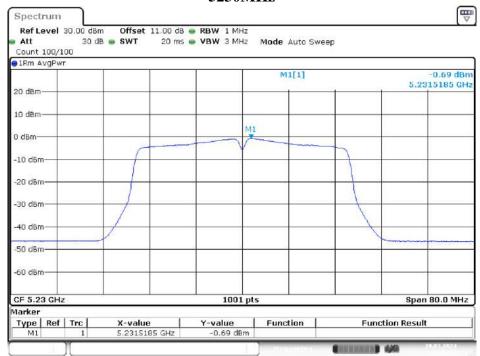
Date: 19.MAR.2024 10:37:10

Date: 19.MAR.2024 10:31:44


5240MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 20 ms 🌞 **VBW** 3 MHz Att 30 dB . SWT Mode Auto Sweep Count 100/100 1Rm AvgPwr 1.35 dBm M1[1] 5.2411588 GHz 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm-Span 40.0 MHz CF 5.24 GHz 1001 pts Marker Type | Ref | Trc | X-value Y-value Function **Function Result** 5.2411588 GHz 1.35 dBm M1

Date: 19.MAR.2024 10:25:40

IEEE 802.11ac VHT40 Mode / 5150 ~ 5250MHz (Chain 0)

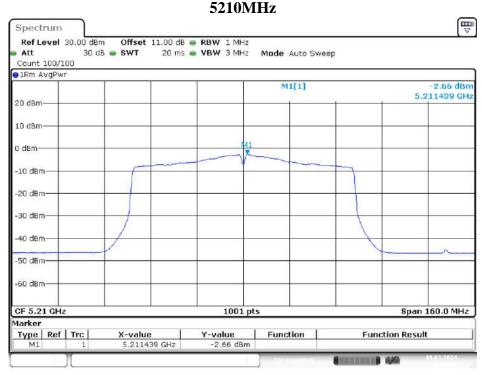

5190MHz

No.: RXZ231124120RF04

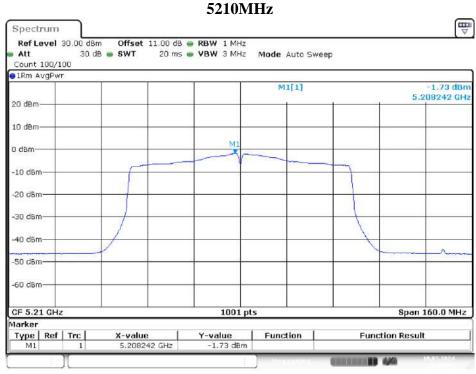

Date: 19.MAR.2024 10:49:56

5230MHz

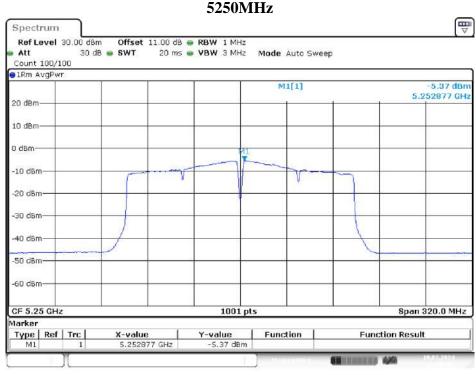
Date: 19.MAR.2024 10:46:51


IEEE 802.11ac VHT40 Mode / 5150 ~ 5250MHz (Chain 1)

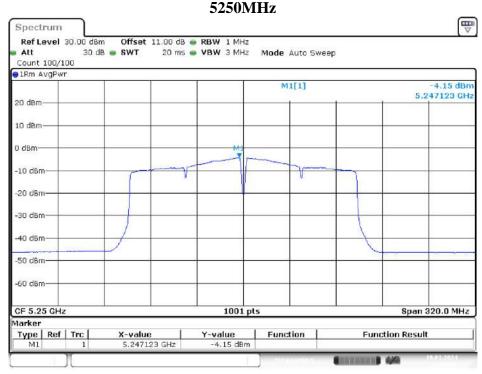
Date: 19.MAR.2024 10:43:01


5230MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 30 dB - SWT 20 ms - VBW 3 MHz Att Mode Auto Sweep Count 100/100 1Rm AvgPwr M1[1] 0.31 dBm 5.2285614 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm Span 80.0 MHz CF 5.23 GHz 1001 pts Marker Type | Ref | Trc X-value Y-value Function **Function Result** 5.2285614 GHz 0.31 dBm M1

IEEE 802.11ac VHT80 Mode / 5150 ~ 5250MHz (Chain 0)


Date: 19.MAR.2024 10:52:51

IEEE 802.11ac VHT80 Mode / 5150 ~ 5250MHz (Chain 1)


Date: 19.MAR.2024 10:55:00

IEEE 802.11ac VHT160 Mode / 5150 ~ 5250MHz (Chain 0)

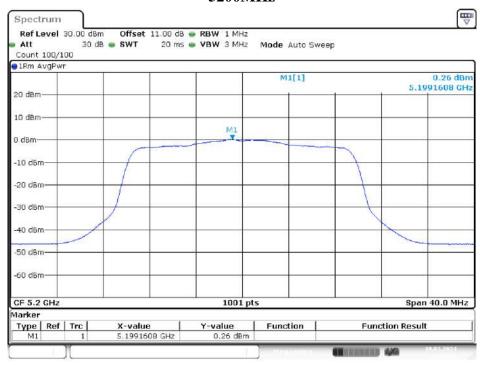
Date: 19.MAR.2024 11:56:24

IEEE 802.11ac VHT160 Mode / 5150 ~ 5250MHz (Chain 1)

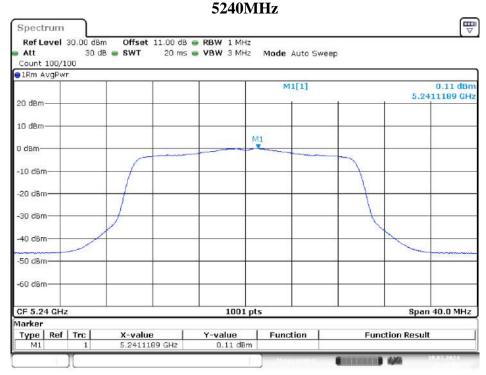


Date: 19.MAR.2024 11:54:34

IEEE 802.11ax HE20 Mode / 5150 ~ 5250MHz (Chain 0)

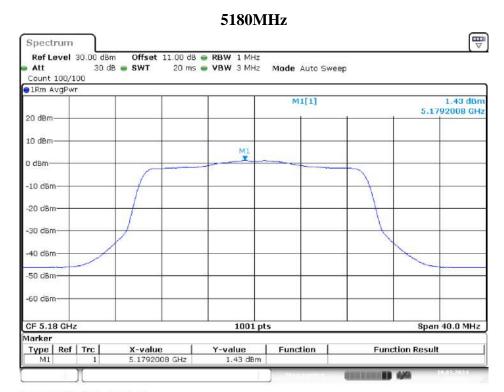

5180MHz

No.: RXZ231124120RF04



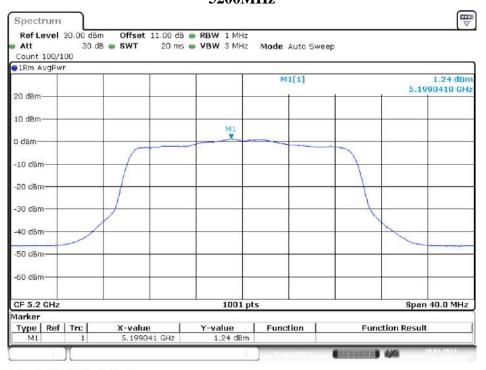
Date: 19.MAR.2024 11:00:23

5200MHz

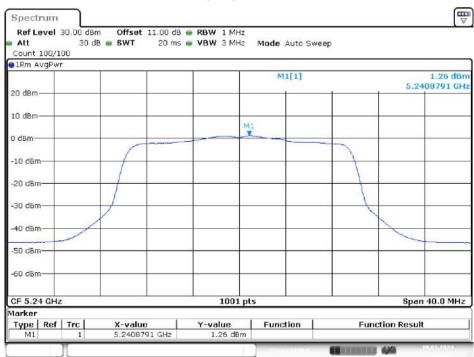


Date: 19.MAR.2024 11:04:27

Date: 19.MAR.2024 11:11:07


IEEE 802.11ax HE20 Mode / 5150 ~ 5250MHz (Chain1)

