

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202206-0131-141

Page: 1 of 227

Radio Test Report

FCC ID: 2AAS9-MI13&IC:26296-MI13

Report No. : TBR-C-202206-0131-141

Applicant: BROWAN COMMUNICATIONS INCORPORATION

Equipment Under Test (EUT)

EUT Name: Wi-Fi 6 AX1800 Dual-Radio In-Wall AP

Model No. : MI13

Series Model No. : N/A

Brand Name :

Sample ID : 202206-0131-3-1#&202206-0131-3-2#

Receipt Date : 2022-06-24

Test Date : 2022-06-25 to 2022-08-25

Issue Date : 2022-08-26

Standards : FCC Part 15 Subpart E 15.407

RSS-247 Issue 2 February 2017 RSS-Gen Issue 5 March 2019

Test Method: ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor :

Engineer Manager

the report.

Seven Wu

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1. 0

Contents

CON	ITENTS	······
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	14
3.	TEST SOFTWARE	14
4.	TEST EQUIPMENT	15
5.	CONDUCTED EMISSION TEST	16
	5.1 Test Standard and Limit	16
	5.2 Test Setup	16
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	17
	5.5 EUT Operating Mode	17
	5.6 Test Data	17
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	18
6.	6.1 Test Standard and Limit	
6.		18
6.	6.1 Test Standard and Limit	18
6.	6.1 Test Standard and Limit	18 19 20
6.	6.1 Test Standard and Limit	18 19 20
6.	6.1 Test Standard and Limit	18 20 21 21
 7. 	6.1 Test Standard and Limit	18 20 21 21
3	6.1 Test Standard and Limit	18 20 21 21 21
3	6.1 Test Standard and Limit	182021212122
3	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit	18202121212222
3	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup	18202121222223
3	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup 7.3 Test Procedure	1820212122222323
3	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup 7.3 Test Procedure 7.4 Deviation From Test Standard 7.5 EUT Operating Mode 7.6 Test Data	
3	6.1 Test Standard and Limit	18202121222323242424
7.	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup 7.3 Test Procedure 7.4 Deviation From Test Standard 7.5 EUT Operating Mode 7.6 Test Data	18202121222323242424
7.	6.1 Test Standard and Limit	
7.	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup 7.3 Test Procedure 7.4 Deviation From Test Standard 7.5 EUT Operating Mode 7.6 Test Data BANDWIDTH TEST 8.1 Test Standard and Limit	
7.	6.1 Test Standard and Limit 6.2 Test Setup 6.3 Test Procedure 6.4 Deviation From Test Standard 6.5 EUT Operating Mode 6.6 Test Data RESTRICTED BANDS REQUIREMENT 7.1 Test Standard and Limit 7.2 Test Setup 7.3 Test Procedure 7.4 Deviation From Test Standard 7.5 EUT Operating Mode 7.6 Test Data BANDWIDTH TEST 8.1 Test Standard and Limit 8.2 Test Setup	

	8.6 Test Data	27
9.	MAXIMUM CONDUCTED OUTPUT POWER	28
	9.1 Test Standard and Limit	28
	9.2 Test Setup	29
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	29
	9.5 EUT Operating Mode	29
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	30
	10.1 Test Standard and Limit	30
	10.2 Test Setup	30
	10.3 Test Procedure	30
	10.4 Deviation From Test Standard	31
	10.5 Antenna Connected Construction	31
	10.6 Test Data	31
11.	FREQUENCY STABILITY	32
	11.1 Test Standard and Limit	32
	11.2 Test Setup	32
	11.3 Test Procedure	32
	11.4 Deviation From Test Standard	33
	11.5 Antenna Connected Construction	33
	11.6 Test Data	33
12.	ANTENNA REQUIREMENT	34
	12.1 Test Standard and Limit	34
	12.2 Deviation From Test Standard	34
	12.3 Antenna Connected Construction	34
	12.4 Test Data	34
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	35
	ACHMENT BUNWANTED EMISSIONS DATA	
ΔΤΤ	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	124

Report No.: TBR-C-202206-0131-141 Page: 4 of 227

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202206-0131-141	Rev.01	Initial issue of report	2022-08-26
The same of the sa		1000	The state of the s
			17
			The state of
		(1) (1) (1) (1) (1) (1)	3
		TUDE OF	The same
		TO 33	
	4037		100
100		The same of the sa	
	THE PARTY OF THE P		
			3
			The state of the s

Page: 5 of 227

1. General Information about EUT

1.1 Client Information

Applicant : BROWAN COMMUNICATIONS INCORPORATION Address : No.15-1, Zhonghua Rd., Hsinchu Industrial Park, Hukou Hsinchu Hsien Taiwan 303 Manufacturer : Suzhou WINTECH Electronics Technology Co., Ltd				
Address: No.15-1, Zhonghua Rd., Hsinchu Industrial Park, Hukou Hsinchu Hsien Taiwan 303 Suzhou WINTECH Electronics Technology Co., Ltd				
Manufacturer		Suzhou WINTECH Electronics Technology Co., Ltd		
Address	·	Room#301, L2, Build#27, No.568 South Zhongshan Road, Taihu New City Town, Wujiang District, Suzhou City, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Wi-Fi 6 AX1800 Dual-Radio In-Wall AP				
HVIN/Models No.		MI13				
Model Different	:	N/A				
			ncy: ~5240MHz, U-NII-2/ lz~5720MHz, U-NII-			
			FPC Antenna	Ant. 1	Ant. 2	
		The state of	Band(U-NII-1):	5.1312dBi	4.8076dBi	
		Antenna Gain:	Band(U-NII-2A):	5.1312dBi	4.7922dBi	
Product		1000	Band(U-NII-2C):	3.9670dBi	4.0104dBi	
Description	Ġ		Band(U-NII-3):	4.1829dBi	4.6852dBi	
	Modulatio	Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
OB3	7	Bit Rate of Transmitter:	Up to 1800Mbps		1111	
Power Rating	33	POE Input: 56V=0	.55A	Dir.	J. Time	
Software Version : 1.0.0					70	
Hardware Version	3	V1.0	The state of the s		MORE	

Remark:

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Page: 6 of 227

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5400 50401411	36	5180 MHz	44	5220 MHz
5180~5240MHz (U-NII-1)	38	5190 MHz	46	5230 MHz
(0-1411-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5260~5320 MHz	54	5270 MHz	62	5310MHz
(U-NII-2A)	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

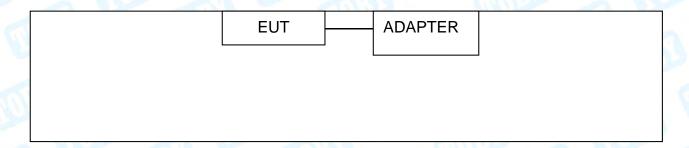
For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

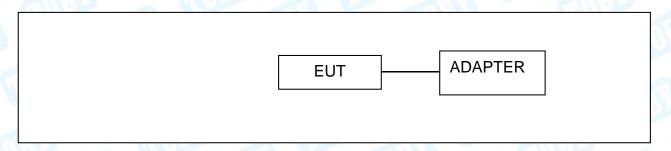
For 80 MHz Bandwidth, use channel 106, 122, 138.

Note: For the protection of Environment, the 5600-5650MHz band restricted in Canada. So the CH118/120/122/124/126/128 was restricted use in Canada.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz (U-NII-3)	151	5755 MHz	159	5795 MHz
(U-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159.


For 80 MHz Bandwidth, use channel 155.


Page: 7 of 227

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information					
Name	Model	S/N	Manufacturer	Used "√"	
POE Adapter	GRT-560500		GELEITE	$\sqrt{}$	
Note: the POE ada	pter and cable was pr	ovided by Lat	0.		