Date: 19.MAR.2024 10:58:57


5200MHz

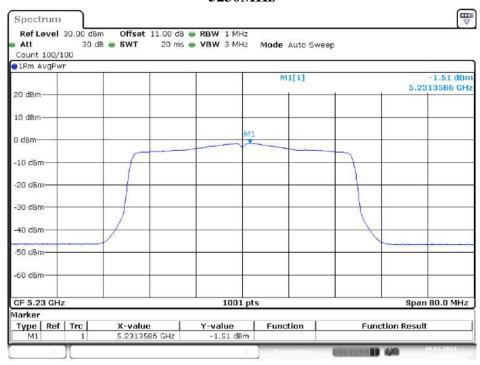
No.: RXZ231124120RF04

Date: 19.MAR.2024 11:03:27

5240MHz

Date: 19.MAR.2024 11:09:12

IEEE 802.11ax HE40 Mode / 5150 ~ 5250MHz (Chain 0)


5190MHz

No.: RXZ231124120RF04

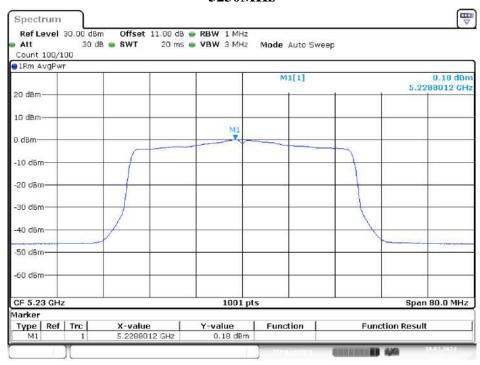
Date: 19.MAR.2024 11:26:22

5230MHz



Date: 19.MAR.2024 11:35:26

IEEE 802.11ax HE40 Mode / 5150 ~ 5250MHz (Chain1)


5190MHz

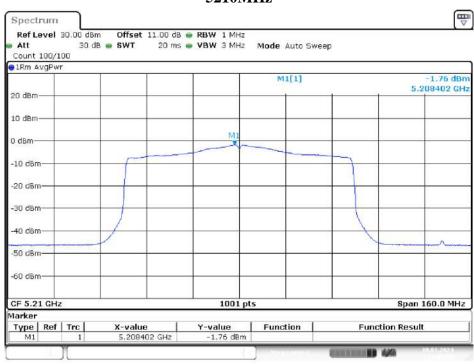
No.: RXZ231124120RF04

Date: 19.MAR.2024 11:24:29


5230MHz

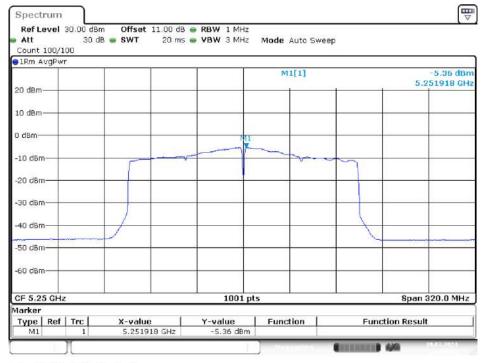
Date: 19.MAR.2024 11:31:12

IEEE 802.11ax HE80 Mode / 5150 ~ 5250MHz (Chain 0)


5210MHz

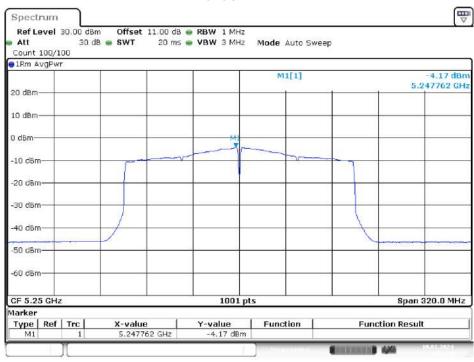
Date: 19.MAR.2024 11:47:50

IEEE 802.11ax HE80 Mode / 5150 ~ 5250MHz (Chain 1)


5210MHz

Date: 19.MAR.2024 11:46:29

IEEE 802.11ax HE160 Mode / 5150 ~ 5250MHz (Chain 0)


5250MHz

Date: 19.MAR.2024 11:50:37

IEEE 802.11ax HE160 Mode / 5150 ~ 5250MHz (Chain 1)

5250MHz

Date: 19.MAR.2024 11:51:54

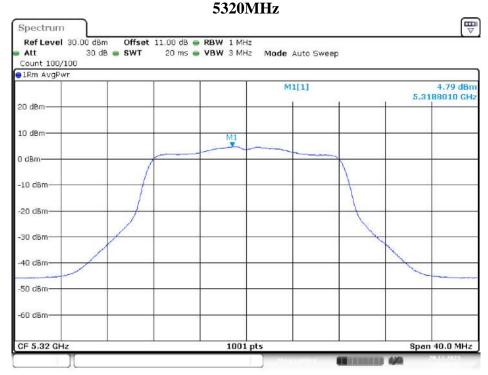
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 282 of 337

UNII-2A Band II / PSD

IEEE 802.11a Mode / 5250 ~ 5350MHz (Chain 0)

No.: RXZ231124120RF04



Date: 20.DEC.2023 17:24:15

5300MHz

Date: 20.DEC:2023 17:27:47

Date: 20.DEC.2023 17:28:46

IEEE 802.11a Mode / 5250 ~ 5350MHz (Chain 1)


Date: 20.DEC.2023 17:25:25

5300MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB RBW 1 MHz Att 30 dB SWT 20 ms VBW 3 MHz Mode Auto Sweep Count 100/100 ●1Rm AvgPwr 5.04 dBm 5.3007990 GHz M1[1] 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm--60 dBm CF 5.3 GHz 1001 pts Span 40.0 MHz

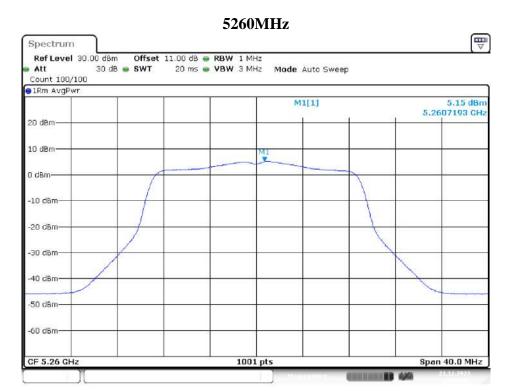

Date: 20.DEC.2023 17:26:51

5320MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 20 ms 🌞 VBW 3 MHz 30 dB . SWT Mode Auto Sweep Att Count 100/100 1Rm AvgPwr M1[1] 4.86 dBm 5.3190410 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm--60 dBm Span 40.0 MHz CF 5.32 GHz 1001 pts

Date: 20.DEC.2023 17:30:19



Date: 21.DEC.2023 09:37:53


Date: 20,DEC:2023 15;03:31

No.: RXZ231124120RF04

Date: 21.DEC.2023 09:44:09

IEEE 802.11ac VHT20 Mode / 5250 ~ 5350MHz (Chain 1)

Date: 21.DEC:2023 09:39:51

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 287 of 337

5300MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB RBW 1 MHz Att 30 dB SWT 20 ms VBW 3 MHz Mode Auto Sweep Count 100/100 ●1Rm AvgPwr 5,40 dBm 5,3009190 GHz M1[1] 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm CF 5.3 GHz 1001 pts Span 40.0 MHz

Date: 20.DEC.2023 14:33:48


5320MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 20 ms 🌞 **VBW** 3 MHz Mode Auto Sweep 30 dB . SWT Att Count 100/100 1Rm AvgPwr 4.98 dBm 5.3211189 GHz M1[1] 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm--60 dBm Span 40.0 MHz CF 5.32 GHz 1001 pts

Date: 21.DEC.2023 09:43:02

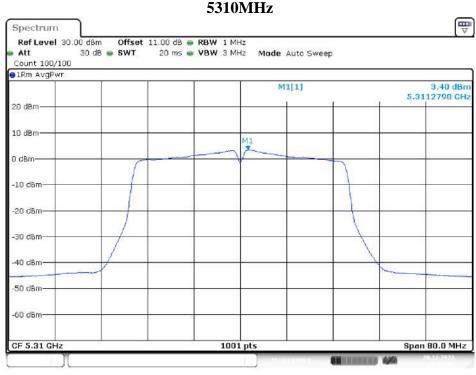
IEEE 802.11ac VHT40 Mode / 5250 ~ 5350MHz (Chain 0)


5270MHz

No.: RXZ231124120RF04


Date: 20.DEC.2023 15:42:54

5310MHz

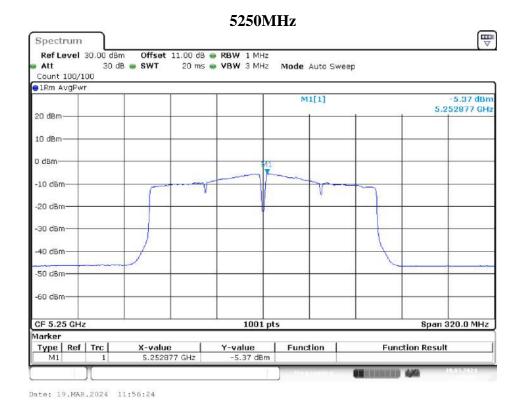


Date: 20.DEC.2023 15:43:51

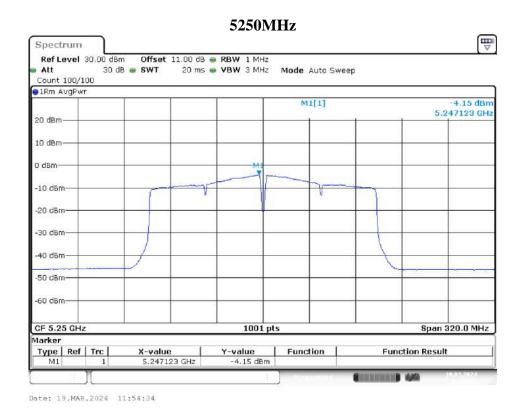

IEEE 802.11ac VHT40 Mode / 5250 ~ 5350MHz (Chain 1)


Date: 20.DEC.2023 16:08:53

Date: 20.DEC.2023 16:09:51

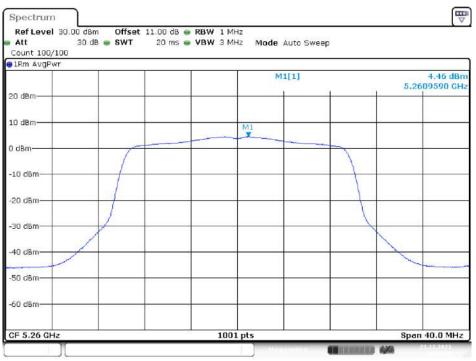


IEEE 802.11ac VHT80 Mode / 5250 ~ 5350MHz (Chain 1)

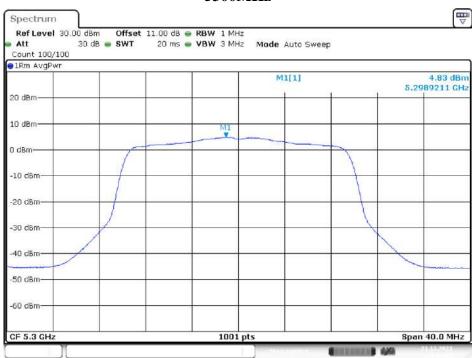


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 291 of 337

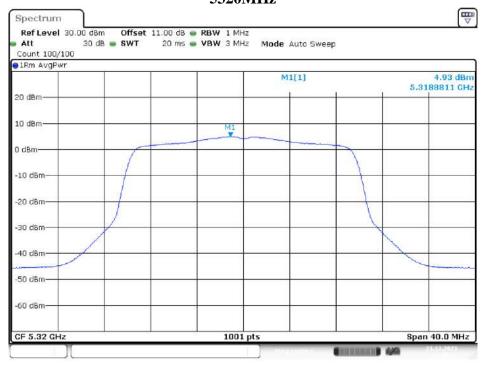
IEEE 802.11ac VHT160 Mode / 5250 ~ 5350MHz (Chain 0)



IEEE 802.11ac VHT160 Mode / 5250 ~ 5350MHz (Chain 1)

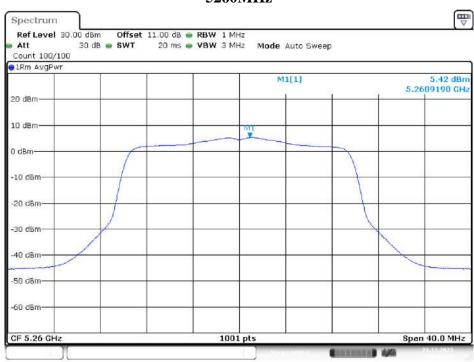

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 292 of 337

No.: RXZ231124120RF04

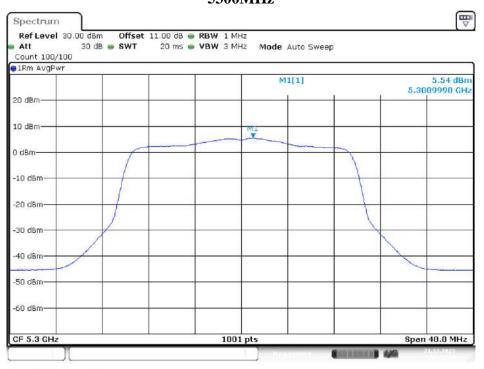

Date: 21.DEC.2023 12:54:10

5300MHz

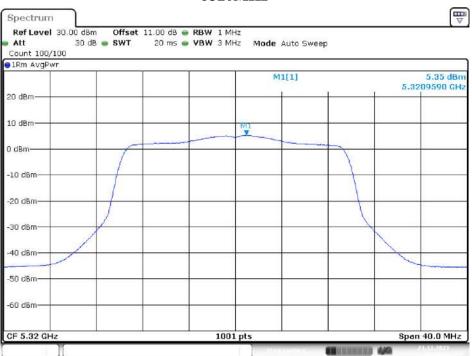
Date: 21.DEC.2023 14:12:34


No.: RXZ231124120RF04

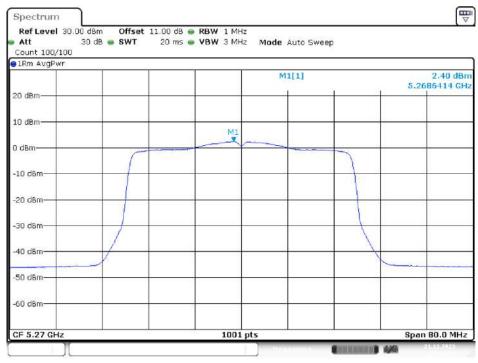
Date: 21.DEC.2023 14:16:11


IEEE 802.11ax HE20 Mode / 5250 ~ 5350MHz (Chain1)

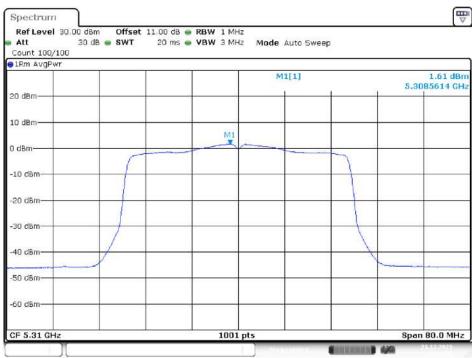
5260MHz


Date: 21.DEC.2023 12:53:15

No.: RXZ231124120RF04


Date: 21.DEC.2023 14:13:25

5320MHz

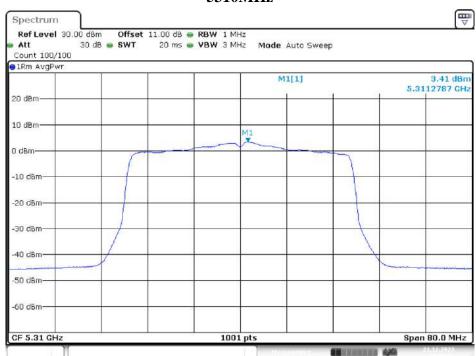

Date: 21.DEC.2023 14:15:02

Date: 21.DEC.2023 15:11:03

5310MHz

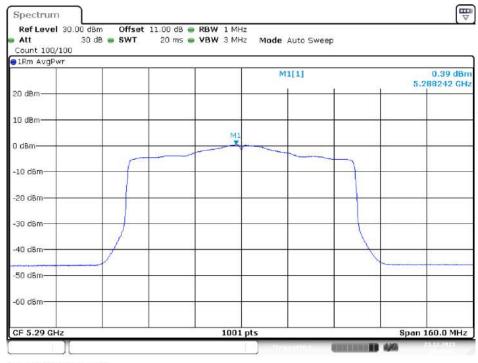
Date: 21.DEC.2023 15:12:37

IEEE 802.11ax HE40 Mode / 5250 ~ 5350MHz (Chain1)