Page: 8 of 227

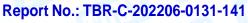
1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test
Fin	al Test Mode	Description
	Mode 1	Charging + TX a Mode(5180MHz)
		For Radiated Test Below 1GHz
Final Test Mode		Description
	Mode 2	Charging + TX a Mode(5180MHz)
		ed Above 1GHz and RF Conducted Test
est Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/44/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/44/48
1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/44/48
	Mode 6	TX Mode 802.11ax(HE20) Mode Channel 36/44/48
U-NII-1	Mode 7	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11ac(VHT40) Mode Channel 38/46
	Mode 9	TX Mode 802.11ax(HE40) Mode Channel 38/46
	Mode 10	TX Mode 802.11ac(VHT80) Mode Channel 42
	Mode 11	TX Mode 802.11ax(HE80) Mode Channel 42
M/M	Mode 12	TX Mode 802.11a Mode Channel 52/60/64
	Mode 13	TX Mode 802.11n(HT20) Mode Channel 52/60/64
0.00	Mode 14	TX Mode 802.11ac(VHT20) Mode Channel 52/60/64
1 1 1 m	Mode 15	TX Mode 802.11ax(HE20) Mode Channel 52/60/64
U-NII-2A	Mode 16	TX Mode 802.11n(HT40) Mode Channel 54/62
	Mode 17	TX Mode 802.11ac(VHT40) Mode Channel 54/62
	Mode 18	TX Mode 802.11ax(HE40) Mode Channel 54/62
MAG	Mode 19	TX Mode 802.11ac(VHT80) Mode Channel 58
	Mode 20	TX Mode 802.11ax(HE80) Mode Channel 58
	Mode 21	TX Mode 802.11a Mode Channel 100/116/144
	Mode 22	TX Mode 802.11n(HT20) Mode Channel 100/116/144
1111	Mode 23	TX Mode 802.11ac(VHT20) Mode Channel 100/116/144
	Mode 24	TX Mode 802.11ax(HE20) Mode Channel 100/116/144
U-NII-2C	Mode 25	TX Mode 802.11n(HT40) Mode Channel 102/110/142
	Mode 26	TX Mode 802.11ac(VHT40) Mode Channel 102/110/142
111	Mode 27	TX Mode 802.11ax(HE40) Mode Channel 102/110/142
	Mode 28	TX Mode 802.11ac(VHT80) Mode Channel 106/138
	Mode 29	TX Mode 802.11ax(HE80) Mode Channel 106/138
	Mode 30	TX Mode 802.11a Mode Channel 149/157/165
100	Mode 31	TX Mode 802.11n(HT20) Mode Channel 149/157/165
	Mode 32	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165
LI NIII O	Mode 33	TX Mode 802.11ax(HE20) Mode Channel 149/157/165
U-NII-3	Mode 34	TX Mode 802.11n(HT40) Mode Channel 151/159
	Mode 35	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 36	TX Mode 802.11ax(HE40) Mode Channel 151/159
	Mode 37	TX Mode 802.11ac(VHT80) Mode Channel 155
	Mode 38	TX Mode 802.11ax(HE80) Mode Channel 155

Page: 9 of 227

Note:


(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1 802.11ax(HE20) Mode: MCS 0/ Nss1 802.11ax(HE40) Mode: MCS 0/ Nss1 802.11ax(HE80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 227

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Software: QATool Dbg.ex U-NII-1 for FCC		
Mada		Paran	neters
Mode	Frequency (MHz)	Ant.1	Ant.
	5180	16	16
802.11a	5220	16	16
	5240	16	16
	5180	16	16
802.11n(HT20)	5220	16	16
	5240	16	16
	5180	17	17
802.11ac(VHT20)	5220	17	17
OHO:	5240	17	17
emin.	5180	16	16
802.11ax(HE20)	5220	16	16
ooziii ax(iizzo)	5240	16	16
000 44 - (UT 40)	5190	16	16
802.11n(HT40)	5230	16	16
	5190	17	17
802.11ac(VHT40)	5230	17	17
	5190	16	16
802.11ax(HE40)	5230	16	16
802.11ac(VHT80)	5210	16	16
802.11ax(HE80)	5210	16	16
OUZ.TTAX(TIEOU)	U-NII-1 for IC	10	10
		Paran	neters
Mode	Frequency (MHz)	Ant.1	Ant.
	5180	14	14
802.11a	5220	14	14
N.C.	5240	14	14
THE STATE OF THE S	5180	14	14
802.11n(HT20)	5220	14	14
,	5240	14	14
	5180	14	14
802.11ac(VHT20)	5220	14	14
, , , , , , , , , , , , , , , , , , , ,	5240	14	14
	5180	14	14
802.11ax(HE20)	5220	14	14
JOZIII I I I I I I I I I I I I I I I I I	5240	14	14
	5190	14	14
802.11n(HT40)	5230	14	14
-Miles		14	14
802.11ac(VHT40)	5190		
	5230	14	14
802 11ay(HF40)	5190	14	14
802.11ax(HE40)	F000	4 4	
802.11ax(HE40)	5230	14	14
802.11ax(HE40) 802.11ac(VHT80) 802.11ax(HE80)	5230 5210 5210	14 14 14	14 14 14

	U-NII-2A	Parar	neters
Mode	Frequency (MHz)	Ant.1	Ant.2
	5260	16	16
802.11a	5300	16	16
	5320	16	16
	5260	16	16
802.11n(HT20)	5300	16	16
	5320	16	16
	5260	17	17
802.11ac(VHT20)	5300	17	17
	5320	17	17
	5260	16	16
802.11ax(HE20)	5300	16	16
	5320	16	16
802.11n(HT40)	5270	16	16
332(5310	16	16
802.11ac(VHT40)	5270	17	17
	5310	17	17
802.11ax(HE40)	5270	16	16
	5310	16	16
802.11ac(VHT80)	5290	16	16
802.11ax(HE80)	5290	16	16
	U-NII-2C		
Mode	Frequency (MHz)		neters
	5500	Ant.1	Ant.2
802.11a	5580	16	16
002.114	5720	16	16
	5500	16	16
802.11n(HT20)	5580	16	16
002:1111(11120)	5720	16	16
	5500	16	16
902 44aa/\/UT20\			
802.11ac(VHT20)	5580	16	16
	5720	16	16
000 44 - (UE00)	5500	16	16
802.11ax(HE20)	5580	16	16
	5720	16	16
	5510	16	16
802.11n(HT40)	5550	16	16
	5710	16	16
	5510	16	16
802.11ac(VHT40)	5550	16	16
00211100(1111110)	5710	16	16
	5510	16	16
802.11ax(HE40)	5550	16	16
002.11ax(11L40)	5710	16	16
	5530	16	16
802.11ac(VHT80)		16	16
	5690		
802.11ax(HE80)	5530	16	16
	5690	16	16

U-NII-3 **Parameters** Mode Frequency (MHz) Ant.1 Ant.2 802.11a 802.11n(HT20) 802.11ac(VHT20) 802.11ax(HE20) 802.11n(HT40) 802.11ac(VHT40) 802.11ax(HE40) 802.11ac(VHT80) 802.11ax(HE80)

1.7 Measurement Uncertainty

Note: 802.11n/ac/ax Support MIMO.

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_{\tau}$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 13 of 227

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202206-0131-141 Page: 14 of 227

2. Test Summary

Standard Section		T	Tank Commission		
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	202206-0131-3-1#	PASS	N/A
FCC 15.209 & 15.407(b)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	202206-0131-3-1#	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	202206-0131-3-2#	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.2)	-26dB Emission Bandwidth	202206-0131-3-2#	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.2)	99% Occupied Bandwidth	202206-0131-3-2#	PASS	N/A
FCC 15.407(e)	RSS-247(6.2.4.1)	-6dB Min Emission Bandwidth	202206-0131-3-2#	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)	Maximum Conducted Output Power	202206-0131-3-2#	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)	Power Spectral Density	202206-0131-3-2#	PASS	N/A
FCC 15.407(b)& 15.205	RSS-Gen 8.10& RSS-247 5.5	Emissions in Restricted Bands	202206-0131-3-2#	PASS	N/A
FCC 15.407(b)&15.209	RSS-Gen 8.9 & RSS 247 5.5	Conducted Unwanted Emissions	202206-0131-3-2#	PASS	N/A
FCC 15.407(g)	RSS-Gen 8.11	Frequency Stability	202206-0131-3-2#	PASS	N/A
		On Time and Duty Cycle	202206-0131-3-2#	1	N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

TOBY

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission 1	Test Test	•	•		•
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 26, 2022	Feb.25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
The state of the s	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
IXI I-OWEL SELISOL	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

Page: 16 of 227

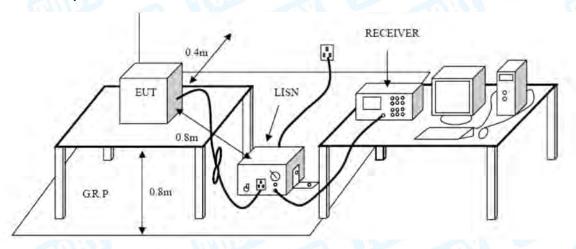
5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

RSS-Gen 8.8

FCC Part 15.207


5.1.2 Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 17 of 227

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 18 of 227

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5 FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz				
Frequency Field Strength Measurement Distance				
(MHz)	(microvolt/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		

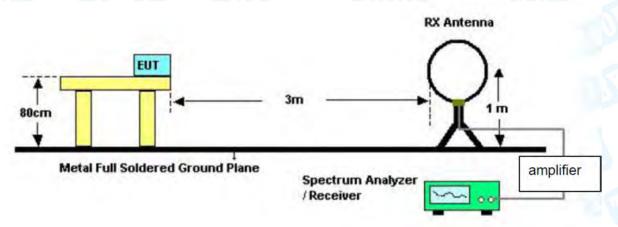
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

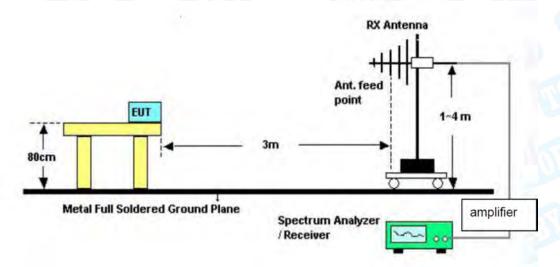
General field strength limits at frequencies above 30 MHz				
Frequency Field strength Measurement Distar (MHz) (µV/m at 3 m) (meters)				
(1411 12)	(μν/ιτι αι σ ττι)	(illeters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

General field strength limits at frequencies Above 1000MHz				
Frequency Distance of 3m (dBuV/m)				
(MHz)	Peak	Average		
Above 1000	74	54		

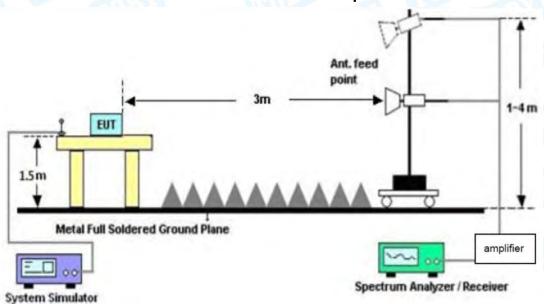
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

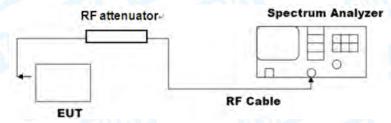

Page: 19 of 227

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 20 of 227

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 21 of 227

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the external appendix report of 5G Wi-Fi.

Page: 22 of 227

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

RSS-Gen 8.10 & RSS 247 5.5 FCC Part 15.205 & FCC Part 15.407(b)

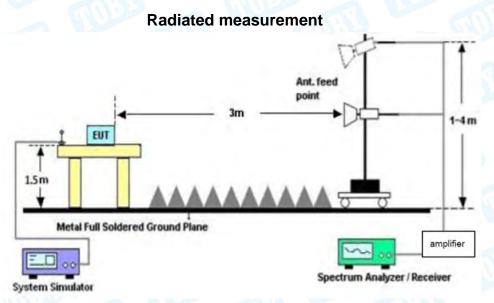
7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

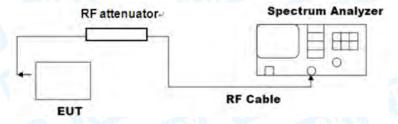
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$


2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.



Page: 23 of 227

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 24 of 227

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

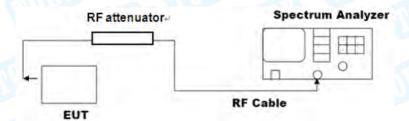
7.6 Test Data

Please refer to the Attachment C inside test report.

Page: 25 of 227

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

RSS 247 (6.2.1.2) & RSS 247 (6.2.1.4) FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
		5150~5250
99% Bandwidth	N/A	5250~5350
99% Dandwidth		5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 26 of 227

---DTS bandwidth

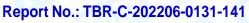
- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page: 27 of 227

8.4 Deviation From Test Standard


No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

TOBY

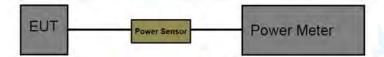
Page: 28 of 227

9. Maximum Conducted Output Power

9.1 Test Standard and Limit

9.1.1 Test Standard

RSS 247 (6.2.11&6.2.2.1&6.2.3.1&6.2.4.1) FCC Part 15.407(a)


9.1.2 Test Limit

		RSS-	247		
Limeit		Frequ	ency Range(MHz)	
Limit	5150~5250	52	250~5350	5500~5725	5725~5850
Max Conducted TX Power	N/A		maximum conducte	1 Watt (30dBm	
Max E.I.R.P	For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	17 + the No great	The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.		4 W (36 dBm) with 6 dBi antenna
TPC	NO	YES, if Max_EIRP ≥ 500 mW (27 dBm) and able to lower EIRP below 24dBm NO, if Max_EIRP < 500mW (27dBm)		NO	
	FCC Part	15 Sub	part E(15.407)		
		Freq	uency Range(N	1Hz)	
Limit	5150~5250		5250~5350	5500~5725	5725~5850
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)		log B, whichever	N) or 11 dBm+ 10 is lower (B= 26-dB ion BW)	1 Watt (30dBm)
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon		1 W (30 dBm) w	vith 6 dBi antenna	4 W (36 dBm) with 6 dBi antenna
TPC	elevation angle > 30°from horizon		dBm) and able to	RP ≥ 500 mW (27 b lower EIRP below dBm EIRP < 500mW dBm)	NO

Page: 29 of 227

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

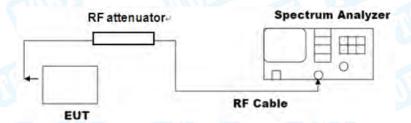
9.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 30 of 227

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

RSS 247 (6.2.11&6.2.2.1&6.2.3.1&6.2.4.1) FCC Part 15.407(a)

10.1.2 Test Limit

Test Item		Limit	Frequency Range(MHz)		
Power Spectral Density	FCC	Master Device: 17dBm/MHz Client Device: 11dBm/MHz 10dBm/MHz	5150~5250		
	11dBm/MHz		5250~5350		
		11dBm/MHz	5500~5725		
	MAIN	30dBm/500kHz	5725~5850		

10.2 Test Setup

10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power…."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add

Page: 31 of 227

1 dB to the final result to compensate for the difference between linear averaging and power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

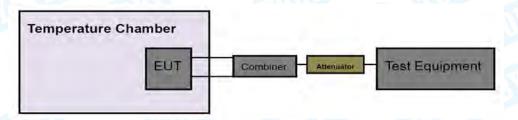
10.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 32 of 227

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

RSS-Gen 8.11 FCC Part 15.407(g)

11.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement.⁹⁶ The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).
- 4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not

Page: 33 of 227

required to include those variations.

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 34 of 227

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

RSS 247 6.8 FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

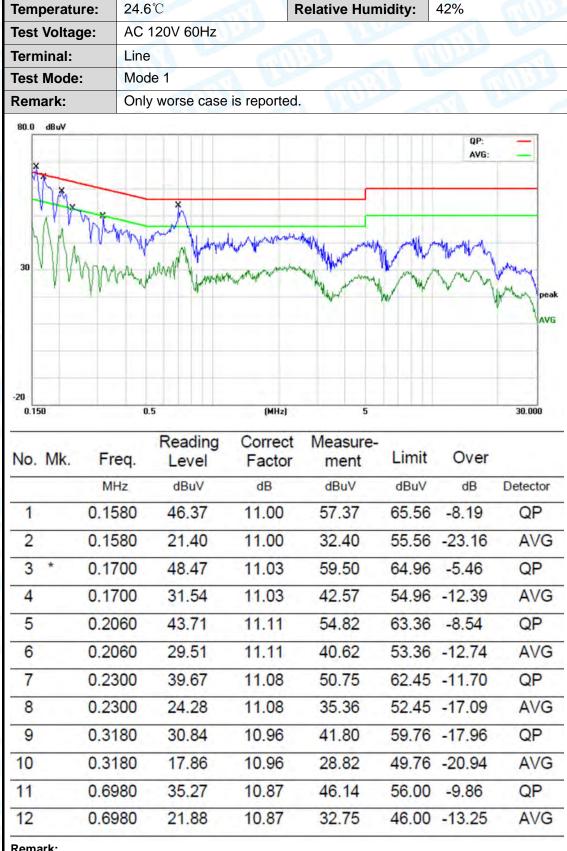
12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The max. gains of the antenna used for transmitting is 5.1312dBi, and the antenna designed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data


The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type				
The same	Permanent attached antenna			
	⊠Unique connector antenna			
THURSDAY	Professional installation antenna			

Page: 35 of 227

Attachment A-- Conducted Emission Test Data

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temp	perature:	24.6℃		Relative	Humidity:	42%					
Test	Voltage:	AC 120V 60Hz									
Term	ninal:	Neutral									
Test	Mode:	Mode 1									
Rem	ark:	Only worse case is reported.									
30		0.5	MHz)	Marilla Mariana Marian	***	QP: AVG:	peak AVG				
No.	D. A	7 (35.156)	Correct	Measure ment	Limit	Over					
4	MHz		dB	dBuV	dBuV	dB	Detector				
1	0.158		11.00	58.17	65.56	-7.39	QP				
2	0.158	F. F. F.	11.00	32.78	7577	-22.78	AVG				
3	0.166	0 43.32	11.03	54.35	65.15	-10.80	QP				
4	0.166	0 22.89	11.03	33.92	55.15	-21.23	AVG				
5	0.194	0 39.20	11.10	50.30	63.86	-13.56	QP				
6	0.194	0 17.89	11.10	28.99	53.86	-24.87	AVG				
7	0.318	0 31.30	10.96	42.26	59.76	-17.50	QP				
8	0.318	0 15.56	10.96	26.52	49.76	-23.24	AVG				
9	0.389	9 31.41	10.90	42.31	58.06	-15.75	QP				
10	0.389	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10.90	28.84		-19.22	AVG				
11	* 0.714		10.86	50.15	56.00	-5.85	QP				
12	0.714	Fre USANNO -	10.86	39.66	46.00	-6.34	AVG				
	rr. Factor (dB) =	: LISN Factor (dB) siPeak/Average (d									