5270MHz

No.: RXZ231124120RF04

Date: 21.DEC.2023 14:57:56


5310MHz

Date: 21.DEC.2023 14:59:04

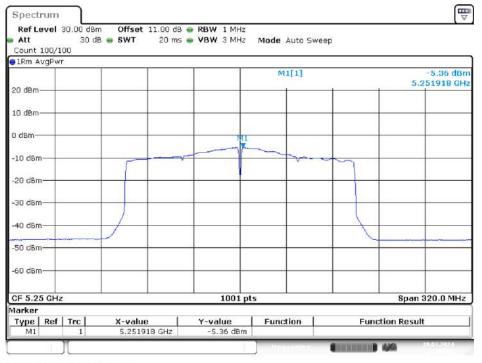
IEEE 802.11ax HE80 Mode / 5250 ~ 5350MHz (Chain 0)



Date: 21.DEC.2023 15:19:36

IEEE 802.11ax HE80 Mode / 5250 ~ 5350MHz (Chain 1)

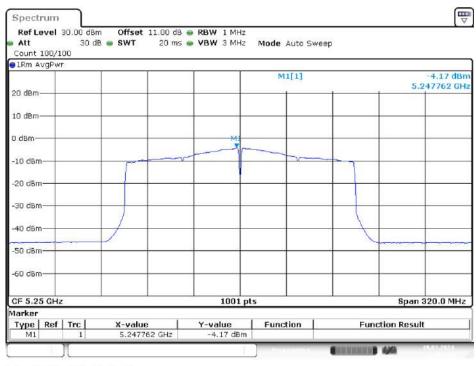
5290MHz



Date: 21.DEC.2023 15:28:53

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 298 of 337

IEEE 802.11ax HE160 Mode / 5250 ~ 5350MHz (Chain 0)


5250MHz

Date: 19.MAR.2024 11:50:37

IEEE 802.11ax HE160 Mode / 5250 ~ 5350MHz (Chain 1)

5250MHz

Date: 19.MAR.2024 11:51:54

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

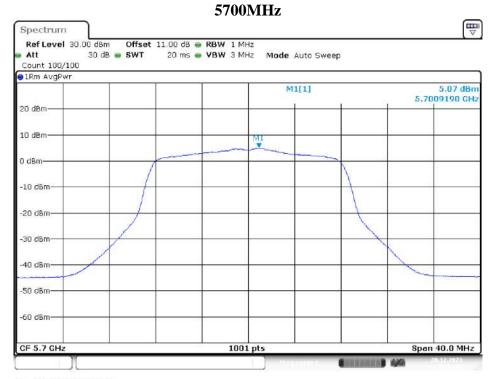
Page 299 of 337

UNII-2C Band III / PSD

IEEE 802.11a Mode / 5470 ~ 5725MHz (Chain 0)



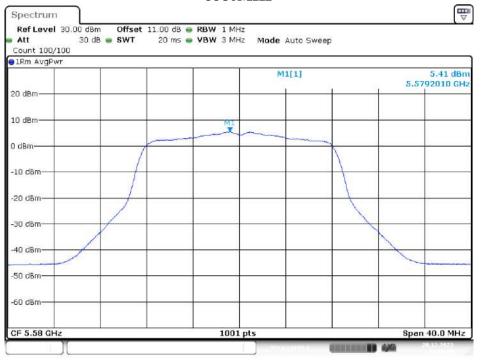
No.: RXZ231124120RF04



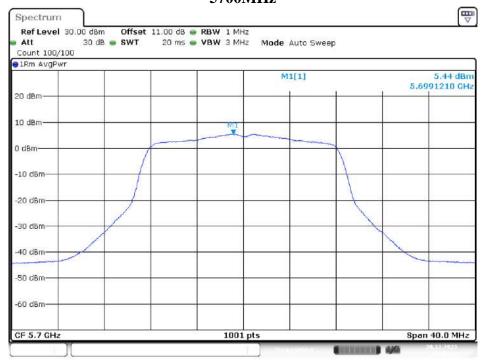
Date: 20.DEC.2023 17:32:42

5580MHz

Date: 20.DEC:2023 17:39:25

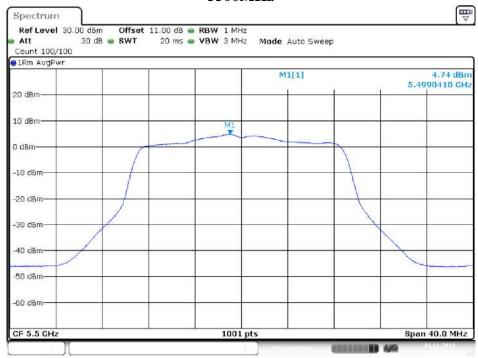

Date: 20.DEC.2023 17:41:07

IEEE 802.11a Mode / 5470 ~ 5725MHz (Chain 1)

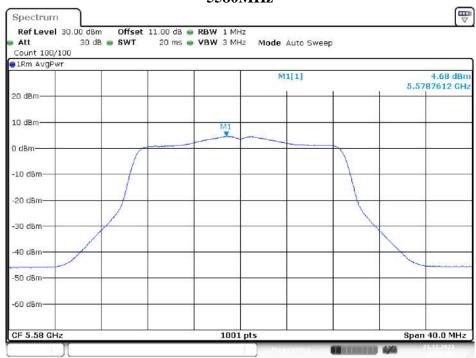

Date: 20.DEC.2023 17;31:44

5580MHz

Date: 20.DEC.2023 17:38:25


5700MHz

Date: 20.DEC.2023 17:46:16


IEEE 802.11ac VHT20 Mode / 5470 ~ 5725MHz (Chain 0)



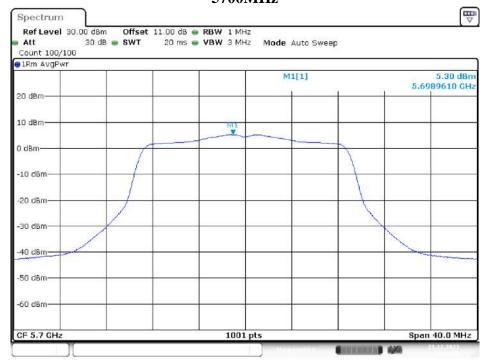
Date: 21.DEC.2023 09:47:42

5580MHz

Date: 21.DEC.2023 09:51:22

Date: 21.DEC.2023 09:52:43

IEEE 802.11ac VHT20 Mode / 5470 ~ 5725MHz (Chain 1)


Date: 21.DEC.2023 09;48:47

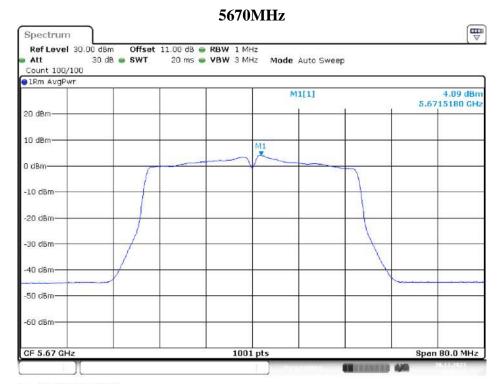
5580MHz

Date: 21.DEC.2023 09:50:33

5700MHz

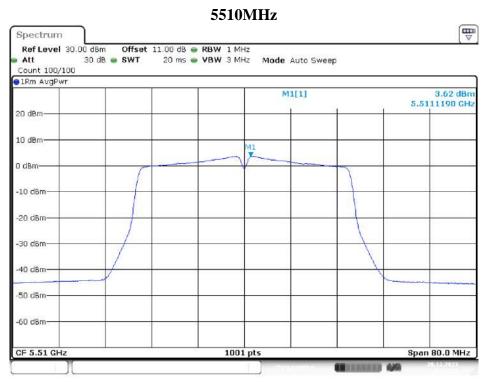
Date: 21.DEC.2023 09:53:46

IEEE 802.11ac VHT40 Mode / 5470 ~ 5725MHz (Chain 0)