Page: 37 of 227

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

emperature:		24.3	3℃			Relative	e Humidity	/: 45	%	
est Vo	oltage:	AC	120V	60Hz					N. C.	
nt. Po	ol.	Hori	izonta	al			CALL.	33		101
est M	ode:	Mod	de 2	A .	MAIN		100		1000	V
emar	k:	Only	y wors	se cas	se is report	ted.		A A	1	
80,0 d 70 60 50	BuV/m							CC 15C 3M R in - ≨ dll §	adiation	F
20 10	pH Marian	born/required for	Whitehear	A. WHAT BUT	Mandemore		Mary Mary		hand walks	Apeak
20 Juny		60.00				iHz)	300.00		Mark W	, repeak
20		60.000	Rea	ding suV)	Factor (dB/m)	Level	300.00 Limit (dBuV/m)	Margin	Mark W	
20 Juni 10 0 10 10 20 30.000	Frequer	60.00 1CY	Rea (dB	ding	Factor	Level	Limit	Margin	Non-schaff 1	000.000
20 June 10 0 10 20 30.000 No.	Frequer (MHz	60.000 ncy)	Rea (dB	ding	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	000.000
20 January 110 0 110 120 30.0000 No.	Frequer (MHz 37.547	60.00 ncy)	Rea (dB 47.	ding auV)	Factor (dB/m) -23.05	Level (dBuV/m) 24.23	Limit (dBuV/m) 40.00	Margin (dB)	Detector peak	P/F
20 July 10 0 0 10 20 30.000 No. 1 2	Frequer (MHz 37.547 104.536	60.00 ncy) 8 60 54	Rea (dB 47. 48. 53.	ding duV) .28	Factor (dB/m) -23.05 -24.82	Level (dBuV/m) 24.23 24.05	Limit (dBuV/m) 40.00 43.50	Margin (dB) -15.77 -19.45	Detector peak peak	P/F P
20 110 0 110 20 30.000 No. 1 2 3	Frequer (MHz 37.547 104.536 187.099	60.000 1Cy) 18 60 54 66	Rea (dB 47. 48. 53. 59.	ding (uV) .28 .87	Factor (dB/m) -23.05 -24.82 -23.47	Level (dBuV/m) 24.23 24.05 30.22	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -15.77 -19.45 -13.28	Detector peak peak	P/F P

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

emper	ature: 2	23.9℃		Relative I	Humidity:	44%		
est Vo	tage:	AC 120V 60Hz	Z	Caller of	THE STATE		(1)	11/2
nt. Po	l. \	/ertical	The same				10	
est Mo	de:	Mode 2	60	UPP		MARIE		1
emark	: (Only worse ca	se is report	ed.	1047		UED	
80.0 dBuV/m 70 60 50 40 20 10						FCC 15C 3M R	adiation	F
20	An Mindine	Maphenophyllomphyl	Muman	of the same		Summerle	handesteamenhee	w. ^a pea
20	Man Man	60.00) Mariana	IHz)	300.00	Smelle		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20	Frequence (MHz)			Level	300.00 Limit (dBuV/m)	Margin		1000.00
20 10 10 20 10 30.000	Frequenc	Reading (dBuV)	Factor	Level	Limit	Margin	The second secon	
20 10 10 20 30.000 No.	Frequence (MHz)	Reading (dBuV) 5 59.03	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
20 10 20 30.000 No.	Frequence (MHz) 34.6385	Reading (dBuV) 5 59.03 5 56.33	Factor (dB/m) -23.08	Level (dBuV/m) 35.95	Limit (dBuV/m) 40.00	Margin (dB) -4.05	Detector	P/F
20 20 30.000 No.	Frequence (MHz) 34.6385 47.8260	Reading (dBuV) 5 59.03 5 56.33 0 58.81	Factor (dB/m) -23.08 -22.66	Level (dBuV/m) 35.95 33.67	Limit (dBuV/m) 40.00 40.00	Margin (dB) -4.05 -6.33	Detector peak peak	P/F
No. 1 * 2 3	Frequence (MHz) 34.6385 47.8260 104.536	Reading (dBuV) 5 59.03 5 56.33 0 58.81 5 47.69	Factor (dB/m) -23.08 -22.66 -24.82	Level (dBuV/m) 35.95 33.67 33.99	Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -4.05 -6.33 -9.51	Detector peak peak peak	P/F P P

*:Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 227

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10359.683	34.70	6.06	40.76	54.00	-13.24	AVG	P
2	10360.279	46.92	6.06	52.98	68.30	-15.32	peak	P

Remark:

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	WILL ST	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10359.504	46.78	6.06	52.84	68.30	-15.46	peak	P
2 *	10360.994	35.94	6.06	42.00	54.00	-12.00	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 227

1	Temperature:	26℃	Relative Humidity:	54%
٦	Гest Voltage:	AC 120V/60Hz		WILLIAM STATE
1	Ant. Pol.	Horizontal	0	
٦	Test Mode:	TX 802.11a Mode 5220M	IHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10439.457	34.38	6.29	40.67	54.00	-13.33	AVG	Р
2	10440.141	44.75	6.29	51.04	68.30	-17.26	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		10
TX 802.11a Mode 5220M	IHz (U-NII-1)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10439.457	34.97	6.29	41.26	54.00	-12.74	AVG	Р
2	10439.856	45.36	6.29	51.65	68.30	-16.65	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11a Mode 5240M	1Hz (U-NII-1)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10480.124	50.65	6.36	57.01	68.30	-11.29	peak	P
2	10480.124	34.87	6.36	41.23	54.00	-12.77	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Tomporaturo	26℃	Relative Humidity:	54%
Temperature:	20 0	Relative numbers.	34 /0
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		110
Test Mode:	TX 802.11a Mode 5240M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10480.374	48.70	6.36	55.06	68.30	-13.24	peak	Р
2 *	10480.374	34.53	6.36	40.89	54.00	-13.11	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 42 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		(411)
Ant. Pol.	Horizontal	0	
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10359.648	33.42	6.06	39.48	54.00	-14.52	AVG	Р
2	10360.056	46.35	6.06	52.41	68.30	-15.89	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	No.	TI CIT
Ant. Pol.	Vertical	A PARTY	1
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10359.936	32.93	6.06	38.99	54.00	-15.01	AVG	P
2 *	10360.359	47.45	6.06	53.51	68.30	-14.79	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 43 of 227

f	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		WILLIAM STATE
	Ant. Pol.	Horizontal	0	
	Test Mode:	TX 802.11n(HT20) Mode	5220MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10440.167	34.15	6.29	40.44	54.00	-13.56	AVG	Р
2	10440.254	46.97	6.29	53.26	68.30	-15.04	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	7	
Ant. Pol.	Vertical		THU THE
Test Mode:	TX 802.11n(HT20) Mode	5220MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10439.365	32.41	6.29	38.70	54.00	-15.30	AVG	Р
2	10439.547	43.52	6.29	49.81	68.30	-18.49	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10479.365	46.00	6.36	52.36	68.30	-15.94	peak	Р
2 *	10479.457	35.26	6.36	41.62	54.00	-12.38	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THULL
Ant. Pol.	Vertical	Contract of the second	ann's
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	To the same of the

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10479.347	47.27	6.36	53.63	68.30	-14.67	peak	P
2 *	10480.475	33.87	6.36	40.23	54.00	-13.77	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anill s	WILLIAM STATE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5180MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10360.124	46.30	6.06	52.36	68.30	-15.94	peak	Р
2 *	10360.758	35.29	6.06	41.35	54.00	-12.65	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		33 1
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5180MHz (U-NII-1)	110

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10359.358	34.30	6.06	40.36	54.00	-13.64	AVG	Р
2	10359.736	46.82	6.06	52.88	68.30	-15.42	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5220MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10439.542	36.49	6.29	42.78	54.00	-11.22	AVG	P
2	10439.699	47.68	6.29	53.97	68.30	-14.33	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%	100			
Test Voltage:	AC 120V/60Hz	120V/60Hz					
Ant. Pol.	Vertical		67	11:37			
Test Mode:	TX 802.11ac(VHT20) Mo	de 5220MHz (U-NII-1)	1	TOP			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10440.358	46.83	6.29	53.12	68.30	-15.18	peak	Р
2 *	10440.687	35.36	6.29	41.65	54.00	-12.35	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHID'S
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5240MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10479.367	47.08	6.36	53.44	68.30	-14.86	peak	P
2 *	10479.763	34.84	6.36	41.20	54.00	-12.80	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5240MHz (U-NII-1)	110

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10480.475	34.29	6.36	40.65	54.00	-13.35	AVG	P
2	10480.768	46.88	6.36	53.24	68.30	-15.06	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ax(HE20) Mod	de 5180MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10360.354	34.19	6.06	40.25	54.00	-13.75	AVG	P
2	10360.762	45.30	6.06	51.36	68.30	-16.94	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11 ax(HE20) Mod	de 5180MHz (U-NII-1)	110

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10359.254	35.29	6.06	41.35	54.00	-12.65	AVG	Р
2	10360.452	46.30	6.06	52.36	68.30	-15.94	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	ani'l	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ax(HE20) Mo	de 5220MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10439.667	36.24	6.29	42.53	54.00	-11.47	AVG	P
2	10439.975	46.84	6.29	53.13	68.30	-15.17	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		1
Ant. Pol.	Vertical		WUP TO
Test Mode:	TX 802.11 ax(HE20) Mod	de 5220MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10440.358	35.29	6.29	41.58	54.00	-12.42	AVG	Р
2	10440.785	46.45	6.29	52.74	68.30	-15.56	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ax(HE20) Mod	de 5240MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10480.524	34.87	6.36	41.23	54.00	-12.77	AVG	Р
2	10480.745	46.76	6.36	53.12	68.30	-15.18	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE20) Mod	e 5240MHz (U-NII-1)	The same of the sa

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10479.552	46.31	6.36	52.67	68.30	-15.63	peak	P
2 *	10479.658	34.87	6.36	41.23	54.00	-12.77	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10380.235	35.22	6.14	41.36	54.00	-12.64	AVG	P
2	10380.765	47.28	6.14	53.42	68.30	-14.88	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	THU	
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10379.356	46.65	6.13	52.78	68.30	-15.52	peak	Р
2 *	10379.468	34.65	6.13	40.78	54.00	-13.22	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 52 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anil 1	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10459.354	46.46	6.32	52.78	68.30	-15.52	peak	Р
2 *	10459.754	34.91	6.32	41.23	54.00	-12.77	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%	
Test Voltage:	AC 120V/60Hz		L Service Control	- W
Ant. Pol.	Vertical		6	UP_{T_0}
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	1 16	

No.	Frequency (MHz)	Reading (dBuV)			Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10460.354	34.90	6.32	41.22	54.00	-12.78	AVG	Р
2	10460.742	46.37	6.32	52.69	68.30	-15.61	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 53 of 227

Ten	nperature:	26℃	Relative Humidity:	54%
Tes	t Voltage:	AC 120V/60Hz		WILLIAM.
Ant	. Pol.	Horizontal	0	
Tes	t Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10379.856	46.55	6.14	52.69	68.30	-15.61	peak	P
2 *	10380.362	35.63	6.14	41.77	54.00	-12.23	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A C
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10379.762	46.99	6.14	53.13	68.30	-15.17	peak	Р
2 *	10380.246	35.19	6.14	41.33	54.00	-12.67	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 54 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anis s	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5230MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10459.367	46.79	6.32	53.11	68.30	-15.19	peak	Р
2 *	10460.152	35.69	6.32	42.01	54.00	-11.99	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	The same of the sa	TI CIT
Ant. Pol.	Vertical	A PARTY	1
Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10460.563	34.91	6.32	41.23	54.00	-12.77	AVG	P
2	10460.782	46.07	6.32	52.39	68.30	-15.91	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 55 of 227

e	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		WILLIAM STATE
	Ant. Pol.	Horizontal	1 W	
E	Test Mode:	TX 802.11 ax(HE40) Mod	de 5190MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10379.365	35.99	6.13	42.12	54.00	-11.88	AVG	P
2	10379.865	46.54	6.14	52.68	68.30	-15.62	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%	100
Test Voltage:	AC 120V/60Hz		all and	
Ant. Pol.	Vertical		67	UP_{D}
Test Mode:	TX 802.11 ax(HE40) Mod	de 5190MHz (U-NII-1)	1 1	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10380.145	35.30	6.14	41.44	54.00	-12.56	AVG	Р
2	10380.342	46.54	6.14	52.68	68.30	-15.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 56 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CIII)
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ax(HE40) Mod	e 5230MHz (U-NII-1)	W


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10460.142	35.33	6.32	41.65	54.00	-12.35	AVG	Р
2	10460.325	46.80	6.32	53.12	68.30	-15.18	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	No.	
Ant. Pol.	Vertical		O C
Test Mode:	TX 802.11ax(HE40) Mod	e 5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10460.523	46.79	6.32	53.11	68.30	-15.19	peak	Р
2 *	10460.865	35.78	6.32	42.10	54.00	-11.90	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 57 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	ani'l	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mo	ode 5210MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10420.368	44.99	6.25	51.24	68.30	-17.06	peak	Р
2 *	10420.475	35.33	6.25	41.58	54.00	-12.42	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5210MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10419.354	35.00	6.25	41.25	54.00	-12.75	AVG	P
2	10419.745	45.89	6.25	52.14	68.30	-16.16	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

58 of 227 Page:

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ax(HE80) Mod	e 5210MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10420.369	34.98	6.25	41.23	54.00	-12.77	AVG	Р
2	10420.752	46.41	6.25	52.66	68.30	-15.64	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE80) Mod	e 5210MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10419.348	35.43	6.25	41.68	54.00	-12.32	AVG	Р
2	10420.388	45.41	6.25	51.66	68.30	-16.64	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 59 of 227

5260MHz-5320MHz(U-NII-2A)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		UIII D
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11a Mode 5260M	1Hz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10519.823	43.96	6.40	50.36	68.30	-17.94	peak	P
2 *	10520.030	35.07	6.40	41.47	54.00	-12.53	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	WILLAND			
Test Mode:	TX 802.11a Mode 5260M	X 802.11a Mode 5260MHz (U-NII-2A)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10520.005	49.31	6.40	55.71	68.30	-12.59	peak	P
2	10520.005	34.52	6.40	40.92	54.00	-13.08	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 60 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11a Mode 5300N	1Hz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10600.193	34.14	6.38	40.52	54.00	-13.48	AVG	P
2	10600.349	47.27	6.38	53.65	68.30	-14.65	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	/ertical				
Test Mode:	TX 802.11a Mode 5300M	IHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10600.499	43.54	6.38	49.92	68.30	-18.38	peak	P
2 *	10600.598	34.29	6.38	40.67	54.00	-13.33	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 61 of 227

E	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		William.
	Ant. Pol.	Horizontal	0	
	Test Mode:	TX 802.11a Mode 5320M	IHz (U-NII-2A)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10640.487	43.43	6.63	50.06	68.30	-18.24	peak	P
2 *	10640.487	34.16	6.63	40.79	54.00	-13.21	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	/ertical				
Test Mode:	TX 802.11a Mode 5320M	X 802.11a Mode 5320MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10639.585	33.10	6.62	39.72	54.00	-14.28	AVG	P
2	10640.182	47.19	6.62	53.81	68.30	-14.49	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 62 of 227

f	Temperature:	26℃	Relative Humidity:	54%			
	Test Voltage:	AC 120V/60Hz		William .			
	Ant. Pol.	Horizontal					
	Test Mode:	TX 802.11n(HT20) Mode	(802.11n(HT20) Mode 5260MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10519.698	36.06	6.40	42.46	54.00	-11.54	AVG	P
2	10520.142	47.37	6.40	53.77	68.30	-14.53	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	MILES	
Test Mode:	TX 802.11n(HT20) Mode	5260MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10519.427	34.95	6.40	41.35	54.00	-12.65	AVG	Р
2	10520.689	46.29	6.39	52.68	68.30	-15.62	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 63 of 227

Temperature	e : 26℃	Relative Humidity:	54%
Test Voltage	e: AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode 5300MHz (U-NII-2A)	IU.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10600.425	46.25	6.38	52.63	68.30	-15.67	peak	Р
2 *	10600.768	35.28	6.38	41.66	54.00	-12.34	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	MILES	
Test Mode:	TX 802.11n(HT20) Mode	5300MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10599.768	34.97	6.38	41.35	54.00	-12.65	AVG	Р
2	10600.466	46.30	6.38	52.68	68.30	-15.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 64 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10639.959	46.07	6.62	52.69	68.30	-15.61	peak	Р
2 *	10640.592	34.33	6.63	40.96	54.00	-13.04	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10639.552	34.63	6.62	41.25	54.00	-12.75	AVG	P
2	10640.425	46.89	6.63	53.52	68.30	-14.78	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 65 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	ani's	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5260MHz (U-NII-2A	4)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10520.425	34.85	6.40	41.25	54.00	-12.75	AVG	P
2	10520,963	46.37	6.40	52.77	68.30	-15.53	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	TIU
Test Mode:	TX 802.11ac(VHT20) Mc	de 5260MHz (U-NII-2A	A) (((()))