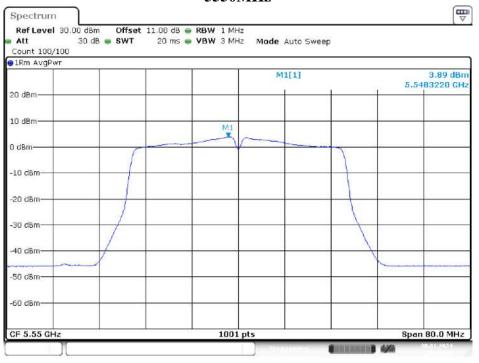


Date: 20.DEC.2023 15:47:11

5550MHz



Date: 30, JAN 2024 19:50:10


Date: 20.DEC.2023 15:52:16

IEEE 802.11ac VHT40 Mode / 5470 ~ 5725MHz (Chain 1)

Date: 20.DEC.2023 16:13:16

5550MHz

Date: 30.JAN.2024 19:44:19

5670MHz

Date: 20, DEC, 2023 16:17:48

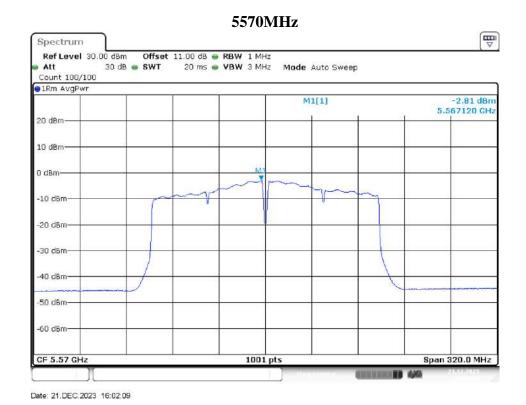
IEEE 802.11ac VHT80 Mode / 5470 ~ 5725MHz (Chain 0)

Date: 20.DEC.2023 16:52:36

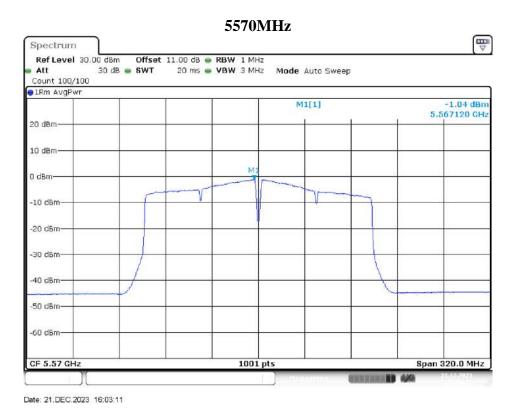

5610MHz

Date: 20, DEC: 2023 16:53:54

IEEE 802.11ac VHT80 Mode / 5470 ~ 5725MHz (Chain 1)


Date: 20.DEC.2023 16:35:57

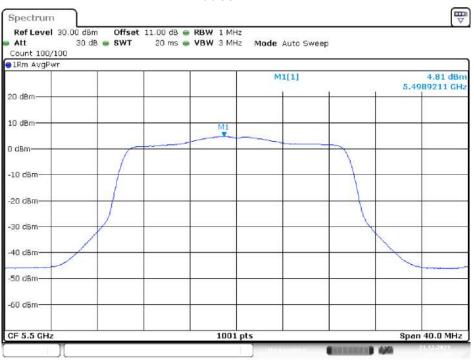
5610MHz



Date: 20.DEC.2023 16:37:11

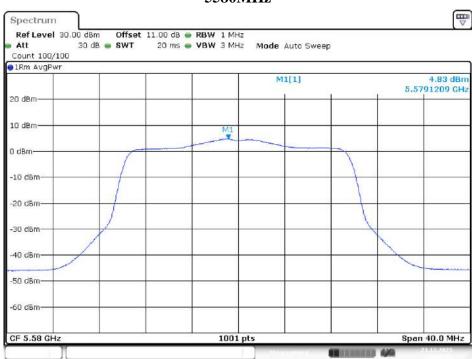
IEEE 802.11ac VHT160 Mode / 5470 ~ 5725MHz (Chain 0)

IEEE 802.11ac VHT160 Mode / 5470 ~ 5725MHz (Chain 1)

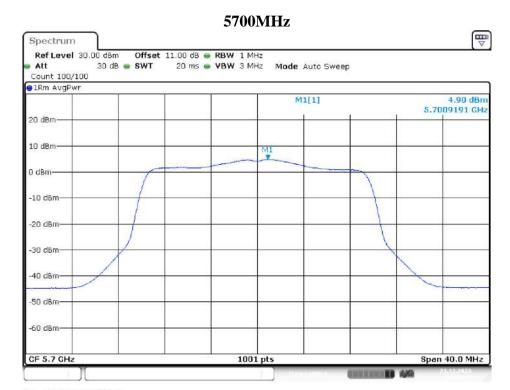


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 311 of 337


IEEE 802.11ax HE20 Mode / 5470 ~ 5725MHz (Chain 0)

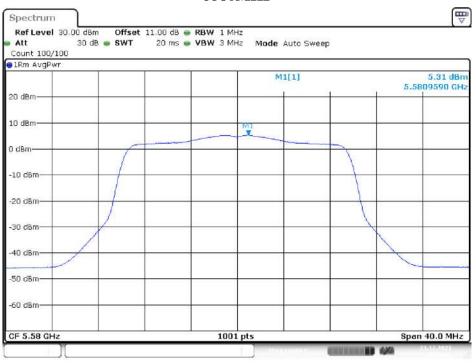
5500MHz



Date: 21.DEC.2023 14:17:30

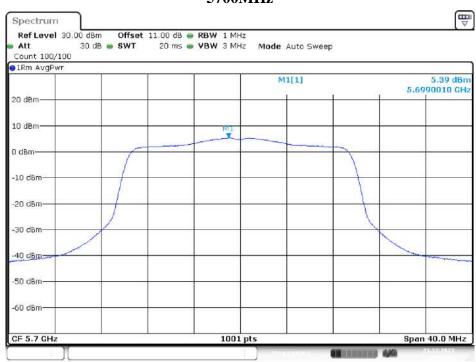
5580MHz

Date: 21.DEC.2023 14:23:46


Date: 21.DEC.2023 14:30:15

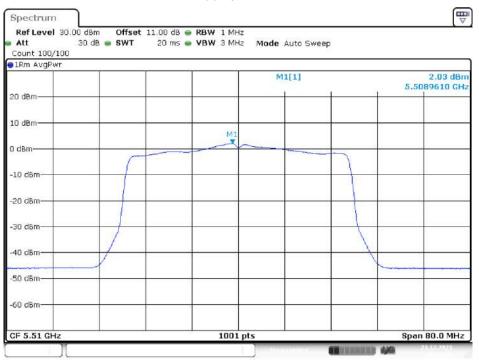
IEEE 802.11ax HE20 Mode / 5470 ~ 5725MHz (Chain1)

5500MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 1 MHz 30 dB 🌞 SWT 20 ms 🌞 VBW 3 MHz Att Mode Auto Sweep Count 100/100 1Rm AvgPwr M1[1] 5.48 dBm 5.5009590 GHz 20 dBm 10 dBm 0 dBm--10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm 1001 pts Span 40.0 MHz CF 5.5 GHz

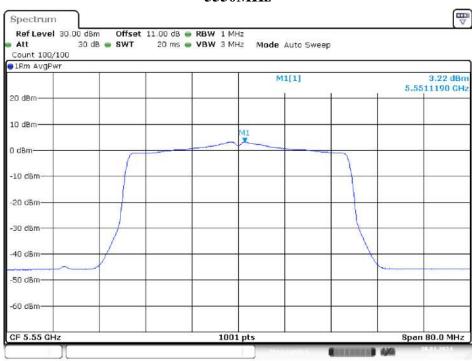

Date: 21.DEC.2023 14:20:13

5580MHz

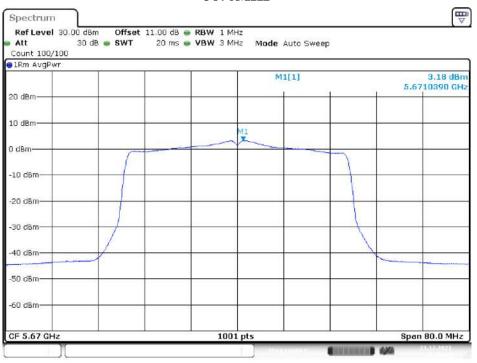
Date: 21.DEC.2023 14:25:05


5700MHz

Date: 21.DEC.2023 14:29:20


IEEE 802.11ax HE40 Mode / 5470 ~ 5725MHz (Chain 0)