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10520.368	43.44	8.92	52.36	68.30	-15.94	peak	P
2 *	10520.459	32.31	8.92	41.23	54.00	-12.77	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 66 of 227

f	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		WILLIAM STATE
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5300MHz (U-NII-2A	1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10600.348	36.18	6.38	42.56	54.00	-11.44	AVG	P
2	10600.758	46.88	6.38	53.26	68.30	-15.04	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5300MHz (U-NII-2A	N)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10599.421	46.64	6.38	53.02	68.30	-15.28	peak	Р
2 *	10600.325	33.87	6.38	40.25	54.00	-13.75	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 67 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ac(VHT20)	Mode 5320MHz (U-NII-2	A)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10639.325	46.06	6.62	52.68	68.30	-15.62	peak	P
2 *	10639.725	34.74	6.62	41.36	54.00	-12.64	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	/ertical				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5320MHz (U-NII-2A	A)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10640.287	34.49	6.63	41.12	54.00	-12.88	AVG	P
2	10640.367	46.63	6.63	53.26	68.30	-15.04	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 68 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ax(HE20) Mod	le 5260MHz (U-NII-2A)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10519.648	34.83	6.40	41.23	54.00	-12.77	AVG	P
2	10519.712	47.05	6.40	53.45	68.30	-14.85	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE20) Mod	e 5260MHz (U-NII-2A)	TIME TO SERVICE

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10520.365	35.04	6.40	41.44	54.00	-12.56	AVG	Р
2	10520.723	46.73	6.39	53.12	68.30	-15.18	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 69 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHID'S
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ax(HE20) Mod	e 5300MHz (U-NII-2A)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10600.352	34.51	6.38	40.89	54.00	-13.11	AVG	Р
2	10600.754	46.74	6.38	53.12	68.30	-15.18	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE20) Mod	e 5300MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10599.415	46.07	6.38	52.45	68.30	-15.85	peak	P
2 *	10599.657	35.20	6.38	41.58	54.00	-12.42	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 70 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11ax(HE20) Mod	e 5320MHz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10640.342	45.51	6.63	52.14	68.30	-16.16	peak	Р
2 *	10640.712	34.72	6.63	41.35	54.00	-12.65	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	100	
Ant. Pol.	Vertical	TUL	1
Test Mode:	TX 802.11ax(HE20) Mod	e 5320MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10640.124	34.27	6.62	40.89	54.00	-13.11	AVG	P
2	10640.457	46.83	6.63	53.46	68.30	-14.84	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 71 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT40) Mode	5270MHz (U-NII-2A)	W


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10540.351	36.62	6.39	43.01	54.00	-10.99	AVG	P
2	10540.745	46.73	6.39	53.12	68.30	-15.18	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		TO TO
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5270MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10539.657	46.29	6.39	52.68	68.30	-15.62	peak	P
2 *	10539.786	34.86	6.39	41.25	54.00	-12.75	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 72 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT40) Mode	5310MHz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10619.365	47.51	6.50	54.01	68.30	-14.29	peak	P
2 *	10619.455	35.75	6.50	42.25	54.00	-11.75	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		10
TX 802.11n(HT40) Mode	5310MHz (U-NII-2A)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10620.357	34.62	6.50	41.12	54.00	-12.88	AVG	Р
2	10620.758	46.76	6.51	53.27	68.30	-15.03	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 73 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5270MHz (U-NII-2A	1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10540.365	46.39	6.39	52.78	68.30	-15.52	peak	P
2 *	10540.685	35.18	6.39	41.57	54.00	-12.43	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	WILL TO	THU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5270MHz (U-NII-2A	A)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10539.254	46.82	6.39	53.21	68.30	-15.09	peak	P
2 *	10540.741	35.64	6.39	42.03	54.00	-11.97	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 74 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHID.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT40) Mc	de 5310MHz (U-NII-2A	A)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10619.785	46.18	6.50	52.68	68.30	-15.62	peak	P
2 *	10620.571	34.49	6.50	40.99	54.00	-13.01	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		10
TX 802.11ac(VHT40) Mo	de 5310MHz (U-NII-2A)
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10620.324	46.48	6.50	52.98	68.30	-15.32	peak	P
2 *	10620.471	34.86	6.50	41.36	54.00	-12.64	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 75 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	TI DES	
Ant. Pol.	Horizontal		W. College
Test Mode:	TX 802.11ax(HE40) Mod	e 5270MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10540.235	35.50	6.39	41.89	54.00	-12.11	AVG	Р
2	10540.765	46.83	6.39	53.22	68.30	-15.08	peak	Р


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE40) Mod	e 5270MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10540.354	46.85	6.39	53.24	68.30	-15.06	peak	P
2 *	10540.495	35.74	6.39	42.13	54.00	-11.87	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 76 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ax(HE40) Mod	e 5310MHz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10620.368	46.62	6.50	53.12	68.30	-15.18	peak	Р
2 *	10620.982	34.73	6.52	41.25	54.00	-12.75	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		110
TX 802.11ax(HE40) Mod	e 5310MHz (U-NII-2A)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10620.133	34.63	6.50	41.13	54.00	-12.87	AVG	Р
2	10620.745	46.63	6.51	53.14	68.30	-15.16	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 77 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		UIII D
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT80) Mc	de 5290MHz (U-NII-2A	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10579.348	34.84	6.39	41.23	54.00	-12.77	AVG	Р
2	10580.347	46.63	6.38	53.01	68.30	-15.29	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		TU TO
Test Mode:	TX 802.11ac(VHT80) Mo	de 5290MHz (U-NII-2A) (1/1/12

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10579.387	35.64	6.39	42.03	54.00	-11.97	AVG	Р
2	10579.742	45.77	6.38	52.15	68.30	-16.15	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 78 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anil 1	WILLIAM.
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ax(HE80) Mod	le 5290MHz (U-NII-2A)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10579.354	34.89	6.39	41.28	54.00	-12.72	AVG	P
2	10580.968	45.95	6.38	52.33	68.30	-15.97	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE80) Mod	e 5290MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10580.347	34.89	6.38	41.27	54.00	-12.73	AVG	Р
2	10580.468	46.69	6.38	53.07	68.30	-15.23	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 79 of 227

5500MHz-5720MHz(U-NII-2C)

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz		OUT DE			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 802.11a Mode 5500M	1Hz (U-NII-2C)	The same of the sa			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10999.604	40.33	8.17	48.50	68.30	-19.80	peak	Р
2 *	11000.472	32.59	8.17	40.76	54.00	-13.24	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	WILL TO	THU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5500M	IHz (U-NII-2C)	101

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10999.607	32.77	8.17	40.94	54.00	-13.06	AVG	Р
2	10999.965	40.13	8.17	48.30	68.30	-20.00	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 80 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		The same
Ant. Pol.	Horizontal	an's b	MAIN
Test Mode:	TX 802.11a Mode 5580N	MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11159.837	33.07	7.84	40.91	54.00	-13.09	AVG	Р
2	11160.449	44.87	7.84	52.71	68.30	-15.59	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃ Relative Humidity:		54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5580M	IHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11159.627	31.99	7.84	39.83	54.00	-14.17	AVG	Р
2	11160.193	45.45	7.84	53.29	68.30	-15.01	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 81 of 227

Te	emperature:	26℃	Relative Humidity:	54%
Te	est Voltage:	AC 120V/60Hz		WILLIAM STATE
Α	nt. Pol.	Horizontal	0	
Te	est Mode:	TX 802.11a Mode 5720M	IHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11439.667	31.71	8.99	40.70	54.00	-13.30	AVG	P
2	11439.670	39.82	8.99	48.81	68.30	-19.49	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		110
Test Mode:	TX 802.11a Mode 5720M	IHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11439.874	40.80	8.99	49.79	68.30	-18.51	peak	Р
2 *	11440.338	32.62	8.99	41.61	54.00	-12.39	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 82 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	5500MHz (U-NII-2C)	NU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10999.365	44.61	8.17	52.78	68.30	-15.52	peak	P
2 *	10999.625	33.35	8.17	41.52	54.00	-12.48	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		TU
Test Mode:	TX 802.11 n(HT20) Mode	e 5500MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11000.365	33.06	8.17	41.23	54.00	-12.77	AVG	Р
2	11000.865	45.08	8.17	53.25	68.30	-15.05	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 83 of 227

f	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		William.
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11159.658	34.93	7.84	42.77	54.00	-11.23	AVG	P
2	11159.748	45.81	7.84	53.65	68.30	-14.65	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WUP.	TIVE
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)	The country