5510MHz

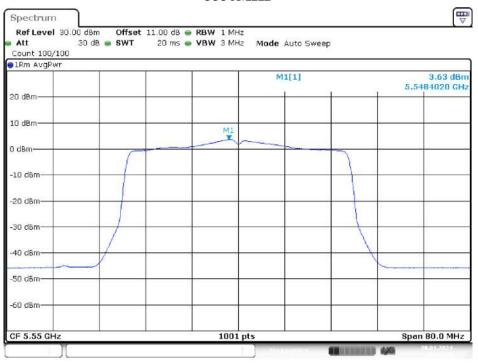

Date: 21.DEC.2023 15:13:55

5550MHz

Date: 30, JAN 2024 19:58:48

5670MHz

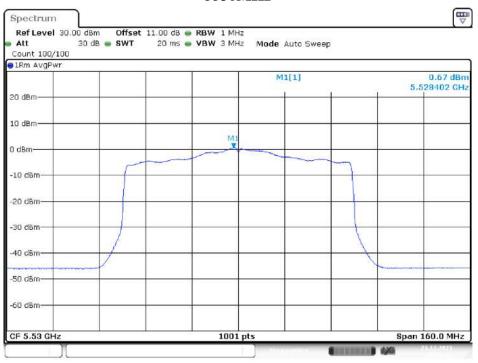
Date: 21.DEC.2023 15:15:55


IEEE 802.11ax HE40 Mode / 5470 ~ 5725MHz (Chain1)

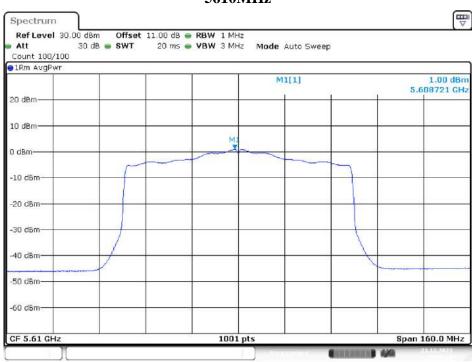
5510MHz

Date: 21.DEC.2023 14:59:59

5550MHz

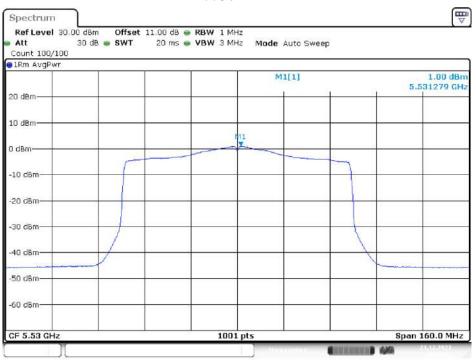

Date: 30, JAN 2024 20:00:30

5670MHz

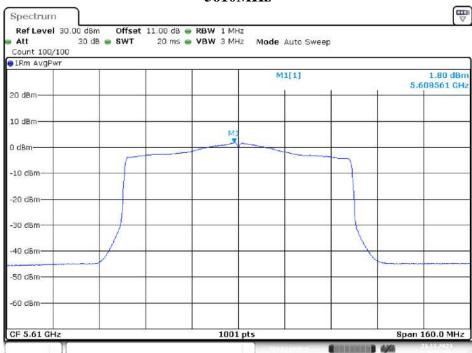

Date: 21.DEC.2023 15:02:16

No.: RXZ231124120RF04

Date: 21.DEC.2023 15:21:11

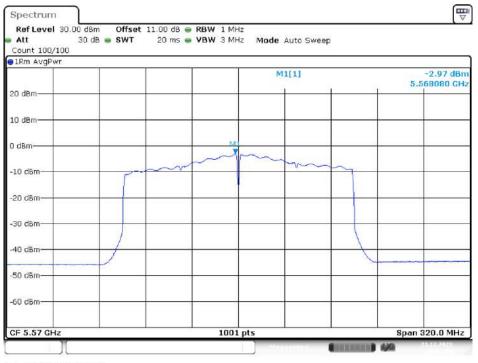

5610MHz

Date: 21, DEC: 2023 15:23:15


IEEE 802.11ax HE80 Mode / 5470 ~ 5725MHz (Chain 1)

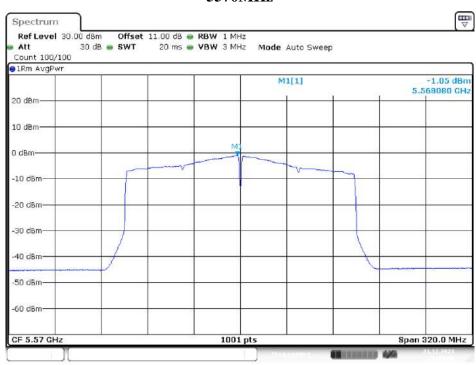
5530MHz

Date: 21.DEC.2023 15:30:37


5610MHz

Date: 21.DEC.2023 15;31:37

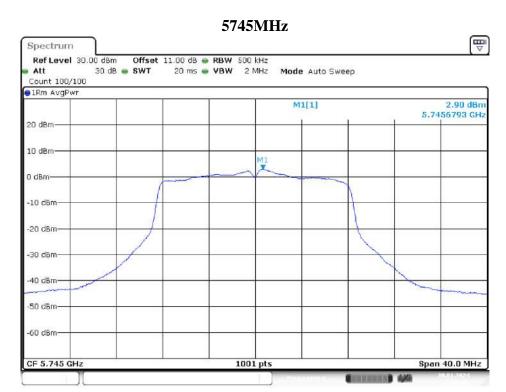
IEEE 802.11ax HE160 Mode / 5470 ~ 5725MHz (Chain 0)


5570MHz

Date: 21.DEC.2023 16:07:34

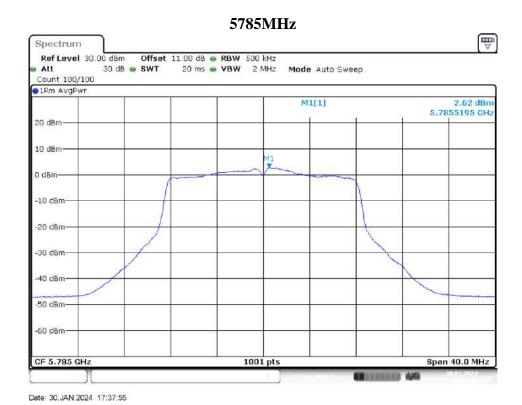
IEEE 802.11ax HE160 Mode / 5470 ~ 5725MHz (Chain 1)

5570MHz

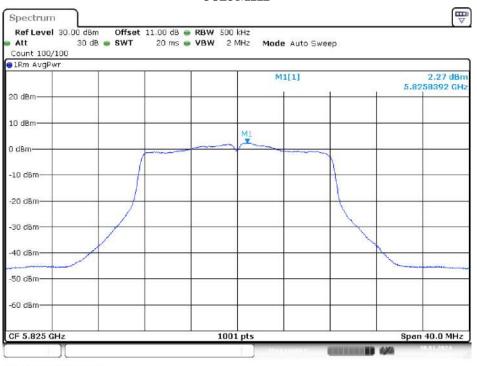


Date: 21.DEC.2023 16:04:49

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 320 of 337

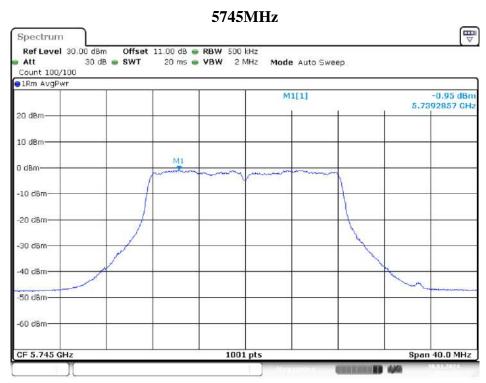

UNII-3 Band IV / PSD

IEEE 802.11a Mode / 5725 ~ 5850MHz (Chain 0)