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11160.352	44.62	7.84	52.46	68.30	-15.84	peak	P
2 *	11160.754	33.41	7.84	41.25	54.00	-12.75	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 84 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anis s	WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5720MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)			Detector	P/F
1	11440.354	43.90	8.99	52.89	68.30	-15.41	peak	Р
2 *	11440.758	32.63	8.99	41.62	54.00	-12.38	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26 ℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		
TX 802.11n(HT20) Mode	5720MHz (U-NII-2C)	100
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11440.524	43.78	8.99	52.77	68.30	-15.53	peak	Р
2 *	11440.996	32.59	8.99	41.58	54.00	-12.42	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 85 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5500MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11000.348	32.51	8.17	40.68	54.00	-13.32	AVG	Р
2	11000.658	44.00	8.17	52.17	68.30	-16.13	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		110
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5500MHz (U-NII-20	C) (T)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11000.158	33.19	8.17	41.36	54.00	-12.64	AVG	Р
2	11000.748	45.84	8.17	54.01	68.30	-14.29	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 86 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHITTIES OF THE PARTY OF THE PA
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5580MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11159.359	43.84	7.84	51.68	68.30	-16.62	peak	Р
2 *	11159.799	34.03	7.84	41.87	54.00	-12.13	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		10
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5580MHz (U-NII-20	C) (1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11160.395	32.41	7.84	40.25	54.00	-13.75	AVG	Р
2	11160.754	44.29	7.84	52.13	68.30	-16.17	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 87 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	THE PARTY OF THE P	The same
Ant. Pol.	Horizontal		W. College
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5720MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11440.358	31.26	8.99	40.25	54.00	-13.75	AVG	P
2	11440.865	43.36	8.99	52.35	68.30	-15.95	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

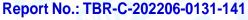
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		TO TO
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5720MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11439.365	32.79	8.99	41.78	54.00	-12.22	AVG	Р
2	11440.741	44.03	8.99	53.02	68.30	-15.28	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 88 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11 ax(HE20) Mod	de 5500MHz (U-NII-2C	


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11000.124	32.61	8.17	40.78	54.00	-13.22	AVG	P
2	11000.354	45.09	8.17	53.26	68.30	-15.04	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		10
TX 802.11 ax(HE20) Mod	de 5500MHz (U-NII-2C)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10999.457	44.28	8.17	52.45	68.30	-15.85	peak	Р
2 *	10999.648	33.06	8.17	41.23	54.00	-12.77	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 89 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11 ax(HE20) Mod	de 5580MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11159.758	45.28	7.84	53.12	68.30	-15.18	peak	Р
2 *	11160.245	34.52	7.84	42.36	54.00	-11.64	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		10
TX 802.11 ax(HE20) Mod	de 5580MHz (U-NII-2C)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11159.687	45.28	7.84	53.12	68.30	-15.18	peak	Р
2 *	11160.457	32.72	7.84	40.56	54.00	-13.44	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 90 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	NUDE	THU
Ant. Pol.	Horizontal		CIUD
Test Mode:	TX 802.11 ax(HE20) Mod	de 5720MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11440.325	32.56	8.99	41.55	54.00	-12.45	AVG	P
2	11440.358	43.13	8.99	52.12	68.30	-16.18	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11 ax(HE20) Mod	de 5720MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11439.245	32.79	8.99	41.78	54.00	-12.22	AVG	Р
2	11440.754	43.37	8.99	52.36	68.30	-15.94	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 91 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	0	
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11020.168	33.14	8.09	41.23	54.00	-12.77	AVG	Р
2	11020.421	45.04	8.08	53.12	68.30	-15.18	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	WILL TO THE STATE OF THE STATE	THU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11019.354	44.37	8.09	52.46	68.30	-15.84	peak	Р
2 *	11019.897	33.68	8.09	41.77	54.00	-12.23	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 92 of 227

		WILL AND A	
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	TUDE	Mary Control
Ant. Pol.	Horizontal		Will The
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11099.784	44.92	7.76	52.68	68.30	-15.62	peak	Р
2 *	11099.896	33.49	7.76	41.25	54.00	-12.75	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	110

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11100.368	33.82	7.76	41.58	54.00	-12.42	AVG	Р
2	11100.475	46.01	7.76	53.77	68.30	-14.53	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 93 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal	0	
Test Mode:	TX 802.11n(HT40) Mode	5710MHz (U-NII-2C)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11420.136	44.74	8.98	53.72	68.30	-14.58	peak	P
2 *	11420.364	33.90	8.98	42.88	54.00	-11.12	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%				
AC 120V/60Hz	C 120V/60Hz					
Vertical		10				
TX 802.11n(HT40) Mode	5710MHz (U-NII-2C)					
	AC 120V/60Hz Vertical	AC 120V/60Hz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11420.344	32.38	8.98	41.36	54.00	-12.64	AVG	P
2	11420.756	43.46	8.98	52.44	68.30	-15.86	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 94 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5510MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11020.357	43.70	8.08	51.78	68.30	-16.52	peak	P
2 *	11020.468	33.15	8.08	41.23	54.00	-12.77	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		TI U
TX 802.11ac(VHT40) Mo	de 5510MHz (U-NII-2C	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11019.360	45.02	8.09	53.11	68.30	-15.19	peak	Р
2 *	11020.169	32.80	8.09	40.89	54.00	-13.11	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 95 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5550MHz (U-NII-20	()

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11100.113	44.57	7.76	52.33	68.30	-15.97	peak	Р
2 *	11100.266	33.12	7.76	40.88	54.00	-13.12	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5550MHz (U-NII-20	()

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11100.142	33.49	7.76	41.25	54.00	-12.75	AVG	Р
2	11100.325	44.90	7.76	52.66	68.30	-15.64	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 96 of 227

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	a W	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5710MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11420.142	32.01	8.98	40.99	54.00	-13.01	AVG	Р
2	11420.365	43.68	8.98	52.66	68.30	-15.64	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		110
Test Mode:	TX 802.11ac(VHT40) Mo	de 5710MHz (U-NII-2C	(m) 12

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11420.036	32.24	8.98	41.22	54.00	-12.78	AVG	P
2	11420.139	43.69	8.98	52.67	68.30	-15.63	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 97 of 227

_						
	Temperature: 26°C Test Voltage: AC 120V/60Hz		Relative Humidity:	54%		
	Test Voltage:	AC 120V/60Hz	120V/60Hz			
1	Ant. Pol.	Horizontal	0			
1	Test Mode:	TX 802.11ax(HE40) Mod	e 5510MHz (U-NII-2C)	TO STATE OF THE PARTY OF THE PA		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11019.358	34.03	8.09	42.12	54.00	-11.88	AVG	P
2	11019.542	45.05	8.09	53.14	68.30	-15.16	peak	P


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%				
AC 120V/60Hz	C 120V/60Hz					
Vertical		10				
TX 802.11ax(HE40) Mod	e 5510MHz (U-NII-2C)					
	AC 120V/60Hz Vertical	AC 120V/60Hz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11020.217	35.13	8.08	43.21	54.00	-10.79	AVG	Р
2	11020.358	45.10	8.08	53.18	68.30	-15.12	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 98 of 227

Ø			Relative Humidity:	54%		
	Test Voltage:	AC 120V/60Hz	20V/60Hz			
	Ant. Pol.	Horizontal				
	Test Mode:	TX 802.11ax(HE40) Mod	e 5550MHz (U-NII-2C)	W.		


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11100.215	32.36	7.76	40.12	54.00	-13.88	AVG	P
2	11100.324	44.38	7.76	52.14	68.30	-16.16	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE40) Mod	e 5550MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11100.667	44.63	7.76	52.39	68.30	-15.91	peak	P
2 *	11100.784	33.53	7.76	41.29	54.00	-12.71	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 99 of 227

Temperatu	re: 26°C	Relative Humidity:	54%
Test Voltag	Je: AC 120V/60Hz		CIII)
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ax(H	E40) Mode 5710MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11420.342	42.24	8.98	51.22	68.30	-17.08	peak	Р
2 *	11420.689	32.38	8.98	41.36	54.00	-12.64	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	43%				
AC 120V/60Hz	C 120V/60Hz					
Vertical		110				
TX 802.11ax(HE40) Mod	e 5710MHz (U-NII-2C)					
	AC 120V/60Hz Vertical	AC 120V/60Hz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11420.477	43.70	8.98	52.68	68.30	-15.62	peak	Р
2 *	11420.569	32.27	8.98	41.25	54.00	-12.75	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 100 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM STATE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5530MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11060.622	45.31	7.91	53.22	68.30	-15.08	peak	P
2 *	11060.781	34.22	7.91	42.13	54.00	-11.87	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	C 120V/60Hz				
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT80) Mo	de 5530MHz (U-NII-20	()			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11060.324	33.35	7.92	41.27	54.00	-12.73	AVG	Р
2	11060.715	45.20	7.91	53.11	68.30	-15.19	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 101 of 227

f	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		WILLIAM STATE
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT80) Mo	de 5690MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11380.138	44.48	8.96	53.44	68.30	-14.86	peak	P
2 *	11380.413	32.39	8.96	41.35	54.00	-12.65	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	C 120V/60Hz				
Ant. Pol.	Vertical		10			
Test Mode:	TX 802.11ac(VHT80) Mo	de 5690MHz (U-NII-2C	(i)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11379.352	31.93	8.96	40.89	54.00	-13.11	AVG	Р
2	11380.477	44.15	8.96	53.11	68.30	-15.19	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 102 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ax(HE80) Mod	e 5530MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11060.692	44.77	7.91	52.68	68.30	-15.62	peak	Р
2 *	11060.778	33.47	7.91	41.38	54.00	-12.62	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz	C 120V/60Hz			
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ax(HE80) Mod	e 5530MHz (U-NII-2C)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11060.574	45.14	7.92	53.06	68.30	-15.24	peak	Р
2 *	11060.895	34.40	7.91	42.31	54.00	-11.69	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 103 of 227