No.: RXZ231124120RF04

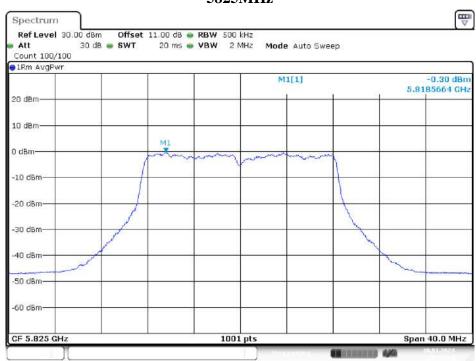
Date: 30, JAN 2024 17:29:32



5825MHz

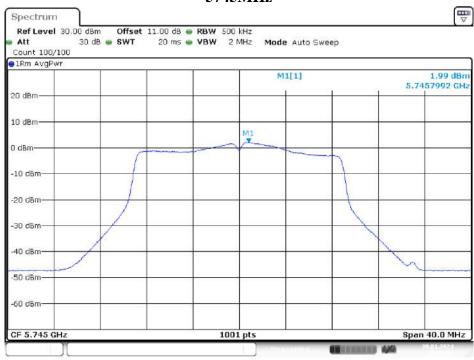

Date: 30.JAN.2024 17:39:10

IEEE 802.11a Mode / 5725 ~ 5850MHz (Chain 1)


Date: 30, JAN 2024 19:13:58

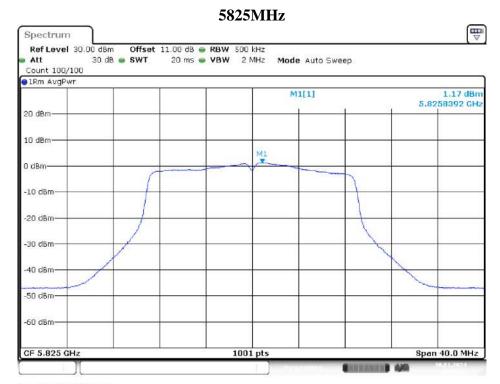
5785MHz

Date: 30, JAN 2024 19:15:59


5825MHz

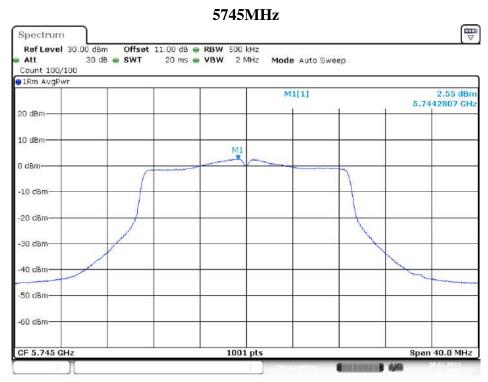
Date: 30.JAN.2024 19:17:19

IEEE 802.11ac VHT20 Mode / 5725 ~ 5850MHz (Chain 0)



Date: 30.JAN 2024 17:48:03

5785MHz



Date: 30.JAN.2024 17:47:11

Date: 30.JAN.2024 17:45:54

IEEE 802.11ac VHT20 Mode / 5725 ~ 5850MHz (Chain 1)

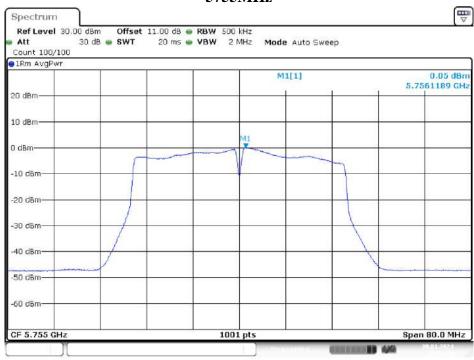
Date: 30, JAN 2024 19:19:07

Span 40.0 MHz

5785MHz ₩ Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 500 kHz 30 dB 🌞 SWT Att 20 ms 🌞 VBW 2 MHz Mode Auto Sweep Count 100/100 ●1Rm AvgPwr M1[1]2.37 dBm 5.7838012 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm--60 dBm-

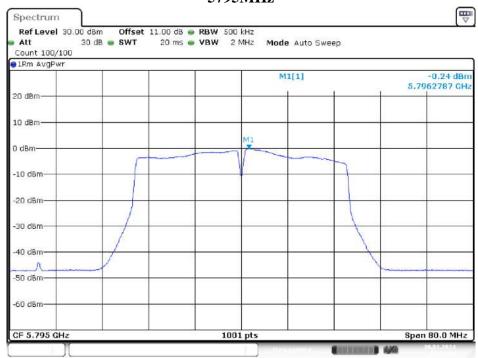
1001 pts

Date: 30.JAN.2024 19:20:42


CF 5.785 GHz

5825MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB @ RBW 500 kHz Att 20 ms 🍩 VBW 2 MHz 30 dB - SWT Mode Auto Sweep Count 100/100 1Rm AvgPwr M1[1] 2.25 dBm 5.8242408 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm-1001 pts Span 40.0 MHz CF 5.825 GHz

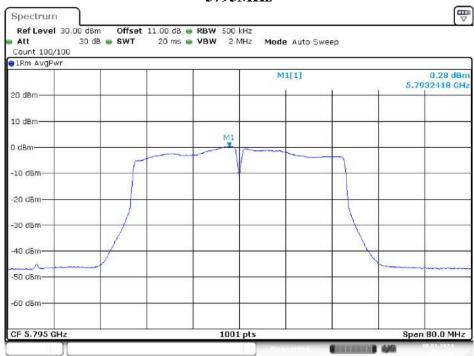
Date: 30.JAN.2024 19:21:38

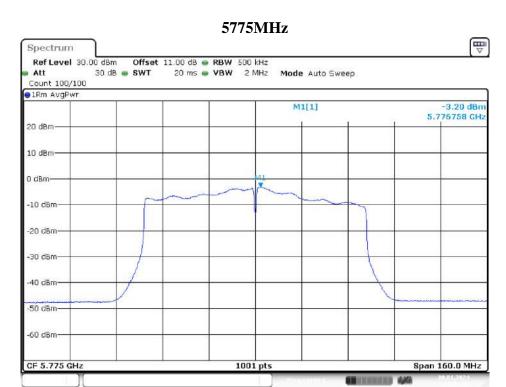

IEEE 802.11ac VHT40 Mode / 5725 ~ 5850MHz (Chain 0)

Date: 30.JAN 2024 17:51:24

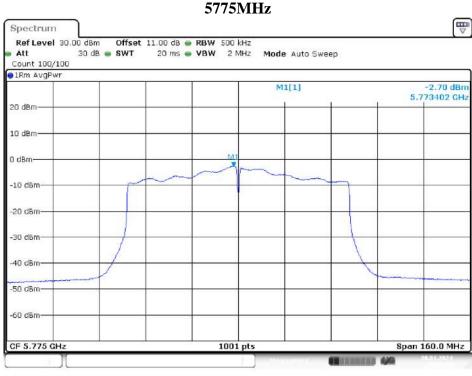
5795MHz

Date: 30.JAN.2024 17:52:21


IEEE 802.11ac VHT40 Mode / 5725 ~ 5850MHz (Chain 1)


Date: 30.JAN 2024 19:23:02

5795MHz


Date: 30, JAN 2024 19:24:20

IEEE 802.11ac VHT80 Mode / 5725 ~ 5850MHz (Chain 0)

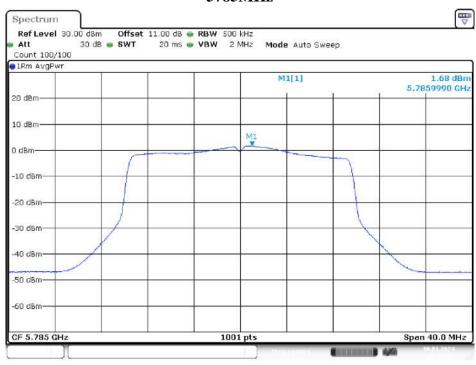
Date: 30.JAN 2024 18:01:34

IEEE 802.11ac VHT80 Mode / 5725 ~ 5850MHz (Chain 1)

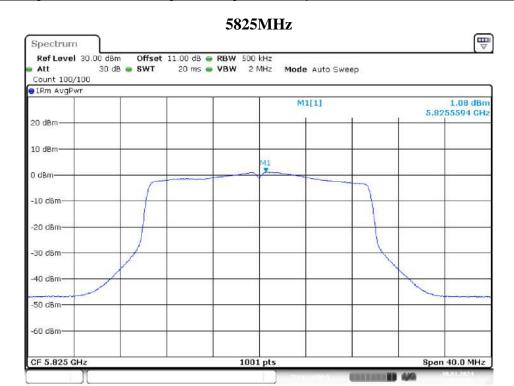

Date: 30.JAN.2024 19:26:44

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 329 of 337

IEEE 802.11ax HE20 Mode / 5725 ~ 5850MHz (Chain 0)

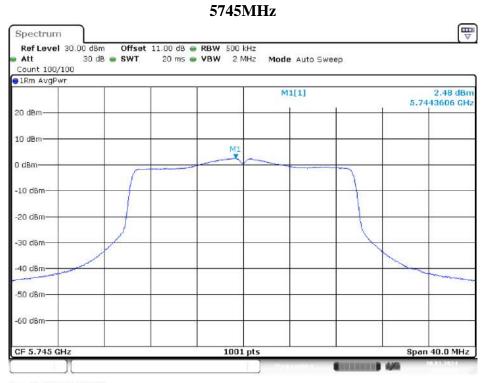

5745MHz

No.: RXZ231124120RF04



Date: 30.JAN.2024 18:46:28

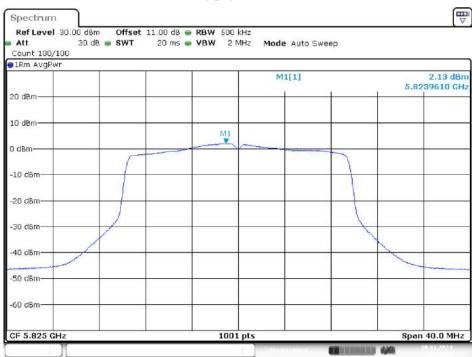
5785MHz



Date: 30, JAN 2024 18:52:02

Date: 30.JAN 2024 18:53:22

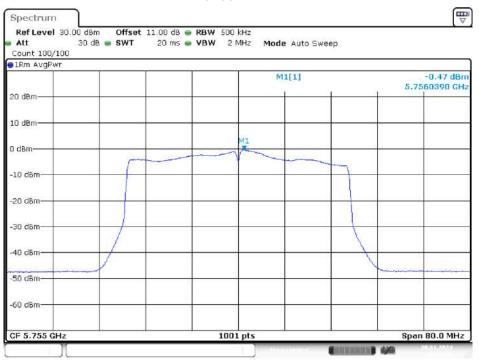
IEEE 802.11ax HE20 Mode / 5725 ~ 5850MHz (Chain1)


Date: 30.JAN.2024 19:28:39

5785MHz

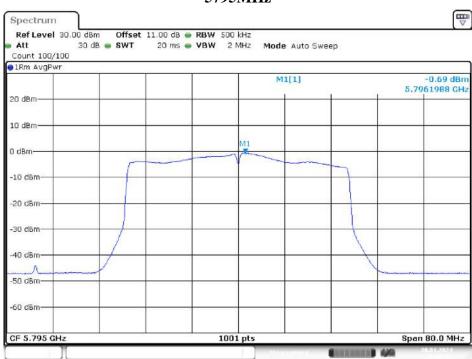
Date: 30, JAN 2024 19:29:31

5825MHz



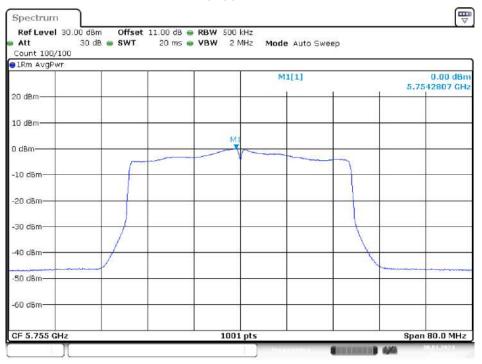
Date: 30.JAN 2024 19:30:20

IEEE 802.11ax HE40 Mode / 5725 ~ 5850MHz (Chain 0)

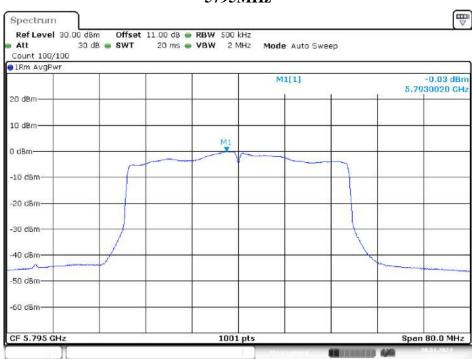

5755MHz

No.: RXZ231124120RF04

Date: 30.JAN.2024 18:58:33


5795MHz

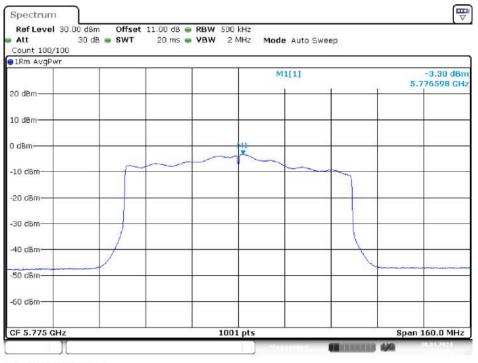
Date: 30.JAN 2024 18:59:36


IEEE 802.11ax HE40 Mode / 5725 ~ 5850MHz (Chain1)

5755MHz

Date: 30, JAN 2024 19:32:16

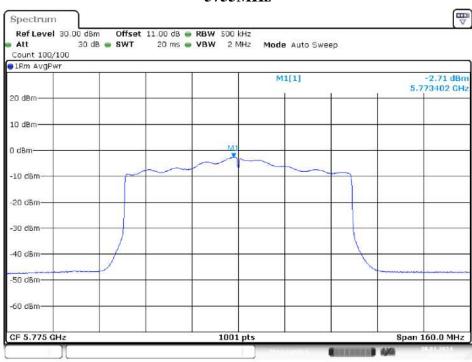
5795MHz



Date: 30.JAN.2024 19:34:22

IEEE 802.11ax HE80 Mode / 5725 ~ 5850MHz (Chain 0)

5755MHz


No.: RXZ231124120RF04

Date: 30.JAN.2024 19:01:47

IEEE 802.11ax HE80 Mode / 5725 ~ 5850MHz (Chain 1)

5755MHz

Date: 30.JAN.2024 19:05:43

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 335 of 337

14 RSS-247 §6.4 – Additional requirements

14.1 Applicable Standard

According to RSS-247 Clause 6.4 Additional requirement

The following requirements shall apply:

a. The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. A description on how this is done shall accompany the application for equipment certification. Note that this is not intended to prohibit transmission of control or signalling information or the use of repetitive codes where required by the technology.

No.: RXZ231124120RF04

 All LE-LAN devices must contain security features to protect against modification of software by unauthorized parties.

Manufacturers must implement security features in any digitally modulated devices capable of operating in any of the frequency ranges within the 5 GHz band, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software must prevent the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers may use various means, including the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment certification.

Manufacturers must take steps to ensure that DFS functionality cannot be disabled by the operator of the LE-LAN device.

- c. The user manual for LE-LAN devices shall contain instructions related to the restrictions mentioned in the above sections, namely that:
 - i. the device for operation in the band 5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems; Footnote4
 - ii. for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall be such that the equipment still complies with the e.i.r.p. limit;
 - iii. for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the band 5725-5850 MHz shall be such that the equipment still complies with the e.i.r.p. limits as appropriate; and
 - iv. where applicable, antenna type(s), antenna models(s), and worst-case tilt angle(s) necessary to remain compliant with the e.i.r.p. elevation mask requirement set forth in section 6.2.2.3 shall be clearly indicated.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 336 of 337

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

14.2 Judgment

RSS-247 Clause 6.4 a):

The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. Please refer to the declaration

No.: RXZ231124120RF04

RSS-247 Clause 6.4 b):

The devices must contain security features to protect against modification of software by unauthorized parties. Please refer to the declaration

RSS-247 Clause 6.4 c):

- i). The device operates on 5150-5250MHz is only for indoor use.
- ii). The device operates on 5250-5350MHz/5470-5725MHz complies with the e.i.r.p. limit.
- iii). The EIPR compliance with RSS-247 requirement.
- iv). Not Applicable.

***** END OF REPORT *****