_								
f	Temperature:	26℃	26℃ Relative Humidity:					
	Test Voltage:	AC 120V/60Hz		WILLIAM STATE				
	Ant. Pol.	Horizontal						
	Test Mode:	TX 802.11ax(HE80) Mod	e 5690MHz (U-NII-2C)	W.				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11379.365	43.03	8.96	51.99	68.30	-16.31	peak	P
2 *	11379.477	31.72	8.96	40.68	54.00	-13.32	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	54%				
AC 120V/60Hz	C 120V/60Hz				
Vertical		110			
TX 802.11ax(HE80) Mod	X 802.11ax(HE80) Mode 5690MHz (U-NII-2C)				
	AC 120V/60Hz Vertical	AC 120V/60Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11380.533	43.92	8.96	52.88	68.30	-15.42	peak	Р
2 *	11380.646	32.62	8.96	41.58	54.00	-12.42	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 104 of 227

5745MHz-5825MHz(U-NII-3)

Temperature:	26℃	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal	1				
Test Mode:	TX 802.11a Mode 5745M	1Hz (U-NII-3)	TO THE REAL PROPERTY.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11490.361	47.17	8.99	56.16	68.30	-12.14	peak	P
2 *	11490.471	35.36	8.99	44.35	54.00	-9.65	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	54%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		110				
Test Mode:	TX 802.11a Mode 5745M	TX 802.11a Mode 5745MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11490.423	42.39	8.99	51.38	68.30	-16.92	peak	Р
2 *	11490,423	35.26	8.99	44.25	54.00	-9.75	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 105 of 227

Temperatur	re: 26°C	26℃ Relative Humidity:					
Test Voltage	e: AC 120V/60Hz		OTHER DESIGNATION OF THE PERSON OF THE PERSO				
Ant. Pol.	Horizontal	7					
Test Mode:	TX 802.11a Mode	5785MHz (U-NII-3)	The same of the sa				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11570.190	32.85	8.75	41.60	54.00	-12.40	AVG	P
2	11570.352	44.78	8.75	53.53	68.30	-14.77	peak	P

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5785M	IHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	11570.172	45.80	8.75	54.55	68.30	-13.75	peak	Р
2 *	11570.299	32.99	8.75	41.74	54.00	-12.26	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 106 of 227

-							
	Temperature:	26℃	Relative Humidity:	54%			
	Test Voltage:	AC 120V/60Hz		WILLIAM.			
	Ant. Pol.	Horizontal	Horizontal				
	Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	W.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11649.658	31.19	8.70	39.89	54.00	-14.11	AVG	P
2	11649.845	40.78	8.70	49.48	68.30	-18.82	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11649.694	40.74	8.70	49.44	68.30	-18.86	peak	P
2 *	11650.024	32.45	8.70	41.15	54.00	-12.85	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 107 of 227

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage: AC 120V/60Hz					
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	W		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11490.314	43.45	8.99	52.44	68.30	-15.86	peak	P
2 *	11490.612	32.34	8.99	41.33	54.00	-12.67	AVG	P

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. U.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11490.567	33.37	8.99	42.36	54.00	-11.64	AVG	P
2	11490.658	44.62	8.99	53.61	68.30	-14.69	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The test's evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 108 of 227

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)	W.				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11570.635	43.61	8.75	52.36	68.30	-15.94	peak	P
2 *	11570.732	32.80	8.75	41.55	54.00	-12.45	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	2 120V/60Hz				
Ant. Pol.	Vertical					
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11569.475	31.91	8.75	40.66	54.00	-13.34	AVG	P
2	11569.689	43.68	8.75	52.43	68.30	-15.87	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 109 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	TUE TO	The same of the sa
Ant. Pol.	Horizontal	COLUMN TO SERVICE OF THE PERSON OF THE PERSO	
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11650.368	44.95	8.70	53.65	68.30	-14.65	peak	P
2 *	11650.758	32.65	8.70	41.35	54.00	-12.65	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11649.124	33.86	8.70	42.56	54.00	-11.44	AVG	Р
2	11649.548	44.98	8.70	53.68	68.30	-14.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 110 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHILD.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5745MHz (U-NII-3)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11489.457	44.69	8.99	53.68	68.30	-14.62	peak	Р
2 *	11490.324	32.26	8.99	41.25	54.00	-12.75	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	No.	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5745MHz (U-NII-3)	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11489.344	31.69	9.00	40.69	54.00	-13.31	AVG	P
2	11489.685	43.79	8.99	52.78	68.30	-15.52	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 111 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11569.354	44.49	8.75	53.24	68.30	-15.06	peak	Р
2 *	11570.354	33.60	8.75	42.35	54.00	-11.65	AVG	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	54%	
AC 120V/60Hz		
Vertical		110
TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11569.758	44.03	8.75	52.78	68.30	-15.52	peak	Р
2 *	11570.354	32.50	8.75	41.25	54.00	-12.75	AVG	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 112 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		CHILD.
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5825MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11649.658	32.53	8.70	41.23	54.00	-12.77	AVG	P
2	11649.968	44.42	8.70	53.12	68.30	-15.18	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60Hz		
Vertical		110
TX 802.11ac(VHT20) Mo	de 5825MHz (U-NII-3)	
	AC 120V/60Hz Vertical	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11650.354	31.55	8.70	40.25	54.00	-13.75	AVG	P
2	11650.758	43.94	8.70	52.64	68.30	-15.66	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 113 of 227

		411411	
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		The same
Ant. Pol.	Horizontal		THE PERSON NAMED IN
Test Mode:	TX 802.11ax(HE20) Mod	e 5745MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11489.745	32.26	8.99	41.25	54.00	-12.75	AVG	P
2	11490.136	43.78	8.99	52.77	68.30	-15.53	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		U TOTAL
Ant. Pol.	Vertical	ann's	MUD
Test Mode:	TX 802.11ax(HE20) Mod	e 5745MHz (U-NII-3)	11

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11490.135	31.26	8.99	40.25	54.00	-13.75	AVG	P
2	11490.378	44.22	8.99	53.21	68.30	-15.09	peak	P

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 114 of 227

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM.
Ant. Pol.	Horizontal	1 W	
Test Mode:	TX 802.11ax(HE20) Mod	e 5785MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11570.758	32.14	8.75	40.89	54.00	-13.11	AVG	Р
2	11570.625	43.70	8.75	52.45	68.30	-15.85	peak	P

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		110
Test Mode:	TX 802.11ax(HE20) Mod	e 5785MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11569.354	31.37	8.75	40.12	54.00	-13.88	AVG	Р
2	11570.136	42.94	8.75	51.69	68.30	-16.61	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 115 of 227

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz		William .		
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11ax(HE20) Mode 5825MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBu√/m)	Margin (dB)	Detector	P/F
1	11650.354	36.16	17.82	53.98	68.30	-14.32	peak	Р
2 *	11650.354	27.32	17.82	45.14	54.00	-8.86	AVG	Р


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%		
Test Voltage: AC 120V/60Hz					
Ant. Pol.	Vertical		The same of the sa		
Test Mode:	TX 802.11ax(HE20) Mod	e 5825MHz (U-NII-3)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11650.095	36.86	17.82	54.68	68.30	-13.62	peak	P
2 *	11650.095	29.05	17.82	46.87	54.00	-7.13	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

116 of 227 Page:

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William.
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11509.135	43.18	8.95	52.13	68.30	-16.17	peak	Р
2 *	11509.378	32.30	8.95	41.25	54.00	-12.75	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%			
Test Voltage: AC 120V/60Hz					
Vertical		10			
TX 802.11n(HT40) Mode	5755MHz (U-NII-3)				
	AC 120V/60Hz Vertical	AC 120V/60Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11510.102	44.72	8.95	53.67	68.30	-14.63	peak	Р
2 *	11510.248	33.19	8.95	42.14	54.00	-11.86	AVG	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.